CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Measurements of math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">mrow>mmultiscripts>mrow>mi mathvariant="normal">H/mi>/mrow>mprescripts>/mpres cripts>mrow>mi mathvariant="normal">//mi> /mrow>mrow>mn>3/mn>/mrow>/mmultiscripts>/mrow>/ math> and math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">mrow>mmultiscripts>mrow>mi mathvariant="normal">H/mi>/mrow>mprescripts>/mpres cripts>mrow>mi mathvariant="normal">//mi> /mrow>mrow>mn>4/mn>/mrow>/mmultiscripts>/mrow>/ math> Lifetimes and Yields in math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">mrow>mi>Au/mi>mo>+/mo>mi>Au/mi >/mrow>/math> Collisions in the High Baryon Density Region M.S. Abdallah et al. (STAR Collaboration) Phys. Rev. Lett. 128, 202301 — Published 17 May 2022 DOI: 10.1103/PhysRevLett.128.202301

Measurements of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region

M. S. Abdallah,⁵ B. E. Aboona,⁵⁵ J. Adam,⁶ L. Adamczyk,² J. R. Adams,³⁹ J. K. Adkins,³⁰ G. Agakishiev,²⁸ I. Aggarwal,⁴¹ M. M. Aggarwal,⁴¹ Z. Ahammed,⁶¹ I. Alekseev,^{3,35} D. M. Anderson,⁵⁵ A. Aparin,²⁸ E. C. Aschenauer,⁶ M. U. Ashraf,¹¹ F. G. Atetalla,²⁹ A. Attri,⁴¹ G. S. Averichev,²⁸ V. Bairathi,⁵³ W. Baker,¹⁰ J. G. Ball Cap,²⁰ K. Barish,¹⁰ A. Behera,⁵² R. Bellwied,²⁰ P. Bhagat,²⁷ A. Bhasin,²⁷ J. Bielcik,¹⁴ J. Bielcikova,³⁸ I. G. Bordyuzhin,³ J. D. Brandenburg,⁶ A. V. Brandin,³⁵ I. Bunzarov,²⁸ X. Z. Cai,⁵⁰ H. Caines,⁶⁴ M. Calderón de la Barca Sánchez,⁸ D. Cebra,⁸ I. Chakaberia,^{31,6} P. Chaloupka,¹⁴ B. K. Chan,⁹ F-H. Chang,³⁷ Z. Chang,⁶ N. Chankova-Bunzarova,²⁸ A. Chatterjee,¹¹ S. Chattopadhyay,⁶¹ D. Chen,¹⁰ J. Chen,⁴⁹ J. H. Chen,¹⁸ X. Chen,⁴⁸ Z. Chen,⁴⁹ J. Cheng,⁵⁷ M. Chevalier,¹⁰ S. Choudhury,¹⁸ W. Christie,⁶ X. Chu,⁶ H. J. Crawford,⁷ M. Csanád,¹⁶ M. Daugherity,¹ T. G. Dedovich,²⁸ I. M. Deppner,¹⁹ A. A. Derevschikov,⁴³ A. Dhamija,⁴¹ L. Di Carlo,⁶³ L. Didenko,⁶ P. Dixit,²² X. Dong,³¹ J. L. Drachenberg,¹ E. Duckworth,²⁹ J. C. Dunlop,⁶ N. Elsey,⁶³ J. Engelage,⁷ G. Eppley,⁴⁵ S. Esumi,⁵⁸ O. Evdokimov,¹² A. Ewigleben,³² O. Eyser,⁶ R. Fatemi,³⁰ F. M. Fawzi,⁵ S. Fazio,⁶ P. Federic,³⁸ J. Fedorisin,²⁸ C. J. Feng,³⁷ Y. Feng,⁴⁴ P. Filip,²⁸ E. Finch,⁵¹ Y. Fisyak,⁶ A. Francisco,⁶⁴ C. Fu,¹¹ L. Fulek,² C. A. Gagliardi,⁵⁵ T. Galatyuk,¹⁵ F. Geurts,⁴⁵ N. Ghimire,⁵⁴ A. Gibson,⁶⁰ K. Gopal,²³ X. Gou,⁴⁹ D. Grosnick,⁶⁰ A. Gupta,²⁷ W. Guryn,⁶ A. I. Hamad,²⁹ A. Hamed,⁵ Y. Han,⁴⁵ S. Harabasz,¹⁵ M. D. Harasty,⁸ J. W. Harris,⁶⁴ H. Harrison,³⁰ S. He,¹¹ W. He,¹⁸ X. H. He,²⁶ Y. He,⁴⁹ S. Heppelmann,⁸ S. Heppelmann,⁴² N. Herrmann,¹⁹ E. Hoffman,²⁰ L. Holub,¹⁴ Y. Hu,¹⁸ H. Huang,³⁷ H. Z. Huang,⁹ S. L. Huang,⁵² T. Huang,³⁷ X. Huang,⁵⁷ Y. Huang,⁵⁷ T. J. Humanic,³⁹ G. Igo,^{9,*} D. Isenhower,¹ W. W. Jacobs,²⁵ C. Jena,²³ A. Jentsch,⁶ Y. Ji,³¹ J. Jia,^{6,52} K. Jiang,⁴⁸ X. Ju,⁴⁸ E. G. Judd,⁷ S. Kabana,⁵³ M. L. Kabir,¹⁰ S. Kagamaster,³² D. Kalinkin,^{25,6} K. Kang,⁵⁷ D. Kapukchyan,¹⁰ K. Kauder,⁶ H. W. Ke,⁶ D. Keane,²⁹ A. Kechechyan,²⁸ M. Kelsey,⁶³ Y. V. Khyzhniak,³⁵ D. P. Kikoła,⁶² C. Kim,¹⁰ B. Kimelman,⁸ D. Kincses,¹⁶ I. Kisel,¹⁷ A. Kiselev,⁶ A. G. Knospe,³² H. S. Ko,³¹ L. Kochenda,³⁵ L. K. Kosarzewski,¹⁴ L. Kramarik,¹⁴ P. Kravtsov,³⁵ L. Kumar,⁴¹ S. Kumar,²⁶ R. Kunnawalkam Elayavalli,⁶⁴ J. H. Kwasizur,²⁵ R. Lacey,⁵² S. Lan,¹¹ J. M. Landgraf,⁶ J. Lauret,⁶ A. Lebedev,⁶ R. Lednicky,^{28, 38} J. H. Lee,⁶ Y. H. Leung,³¹ N. Lewis,⁶ C. Li,⁴⁹ C. Li,⁴⁸ W. Li,⁴⁵ X. Li,⁴⁸ Y. Li,⁵⁷ X. Liang,¹⁰ Y. Liang,²⁹ R. Licenik,³⁸ T. Lin,⁴⁹ Y. Lin,¹¹ M. A. Lisa,³⁹ F. Liu,¹¹ H. Liu,²⁵ H. Liu,¹¹ P. Liu,⁵² T. Liu,⁶⁴ X. Liu,³⁹ Y. Liu,⁵⁵ Z. Liu,⁴⁸ T. Ljubicic,⁶ W. J. Llope,⁶³ R. S. Longacre,⁶ E. Loyd,¹⁰ N. S. Lukow,⁵⁴ X. F. Luo,¹¹ L. Ma,¹⁸ R. Ma,⁶ Y. G. Ma,¹⁸ N. Magdy,¹² D. Mallick,³⁶ S. Margetis,²⁹ C. Markert,⁵⁶ H. S. Matis,³¹ J. A. Mazer,⁴⁶ N. G. Minaev,⁴³ S. Mioduszewski,⁵⁵ B. Mohanty,³⁶ M. M. Mondal,⁵² I. Mooney,⁶³ D. A. Morozov,⁴³ A. Mukherjee,¹⁶ M. Nagy,¹⁶ J. D. Nam,⁵⁴ Md. Nasim,²² K. Nayak,¹¹ D. Neff,⁹ J. M. Nelson,⁷ D. B. Nemes,⁶⁴ M. Nie,⁴⁹ G. Nigmatkulov,³⁵ T. Niida,⁵⁸ R. Nishitani,⁵⁸ L. V. Nogach,⁴³ T. Nonaka,⁵⁸ A. S. Nunes,⁶ G. Odyniec,³¹ A. Ogawa,⁶ S. Oh,³¹ V. A. Okorokov,³⁵ B. S. Page,⁶ R. Pak,⁶ J. Pan,⁵⁵ A. Pandav,³⁶ A. K. Pandey,⁵⁸ Y. Panebratsev,²⁸ P. Parfenov,³⁵ B. Pawlik,⁴⁰ D. Pawlowska,⁶² C. Perkins,⁷ L. Pinsky,²⁰ R. L. Pintér,¹⁶ J. Pluta,⁶² B. R. Pokhrel,⁵⁴ G. Ponimatkin,³⁸ J. Porter,³¹ M. Posik,⁵⁴ V. Prozorova,¹⁴ N. K. Pruthi,⁴¹ M. Przybycien,² J. Putschke,⁶³ H. Qiu,²⁶ A. Quintero,⁵⁴ C. Racz,¹⁰ S. K. Radhakrishnan,²⁹ N. Raha,⁶³ R. L. Ray,⁵⁶ R. Reed,³² H. G. Ritter,³¹ M. Robotkova,³⁸ O. V. Rogachevskiy,²⁸ J. L. Romero,⁸ D. Roy,⁴⁶ L. Ruan,⁶ J. Rusnak,³⁸ A. K. Sahoo,²² N. R. Sahoo,⁴⁹ H. Sako,⁵⁸ S. Salur,⁴⁶ J. Sandweiss,^{64, *} S. Sato,⁵⁸ W. B. Schmidke,⁶ N. Schmitz,³³ B. R. Schweid,⁵² F. Seck,¹⁵ J. Seger,¹³ M. Sergeeva,⁹ R. Seto,¹⁰ P. Seyboth,³³ N. Shah,²⁴ E. Shahaliev,²⁸ P. V. Shanmuganathan,⁶ M. Shao,⁴⁸ T. Shao,¹⁸ A. I. Sheikh,²⁹ D. Y. Shen,¹⁸ S. S. Shi,¹¹ Y. Shi,⁴⁹ Q. Y. Shou,¹⁸ E. P. Sichtermann,³¹ R. Sikora,² M. Simko,³⁸ J. Singh,⁴¹ S. Singha,²⁶ M. J. Skoby,⁴⁴ N. Smirnov,⁶⁴ Y. Söhngen,¹⁹ W. Solyst,²⁵ P. Sorensen,⁶ H. M. Spinka,^{4, *} B. Srivastava,⁴⁴ T. D. S. Stanislaus,⁶⁰ M. Stefaniak,⁶² D. J. Stewart,⁶⁴ M. Strikhanov,³⁵ B. Stringfellow,⁴⁴ A. A. P. Suaide,⁴⁷ M. Sumbera,³⁸ B. Summa,⁴² X. M. Sun,¹¹ X. Sun,¹² Y. Sun,⁴⁸ Y. Sun,²¹ B. Surrow,⁵⁴ D. N. Svirida,³ Z. W. Sweger,⁸ P. Szymanski,⁶² A. H. Tang,⁶ Z. Tang,⁴⁸ A. Taranenko,³⁵ T. Tarnowsky,³⁴ J. H. Thomas,³¹ A. R. Timmins,²⁰ D. Tlusty,¹³ T. Todoroki,⁵⁸ M. Tokarev,²⁸ C. A. Tomkiel,³² S. Trentalange,⁹ R. E. Tribble,⁵⁵ P. Tribedy,⁶ S. K. Tripathy,¹⁶ T. Truhlar,¹⁴ B. A. Trzeciak,¹⁴ O. D. Tsai,⁹ Z. Tu,⁶ T. Ullrich,⁶ D. G. Underwood,^{4,60} I. Upsal,⁴⁵ G. Van Buren,⁶ J. Vanek,³⁸ A. N. Vasiliev,⁴³ I. Vassiliev,¹⁷ V. Verkest,⁶³ F. Videbæk,⁶ S. Vokal,²⁸ S. A. Voloshin,⁶³ F. Wang,⁴⁴ G. Wang,⁹ J. S. Wang,²¹ P. Wang,⁴⁸ X. Wang,⁴⁹ Y. Wang,¹¹ Y. Wang,⁵⁷ Z. Wang,⁴⁹ J. C. Webb,⁶ P. C. Weidenkaff,¹⁹ L. Wen,⁹ G. D. Westfall,³⁴ H. Wieman,³¹ S. W. Wissink,²⁵ R. Witt,⁵⁹ J. Wu,¹¹ J. Wu,²⁶ Y. Wu,¹⁰ B. Xi,⁵⁰ Z. G. Xiao,⁵⁷ G. Xie,³¹ W. Xie,⁴⁴ H. Xu,²¹ N. Xu,³¹ Q. H. Xu,⁴⁹ Y. Xu,⁴⁹ Z. Xu,⁶ Z. Xu,⁹ G. Yan,⁴⁹ C. Yang,⁴⁹

Q. Yang,⁴⁹ S. Yang,⁴⁵ Y. Yang,³⁷ Z. Ye,⁴⁵ Z. Ye,¹² L. Yi,⁴⁹ K. Yip,⁶ Y. Yu,⁴⁹ H. Zbroszczyk,⁶² W. Zha,⁴⁸

C. Zhang,⁵² D. Zhang,¹¹ J. Zhang,⁴⁹ S. Zhang,¹² S. Zhang,¹⁸ X. P. Zhang,⁵⁷ Y. Zhang,²⁶ Y. Zhang,⁴⁸ Y. Zhang,¹¹

Z. J. Zhang,³⁷ Z. Zhang,⁶ Z. Zhang,¹² J. Zhao,⁴⁴ C. Zhou,¹⁸ Y. Zhou,¹¹ X. Zhu,⁵⁷ M. Zurek,⁴ and M. Zyzak¹⁷

(STAR Collaboration)

¹Abilene Christian University, Abilene, Texas 79699

²AGH University of Science and Technology, FPACS, Cracow 30-059, Poland

³Alikhanov Institute for Theoretical and Experimental Physics NRC "Kurchatov Institute", Moscow 117218, Russia

⁴Argonne National Laboratory, Argonne, Illinois 60439

⁵American University of Cairo, New Cairo 11835, New Cairo, Egypt

⁶Brookhaven National Laboratory, Upton, New York 11973

University of California, Berkeley, California 94720

⁸University of California, Davis, California 95616

⁹University of California, Los Angeles, California 90095

¹⁰University of California, Riverside, California 92521

¹¹Central China Normal University, Wuhan, Hubei 430079

¹²University of Illinois at Chicago, Chicago, Illinois 60607

¹³Creighton University, Omaha, Nebraska 68178

¹⁴Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic

¹⁵ Technische Universität Darmstadt, Darmstadt 64289, Germany

¹⁶ELTE Eötvös Loránd University, Budapest, Hungary H-1117

¹⁷Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany

¹⁸Fudan University, Shanghai, 200433

¹⁹University of Heidelberg, Heidelberg 69120, Germany

²⁰ University of Houston, Houston, Texas 77204

²¹Huzhou University, Huzhou, Zhejiang 313000

²²Indian Institute of Science Education and Research (IISER), Berhampur 760010, India

²³Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India

²⁴ Indian Institute Technology, Patna, Bihar 801106, India

²⁵Indiana University, Bloomington, Indiana 47408

²⁶Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000

²⁷University of Jammu, Jammu 180001, India

²⁸ Joint Institute for Nuclear Research, Dubna 141 980, Russia

²⁹Kent State University, Kent, Ohio 44242

³⁰University of Kentucky, Lexington, Kentucky 40506-0055

³¹Lawrence Berkeley National Laboratory, Berkeley, California 94720

³²Lehigh University, Bethlehem, Pennsylvania 18015

³³Max-Planck-Institut für Physik, Munich 80805, Germany

³⁴ Michigan State University, East Lansing, Michigan 48824

³⁵National Research Nuclear University MEPhI, Moscow 115409, Russia

³⁶National Institute of Science Education and Research, HBNI, Jatni 752050, India

³⁷National Cheng Kung University, Tainan 70101

³⁸Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic

³⁹Ohio State University, Columbus, Ohio 43210

⁴⁰Institute of Nuclear Physics PAN, Cracow 31-342, Poland

⁴¹Panjab University, Chandigarh 160014, India

⁴²Pennsylvania State University, University Park, Pennsylvania 16802

⁴³NRC "Kurchatov Institute", Institute of High Energy Physics, Protvino 142281, Russia

⁴⁴Purdue University, West Lafayette, Indiana 47907

⁴⁵Rice University, Houston, Texas 77251

⁴⁶Rutgers University, Piscataway, New Jersey 08854

⁴⁷Universidade de São Paulo, São Paulo, Brazil 05314-970

⁴⁸University of Science and Technology of China, Hefei, Anhui 230026

⁴⁹Shandong University, Qingdao, Shandong 266237

⁵⁰Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800

⁵¹Southern Connecticut State University, New Haven, Connecticut 06515

⁵²State University of New York, Stony Brook, New York 11794

⁵³Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile

⁵⁴ Temple University, Philadelphia, Pennsylvania 19122

⁵⁵ Texas A&M University, College Station, Texas 77843

⁵⁶University of Texas, Austin, Texas 78712

⁵⁷Tsinghua University, Beijing 100084

⁵⁸University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

⁵⁹United States Naval Academy, Annapolis, Maryland 21402
 ⁶⁰Valparaiso University, Valparaiso, Indiana 46383
 ⁶¹Variable Energy Cyclotron Centre, Kolkata 700064, India
 ⁶²Warsaw University of Technology, Warsaw 00-661, Poland
 ⁶³Wayne State University, Detroit, Michigan 48201

⁶⁴Yale University, New Haven, Connecticut 06520

We report precision measurements of hypernuclei ${}^{\Lambda}_{A}$ H and ${}^{\Lambda}_{A}$ H lifetimes obtained from Au+Au collisions at $\sqrt{s_{\rm NN}} = 3.0$ GeV and 7.2 GeV collected by the STAR experiment at RHIC, and the first measurement of ${}^{\Lambda}_{A}$ H and ${}^{\Lambda}_{A}$ H mid-rapidity yields in Au+Au collisions at $\sqrt{s_{\rm NN}} = 3.0$ GeV. ${}^{\Lambda}_{A}$ H and ${}^{\Lambda}_{A}$ H, being the two simplest bound states composed of hyperons and nucleons, are cornerstones in the field of hypernuclear physics. Their lifetimes are measured to be $221 \pm 15(\text{stat.}) \pm 19(\text{syst.})$ ps for ${}^{\Lambda}_{A}$ H and $218 \pm 6(\text{stat.}) \pm 13(\text{syst.})$ ps for ${}^{\Lambda}_{A}$ H. The p_{T} -integrated yields of ${}^{\Lambda}_{A}$ H and ${}^{\Lambda}_{A}$ H are presented in different centrality and rapidity intervals. It is observed that the shape of the rapidity distribution of ${}^{\Lambda}_{A}$ H is different for 0–10% and 10–50% centrality collisions. Thermal model calculations, using the canonical ensemble for strangeness, describes the ${}^{\Lambda}_{A}$ H yield well, while underestimating the ${}^{\Lambda}_{A}$ H yield. Transport models, combining baryonic mean-field and coalescence (JAM) or utilizing dynamical cluster formation via baryonic interactions (PHQMD) for light nuclei and hypernuclei production, approximately describe the measured ${}^{\Lambda}_{A}$ H and ${}^{\Lambda}_{A}$ H yields. Our measurements provide means to precisely assess our understanding of the fundamental baryonic interactions with strange quarks, which can impact our understanding of more complicated systems involving hyperons, such as the interior of neutron stars or exotic hypernuclei.

¹ Hypernuclei are nuclei containing at least one hyperon. ² As such, they are excellent experimental probes to study ³ the hyperon-nucleon (Y-N) interaction. The Y-N in-⁴ teraction is an important ingredient, not only in the ⁵ equation-of-state (EoS) of astrophysical objects such as ⁶ neutron stars, but also in the description of the hadronic ⁷ phase of a heavy-ion collision [1]. Heavy-ion collisions ⁸ provide a unique laboratory to investigate the Y-N inter-⁹ action in finite temperature and density regions through ¹⁰ the measurements of hypernuclei lifetimes, production ¹¹ yields etc.

12 The lifetimes of hypernuclei ranging from A = 3 to 56 ¹³ have previously been reported [2–11]. The light hyper-¹⁴ nuclei (A = 3, 4), being simple hyperon-nucleon bound 15 states, serve as cornerstones of our understanding of the $_{16}$ Y–N interaction [12, 13]. For example, their binding en-¹⁷ ergies B_{Λ} are often utilized to deduce the strength of the $_{18}$ Y-N potential [14-16], which is estimated to be roughly $_{19} 2/3$ of the nucleon-nucleon potential. In particular, the ²⁰ hypertriton ${}^{3}_{\Lambda}$ H, a bound state of Λpn , has a very small $_{21} B_{\Lambda}$ of several hundred keV [17, 18], suggesting that the $^{22}_{\Lambda}$ H lifetime is close to the free- Λ lifetime τ_{Λ} . Recently, ²³ STAR [10, 11], ALICE [7, 8] and HypHI [9] have reported $_{24}$ $^{3}_{\Lambda}$ H lifetimes with large uncertainties ranging from $\sim 50\%$ $_{25}$ to \sim 100% $\tau_{\Lambda}.$ The tension between the measurements 26 has led to debate [19]. In addition, recent experimental ²⁷ observations of two-solar-mass neutron stars [20–22] are ²⁸ incompatible with model calculations of the EoS of high ²⁹ baryon density matter, which predict hyperons to be a ³⁰ major ingredient in neutron star cores [20–22]. These $_{31}$ observations challenge our understanding of the Y-N in-³² teraction, and call for more precise measurements [12].

³³ In heavy-ion collisions, particle production models ³⁴ such as statistical thermal hadronization [23] and co-³⁵ alescence [1] have been proposed to describe hypernu36 clei formation. While thermal model calculations pri-37 marily depend only on the freeze-out temperature and $_{38}$ the baryo-chemical potential, the Y-N interaction plays ³⁹ an important role in the coalescence approach, through 40 its influence on the dynamics of hyperon transporta-⁴¹ tion in nuclear medium [24], as well as its connection to ⁴² the coalescence criterion for hypernuclei formation from ⁴³ hyperons and nucleons [1]. At high collision energies, ⁴⁴ the ${}^{3}_{\Lambda}$ H yields have been measured by ALICE [8] and ⁴⁵ STAR [10]. ALICE results from Pb+Pb collisions at $_{46}\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$ are consistent with statistical thermal ⁴⁷ model predictions [23] and coalescence calculations [25]. ⁴⁸ At low collision energies ($\sqrt{s_{\rm NN}} < 20$ GeV), an enhance-⁴⁹ ment in the hypernuclei yield is generally expected due $_{50}$ to the higher baryon density [1, 23], although this has ⁵¹ not been verified experimentally. The E864 and HypHI ⁵² collaborations have reported hypernuclei cross sections ⁵³ at low collision energies [26, 27], however both mea-54 surements suffered from low statistics and lack of mid-55 rapidity coverage. Precise measurements of hypernuclei 56 yields at low collision energies are thus critical to ad-57 vance our understanding in their production mechanisms ⁵⁸ in heavy-ion collisions and to establish the role of hy-⁵⁹ perons and strangeness in the EoS in the high-baryon-60 density region [28]. In addition, such measurements pro-61 vide guidance on searches for exotic strange matter such $_{62}$ as double- Λ hypernuclei and strange dibaryons in low 63 energy heavy-ion experiments, which could lead to broad ₆₄ implications [29–31].

⁶⁵ In this letter, we report ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H lifetimes ob-⁶⁶ tained from data samples of Au+Au collisions at $\sqrt{s_{\rm NN}}$ ⁶⁷ = 3.0 GeV and 7.2 GeV, as well as the first measurement ⁶⁸ of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H differential yields at $\sqrt{s_{\rm NN}} = 3.0$ GeV. We ⁶⁹ focus on the yields at mid-rapidity in order to investi-⁷⁰ gate hypernuclear production in the high-baryon-density ⁷² sented here due to the lack of mid-rapidity coverage. The ¹²⁸ rial background is subtracted from the data in 2D phase $_{73}$ data were collected by the Solenoidal Tracker at RHIC $_{129}$ space ($p_{\rm T}$ and rapidity y) in the collision center-of-mass ⁷⁴ (STAR) [32] in 2018, using the fixed-target (FXT) con-¹³⁰ frame. In addition to subtracting the rotational back-⁷⁵ figuration. In the FXT configuration a single beam pro-¹³¹ ground, we perform a linear fit using the side-band re-⁷⁶ vided by RHIC impinges on a gold target of thickness ¹³² gion to remove any residual background. The subtracted 77 0.25 mm (corresponding to a 1% interaction probability) 133 distributions are shown in Fig. 1 (c,d). The target is ⁷⁸ located at 201 cm away from the center of the STAR de- ¹³⁴ located at y = -1.05, and the sign of the rapidity y is $_{79}$ tector. The minimum bias (MB) trigger condition is pro- $_{135}$ chosen such that the beam travels in the positive y di- $_{30}$ vided by the Beam-Beam Counters (BBC) [33] and the $_{136}$ rection. The mass resolution is 1.5 and 1.8 MeV/ c^2 for ⁸¹ Time of Flight (TOF) detector [34]. The reconstructed ⁸² primary-vertex position along the beam direction is re- $_{33}$ quired to be within ± 2 cm of the nominal target posi-⁸⁴ tion. The primary-vertex position in the radial plane is ⁸⁵ required to lie within a radius of 1.5 cm from the center of ⁸⁶ the target to eliminate possible backgrounds arising from ⁸⁷ interactions with the vacuum pipe. In total, 2.8×10^8 $_{88}$ (1.5×10⁸) qualified events at $\sqrt{s_{\rm NN}} = 3.0$ (7.2) GeV are $_{so}$ used in this analysis. The $\sqrt{s_{\rm NN}} = 3.0 \,{\rm GeV}$ analysis and $_{90}\sqrt{s_{\rm NN}} = 7.2 \,{\rm GeV}$ analysis are similar. In the following, ⁹¹ we describe the former; details related to the latter can ⁹² be found in the supplementary material.

The centrality of the collision is determined using the 93 ⁹⁴ number of reconstructed charged tracks in the Time Pro-⁹⁵ jection Chamber (TPC) [35] compared to a Monte Carlo ⁹⁶ Glauber model simulation [36]. Details are given in [37]. $_{97}$ The top 0–50% most central events are selected for our ⁹⁸ analysis. ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H are reconstructed via the two-⁹⁹ body decay channels ${}^{A}_{\Lambda}$ H $\rightarrow \pi^{-} + {}^{A}$ He, where A = 3, 4. ¹⁰⁰ Charged tracks are reconstructed using the TPC in a ¹⁰¹ 0.5 Tesla uniform magnetic field. We require the recon-¹⁰² structed tracks to have at least 15 measured space points ¹⁰³ in the TPC (out of 45) and a minimum reconstructed ¹⁰⁴ transverse momentum of $150 \,\mathrm{MeV}/c$ to ensure good track ¹⁰⁵ quality. Particle identification for π^- , ³He, and ⁴He is 106 achieved by the measured ionization energy loss in the ¹⁰⁷ TPC. The KFParticle package [38], a particle reconstruc-¹⁰⁸ tion package based on the Kalman filter utilizing the er-109 ror matrices, is used for the reconstruction of the mother ¹¹⁰ particle. Various topological variables such as the de-111 cay length of the mother particle, the distances of closest ¹¹² approach (DCA) between the mother/daughter particles ¹¹³ to the primary vertex, and the DCA between the two 114 daughters, are examined. Cuts on these topological vari-¹¹⁵ ables are applied to the hypernuclei candidates in order ¹¹⁶ to maximize the signal significance. In addition, we place 117 fiducial cuts on the reconstructed particles to minimize 118 edge effects.

119

⁷¹ region. The yields at $\sqrt{s_{\rm NN}} = 7.2 \,{\rm GeV}$ are not pre- ¹²⁷ both ³_A H and ⁴_A H as shown in Fig. 1 (a,b). The combinato- $_{137}$ $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H, respectively.

FIG. 1: Top row: Invariant mass distributions of $(a)^{3}$ He π^{-} and $(b)^4 \text{He}\pi^-$ pairs. In the insets, black open circles represent the data, blue histograms represent the background constructed by using rotated pion tracks. In the main panels, black solid circles represent the rotational background subtracted data, and the red dashed lines describe the residual background. Bottom row: The transverse momentum (p_T) versus the rapidity (y) for reconstructed $(c)^3_{\Lambda}H$ and $(d)^4_{\Lambda}H$. The target is located at the y = -1.05.

The reconstructed ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H candidates are further 138 ¹³⁹ divided into different $L/\beta\gamma$ intervals, where L is the de-140 cay length, β and γ are particle velocity divided by the ¹⁴¹ speed of light and Lorentz factor, respectively. The raw ¹⁴² signal counts, $N^{\rm raw}$, for each $L/\beta\gamma$ interval are corrected ¹⁴³ for the TPC acceptance, tracking, and particle identifi-144 cation efficiency, using an embedding technique in which Figure 1 (a,b) shows invariant mass distributions of 145 the TPC response to Monte Carlo (MC) hypernuclei and 120 ³He π^- pairs and ⁴He π^- pairs in the $p_{\rm T}$ region (1.0– 146 their decay daughters is simulated in the STAR detector $_{121}$ 4.0) GeV/c for the 50% most central collisions. The $_{147}$ described in GEANT3 [39]. Simulated signals are embed-122 combinatorial background is estimated using a rotational 148 ded into the real data and processed through the same $_{123}$ technique, in which all π^- tracks in a single event are ro- $_{149}$ reconstruction algorithm as in real data. The simulated 124 tated with a fixed angle multiple times and then normal- 150 hypernuclei, used for determining the efficiency correc-125 ized in the side-band region. The background shape is 151 tion, need to be re-weighted in 2D phase space (p_T-y) 126 reasonably reproduced using this rotation technique for 152 such that the MC hypernuclei are distributed in a re¹⁵³ alistic manner. This can be constrained by comparing ¹⁵⁴ the reconstructed kinematic distributions (p_T, y) between ¹⁵⁵ simulation and real data. The corrected hypernuclei yield ¹⁵⁶ as a function of $L/\beta\gamma$ is fitted with an exponential func-¹⁵⁷ tion (see supplementary material) and the decay lifetime ¹⁵⁸ is determined as the negative inverse of the slope divided ¹⁵⁹ by the speed of light.

FIG. 2: ${}^{3}_{\Lambda}$ H (a) and ${}^{4}_{\Lambda}$ H (b) measured lifetime, compared to previous measurements [3–5, 7–11, 40–46], theoretical calculations [47–52] and τ_{Λ} [53]. Horizontal lines represent statistical uncertainties, while boxes represent systematic uncertainties. The experimental average lifetimes and the corresponding uncertainty of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H are also shown as vertical blue shaded bands.

We consider four major sources of systematic uncer-160 161 tainties in the lifetime result: imperfect description of ¹⁶² topological variables in the simulations, imperfect knowl-¹⁶³ edge of the true kinematic distribution of the hypernuclei, 164 the TPC tracking efficiency, and the signal extraction ¹⁶⁵ technique. Their contributions are estimated by varying ¹⁶⁶ the topological cuts, the MC hypernuclei $p_T - y$ distribu-¹⁶⁷ tions, the TPC track quality selection cuts and the back-168 ground subtraction method. The possible contamination ¹⁶⁹ of the signal due to multi-body decays of A > 3 hyper-170 nuclei is estimated using MC simulations and found to ¹⁷¹ be negligible (< 0.1%) within our reconstructed hyper-172 nuclei mass window. The systematic uncertainties due 173 to different sources are tabulated in Tab. I. They are 174 assumed to be uncorrelated with each other and added ¹⁷⁵ in quadrature in the total systematic uncertainty. As a ¹⁷⁶ cross-check, we conducted the measurement of Λ lifetime 177 from the same data and the result is consistent with the ¹⁷⁸ PDG value [53](see supplementary material).

The lifetime results measured at $\sqrt{s_{\rm NN}} = 3.0 \,{\rm GeV}$ and $\sqrt{s_{\rm NN}} = 7.2 \,{\rm GeV}$ are found to agree well with each other. 181 The combined results are $221 \pm 15 ({\rm stat.}) \pm 19 ({\rm syst.})$ ps for

	Lifetime		dN/dy	
Source	$^3_{\Lambda}{ m H}$	$^4_{\Lambda}{ m H}$	$^{3}_{\Lambda}H$	$^4_{\Lambda}{ m H}$
Analysis cuts	5.5%	5.1%	15.1%	6.9%
Input MC	3.1%	1.8%	8.8%	3.8%
Tracking efficiency	5.0%	2.4%	14.1%	5.2%
Signal extraction	1.5%	0.7%	14.3%	7.7%
Extrapolation	N/A	N/A	13.6%	10.9%
Detector material	< 1%	< 1%	4.0%	2.0%
Total	8.2%	6.0%	31.9%	16.6%

TABLE I: Summary of systematic uncertainties for the lifetime and top 10% most central dN/dy (|y|<0.5) measurements using $\sqrt{s_{\rm NN}} = 3.0 \,\text{GeV}$ data.

¹⁸² ${}^{3}_{\Lambda}$ H and 218 ± 6(stat.) ± 13(syst.) ps for ${}^{4}_{\Lambda}$ H. As shown in ¹⁸³ Fig. 2, they are consistent with previous measurements ¹⁸⁴ from ALICE [7, 8], STAR [10, 11], HypHI [9] and early ¹⁸⁵ experiments using imaging techniques [3–5, 10, 40–46]. ¹⁸⁶ Using all the available experimental data, the average ¹⁸⁷ lifetimes of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H are 200 ± 13 ps and 208 ± 12 ps, ¹⁸⁸ respectively, corresponding to $(76 \pm 5)\%$ and $(79 \pm 5)\%$ of ¹⁸⁹ τ_{Λ} . All data from ALICE, STAR and HypHI lie within ¹⁹⁰ 1.5 σ of the global averages. These precise data clearly ¹⁹¹ indicate that the ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H lifetimes are considerably ¹⁹² lower than τ_{Λ} .

Early theoretical calculations of the ${}^{3}_{\Lambda}$ H lifetime typi-¹⁹⁴ cally give values within 15% of τ_{Λ} [48–50]. This can be ¹⁹⁵ explained by the loose binding of Λ in the ${}^{3}_{\Lambda}$ H. A recent ¹⁹⁶ calculation [47] using a pionless effective field theory ap-¹⁹⁷ proach with Λd degrees of freedom gives a ${}^{3}_{\Lambda}$ H lifetime ¹⁹⁸ of $\approx 98\% \tau_{\Lambda}$. Meanwhile, it is shown in recent studies ¹⁹⁹ that incorporating attractive pion final state interactions, ²⁰⁰ which has been previously disregarded, decreases the ${}^{3}_{\Lambda}$ H ²⁰¹ lifetime by $\sim 15\%$ [19, 51]. This leads to a prediction of ²⁰² the ${}^{3}_{\Lambda}$ H lifetime to be $(81\pm 2)\%$ of τ_{Λ} , consistent with the ²⁰³ world average.

For ${}^{4}_{\Lambda}$ H, a recent estimation [52] based on the empiri-205 cal isospin rule [54] agrees with the data within 1 σ . The 206 isospin rule is based on the experimental ratio $\Gamma(\Lambda \rightarrow$ 207 $n + \pi^{0})/\Gamma(\Lambda \rightarrow p + \pi^{-}) \approx 0.5$, which leads to the pre-208 diction $\tau({}^{4}_{\Lambda}$ H)/ $\tau({}^{4}_{\Lambda}$ He) = (74 ± 4)% [52]. Combining the 209 average value reported here and the previous ${}^{4}_{\Lambda}$ He lifetime 210 measurement [55, 56], the measured ratio $\tau({}^{4}_{\Lambda}$ H)/ $\tau({}^{4}_{\Lambda}$ He) 211 is (83 ± 6)%, consistent with the expectation.

Previous measurements on light nuclei suggest that their production yields in heavy-ion collisions may be related to their internal nuclear structure [57]. Similar relations for hypernuclei are suggested by theoretical models [1]. To further examine the hypernuclear structure rand its production mechanism in heavy-ion collisions, we report the first measurement of hypernuclei dN/dy in two entrality selections: top 0–10% most central and 10–50% mid-central collisions. The $p_{\rm T}$ spectra can be found in the supplementary material, and are extrapolated down to zero $p_{\rm T}$ to obtain the p_T -integrated dN/dy. Different functions [58] are used to estimate the systematic un²⁴⁰ kinematic regions considered for the analysis. The disso-²⁷⁷ dibaryons [1]. ²⁴¹ ciation has a strong dependence on B_{Λ} of the hypernuclei. ²⁴² Systematic uncertainties are estimated by varying the B_{Λ} $_{243}$ of the $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H, which are equal to 0.27 ± 0.08 MeV and 2.53 ± 0.04 MeV, respectively [60]. As a conservative ²⁴⁵ estimate, we assign the systematic uncertainty by com-²⁴⁶ paring the calculation using the central values of B_{Λ} and $_{247}$ its 2.5 σ limits. A summary of the systematic uncertain- $_{248}$ ties for the dN/dy measurement is listed in Tab. I.

FIG. 3: B.R.×dN/dy as a function of rapidity y for $^{3}_{\Lambda}$ H (black circles) and ${}^{4}_{\Lambda}$ H (red circles) for (a) 0-10% centrality and (b) 10 - 50% centrality Au+Au collisions at $\sqrt{s_{\rm NN}} = 3.0$ GeV. Vertical lines represent statistical uncertainties, while boxes represent systematic uncertainties. The dot-dashed lines represent coalescence (JAM) calculations. The coalescence parameters used are indicated in the text.

The $p_{\rm T}$ -integrated yields of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H times the 278 249 ²⁵³ 10–50% centrality. This change in shape is likely related ²⁸² based on [17, 55] is considered in this analysis. ²⁵⁴ to the change in the collision geometry, such as spectators ²⁸³ ²⁵⁵ playing a larger role in non-central collisions.

Also shown in Fig. 3 are calculations from the trans- 285 in Fig. 4. 256 ²⁶⁰ deuterons and tritons are formed through the coalescence

 $_{224}$ certainties in the unmeasured region, which correspond $_{261}$ of nucleons, and subsequently, $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H are formed $_{225}$ to 32–60% of the p_T -integrated yield in various rapidity $_{262}$ through the coalescence of Λ baryons with deuterons 226 intervals, and introduce 8–14% systematic uncertainties. 263 or tritons. Coalescence takes place if the spatial coor-227 Systematic uncertainties associated with analysis cuts, 264 dinates and the relative momenta of the constituents ²²⁸ tracking efficiency, and signal extraction are estimated ²⁶⁵ are within a sphere of radius (r_C, p_C) . It is found $_{229}$ using the same method as for the lifetime measurement. $_{266}$ that calculations using coalescence parameters (r_C, p_C) ²³⁰ We further consider the effect of the uncertainty in the ²⁶⁷ of (4.5fm, 0.3GeV/c), (4fm, 0.3GeV/c), (4fm, 0.12GeV/c) ²³¹ simulated hypernuclei lifetime on the calculated recon- ²⁶⁸ and (4fm, 0.3GeV/c) for $d, t, {}^{3}_{\Lambda}\text{H}$ and ${}^{4}_{\Lambda}\text{H}$ respectively can 232 struction efficiency by varying the simulation's lifetime 269 qualitatively reproduce the centrality and rapidity depen- $_{233}$ assumption within a 1 σ window of the average experi- $_{270}$ dence of the measured yields. The smaller p_C parameter $_{234}$ mental lifetime, which leads to 8% and 4% uncertainty $_{271}$ used for $^{3}_{A}$ H formation is motivated by its much smaller $_{235}$ for $^{\Lambda}_{\Lambda}$ H and $^{\Lambda}_{\Lambda}$ H, respectively. Finally, hypernuclei may en- $_{272}$ B_{Λ} (~ 0.3 MeV) compared to $^{\Lambda}_{\Lambda}$ H (~ 2.6 MeV). The data 236 counter Coulomb dissociation when traversing the gold 273 offer first quantitative input on the coalescence parame-²³⁷ target. The survival probability is estimated using a ²⁷⁴ ters for hypernuclei formation in the high baryon density 238 Monte Carlo method according to [59]. The results show 275 region, enabling more accurate estimations of the pro- $_{239}$ the survival probability > 96(99)% for $^{\Lambda}_{\Lambda}$ H ($^{\Lambda}_{\Lambda}$ H) in the $_{276}$ duction yields of exotic strange objects, such as strange

FIG. 4: (a) ${}^{3}_{\Lambda}$ H and (b) ${}^{4}_{\Lambda}$ H yields at |y| < 0.5 as a function of beam energy in central heavy-ion collisions. The symbols represent measurements [8] while the lines represent different theoretical calculations. The data points assume a B.R. of 25(50)% for ${}^{3}_{\Lambda}\mathrm{H}({}^{4}_{\Lambda}\mathrm{H}) \rightarrow {}^{3}\mathrm{He}({}^{4}\mathrm{He}) + \pi^{-}$. The insets show the (a) ${}^{3}_{\Lambda}$ H and (b) ${}^{4}_{\Lambda}$ H yields at |y| < 0.5 times the B.R. as a function of the B.R.. Vertical lines represent statistical uncertainties, while boxes represent systematic uncertainties.

The decay B.R. of ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ was not directly $_{250}$ branching ratio (B.R.) as a function of y are shown in $_{279}$ measured. A variation in the range 15 - 35% for the $_{251}$ Fig. 3. For $_{\Lambda}^{4}$ H, we can see that the mid-rapidity distri- $_{280}$ B.R. [11, 49, 50] is considered when calculating the total $_{252}$ bution changes from convex to concave from 0–10% to $_{281} dN/dy$. For $^4_{\Lambda}H \rightarrow {}^4He + \pi^-$, a variation of 40 – 60%

The ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H mid-rapidity yields for central colli-284 sions as a function of center-of-mass energy are shown The uncertainties on the B.R.s are not 257 port model, JET AA Microscopic Transportation Model 286 shown in the main panels. Instead, the insets show the $_{256}$ (JAM) [61] coupled with a coalescence prescription to all $_{287}$ $dN/dy \times B.R.$ as a function of B.R.. We observe that the $_{259}$ produced hadrons as an afterburner [62]. In this model, $_{288} {}^{3}_{\Lambda}$ H yield at $\sqrt{s_{NN}} = 3.0 \,\text{GeV}$ is significantly enhanced $_{289}$ compared to the yield at $\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$ [8], likely $_{344}$ ergy collision experiments as a promising tool to study ²⁹⁰ driven by the increase in baryon density at low energies. ³⁴⁵ exotic strange matter. Calculations from the thermal model, which adopts the 291 ²⁹² canonical ensemble for strangeness [63] that is mandatory ³⁴⁶ ²⁹³ at low beam energies [64] are compared to data. Un- ³⁴⁷ BNL, the NERSC Center at LBNL, and the Open Sci-²⁹⁴ certainties arising from the strangeness canonical volume ³⁴⁸ ence Grid consortium for providing resources and sup- $_{295}$ are indicated by the shaded red bands. γ -decay of the ex- $_{349}$ port. This work was supported in part by the Office $_{296}$ cited state $_{\Lambda}^{4}$ H(1⁺) to the ground state is accounted for $_{350}$ of Nuclear Physics within the U.S. DOE Office of Sci-297 in this calculation. Interestingly, while the ³_AH yields at 351 ence, the U.S. National Science Foundation, the Min- $_{298}\sqrt{s_{\rm NN}} = 3.0 \,{\rm GeV}$ and 2.76 TeV are well described by the $_{352}$ istry of Education and Science of the Russian Federa- $_{299}$ model, the $^{4}_{\Lambda}$ H yield is underestimated by approximately $_{353}$ tion, National Natural Science Foundation of China, Chi-³⁰⁰ a factor of 4. Coalescence calculations using DCM, an ³⁵⁴ nese Academy of Science, the Ministry of Science and 301 intra-nuclear cascade model to describe the dynamical 355 Technology of China and the Chinese Ministry of Educa-³⁰² stage of the reaction [1], are consistent with the ³_AH yield ³⁵⁶ tion, the Higher Education Sprout Project by Ministry ³⁰³ while underestimating the ⁴_AH yield, whereas the coales- ³⁵⁷ of Education at NCKU, the National Research Founda-304 cence (JAM) calculations are consistent with both. We 358 tion of Korea, Czech Science Foundation and Ministry 305 note that in the DCM model, the same coalescence pa- 359 of Education, Youth and Sports of the Czech Republic, ³⁰⁶ rameters are assumed for ³_AH and ⁴_AH, while in the JAM ³⁶⁰ Hungarian National Research, Development and Innova- $_{307}$ model, parameters are tuned separately for $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H to $_{361}$ tion Office, New National Excellency Programme of the 308 fit the data. It is expected that the calculated hypernu- 362 Hungarian Ministry of Human Capacities, Department 309 clei yields depend on the choice of the coalescence param- 363 of Atomic Energy and Department of Science and Tech-310 eters [1]. Recent calculations from PHQMD [65, 66], a 364 nology of the Government of India, the National Science ³¹¹ microscopic transport model which utilizes a dynamical ³⁶⁵ Centre of Poland, the Ministry of Science, Education and ³¹² description of hypernuclei formation, is consistent with ³⁶⁶ Sports of the Republic of Croatia, RosAtom of Russia and 313 the measured yields within uncertainties. Compared to 367 German Bundesministerium für Bildung, Wissenschaft, 314 the JAM model which adopts a baryonic mean-field ap- 368 Forschung and Technologie (BMBF), Helmholtz Associ-³¹⁵ proach, baryonic interactions in PHQMD are modelled ³⁶⁹ ation, Ministry of Education, Culture, Sports, Science, 316 by density dependent 2-body baryonic potentials. Mean- 370 and Technology (MEXT) and Japan Society for the Pro-³¹⁷ while, the UrQMD-hydro hybrid model overestimates the ³⁷¹ motion of Science (JSPS). 318 yields at $\sqrt{s_{\rm NN}} = 3.0 \,{\rm GeV}$ by an order of magnitude. Our ³¹⁹ measurements possess distinguishing power between dif-320 ferent production models, and provide new baselines for 321 the strangeness canonical volume in thermal models and 322 coalescence parameters in transport-coalescence models. 323 Such constraints can be utilized to improve model esti-324 mations on the production of exotic strange matter in 325 the high baryon density region.

In summary, precise measurements of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H life-326 327 times have been obtained using the data samples of $_{328}$ Au+Au collisions at $\sqrt{s_{\rm NN}} = 3.0$ and 7.2 GeV. The life- $_{329}$ times are measured to be 221 ± 15 (stat.) ± 19 (syst.) ps $_{330}$ for $^{3}_{\Lambda}$ H and 218 ± 6 (stat.) ± 13 (syst.) ps for $^{4}_{\Lambda}$ H. The aver- $_{331}$ aged $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H lifetimes combining all existing measure-332 ments are both smaller than τ_{Λ} by ~ 20%. The precise $_{333}$ ³_AH lifetime reported here resolves the tension between 334 STAR and ALICE. We also present the first measure- $_{335}$ ment of rapidity density of $^3_\Lambda H$ and $^4_\Lambda H$ in 0–10% and 336 10–50% $\sqrt{s_{\rm NN}}$ = 3.0 GeV Au+Au collisions. Hadronic 337 transport models JAM and PHQMD calculations repro-³³⁸ duce the measured midrapidity ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H yields rea-³³⁹ sonably well. Thermal model predictions are consistent ³⁹² $_{340}$ with the $^{3}_{\Lambda}$ H yield. Meanwhile, the same model underes- $_{341}$ timates the $^4_{\Lambda}$ H yield. We observe that the $^3_{\Lambda}$ H yield at 342 this energy is significantly higher compared to those at $_{343}\sqrt{s_{\rm NN}} = 2.76$ TeV. This observation establishes low en-

We thank the RHIC Operations Group and RCF at

Deceased

372

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

- [1] J. Steinheimer et al., Phys. Lett. B **714**, 85 (2012), 373 arXiv:1203.2547.
 - [2]H. Bhang et al., Phys. Rev. Lett. 81, 4321 (1998).
 - [3]R. J. Prem and P. H. Steinberg, Phys. Rev. 136, B1803 (1964)
 - R. E. Phillips and J. Schneps, Phys. Rev. 180, 1307 [4](1969).
 - Y. W. Kang, N. Kwak, J. Schneps, and P. A. Smith, [5]Phys. Rev. **139**, B401 (1965).
 - [6]G. Bohm et al., Nucl. Phys. B 23, 93 (1970).
 - [7]S. Acharya et al. (ALICE), Phys. Lett. B 797, 134905 (2019), arXiv:1907.06906.
 - [8] J. Adam et al. (ALICE), Phys. Lett. B **754**, 360 (2016), arXiv:1506.08453.
 - C. Rappold et al., Nucl. Phys. A 913, 170 (2013), [9] arXiv:1305.4871.
- 389 [10] B. I. Abelev et al. (STAR), Science 328, 58 (2010), 390 arXiv:1003.2030.
- 391 [11] L. Adamczyk et al. (STAR), Phys. Rev. C 97, 054909 (2018), arXiv:1710.00436.
- T. Saito et al., Nat Rev Phys **3**, 803 (2021). 393 [12]
- 394 [13] A. Gal, E. V. Hungerford, and D. J. Millener, Rev. Mod. Phys. 88, 035004 (2016), 1605.00557.
- 396 [14] R. H. Dalitz, R. C. Herndon, and Y. C. Tang, Nucl. Phys. B 47, 109 (1972). 397

- 398 [15] R. C. Herndon, Y. C. Tang, and E. W. Schmid, Phys. 462 [51] A. Gal and H. Garcilazo, Phys. Lett. B 791, 48 (2019), 399 Rev. 137, B294 (1965).
- 400 [16] N. N. Kolesnikov and S. A. Kalachev, Phys. Part. Nucl. Lett. 3, 341 (2006). 401
- M. Juric et al., Nucl. Phys. B 52, 1 (1973). 402 17
- 403 [18] J. Adam et al. (STAR), Nature Phys. 16, 409 (2020), arXiv:1904.10520. 404
- A. Pérez-Obiol, D. Gazda, E. Friedman, and A. Gal, 405 [19] Phys. Lett. B 811, 135916 (2020), arXiv:2006.16718. 406
- 407 [20] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and J. Hessels, Nature 467, 1081 (2010), arXiv:1010.5788. 408
- 409 [21] J. Antoniadis et al., Science **340**, 6131 (2013), arXiv:1304.6875. 410
- 411 [22] E. D. Barr et al., Mon. Not. Roy. Astron. Soc. 465, 1711 (2017), arXiv:1611.03658. 412
- 413 [23] А. Andronic, P. Braun-Munzinger, J. Stachel. and H. Stocker, Phys. Lett. B 697, 203(2011),414 arXiv:1010.2995. 415
- 416 [24] Z.-Q. Feng, Phys. Rev. C 102, 044604 (2020), 2002.07359. 417
- 418 [25] K.-J. Sun, C. M. Ko, and B. Dönigus, Phys. Lett. B 792, 132 (2019), 1812.05175. 419
- 420 [26] T. A. Armstrong et al. (E864), Phys. Rev. C 70, 024902 (2004), nucl-ex/0211010. 421
- 422 [27] C. Rappold et al., Phys. Lett. B 747, 129 (2015).
- J. Chen, D. Keane, Y.-G. Ma, A. Tang, and Z. Xu, Phys. [28]423 Rept. 760, 1 (2018), arXiv:1808.09619. 424
- 425 [29] T. Ablyazimov et al. (CBM), Eur. Phys. J. A 53, 60 (2017), arXiv:1607.01487. 426
- 427 [30] J. Ahn et al. (J-PARC-HI), Letter of Intent for J-PARC Heavy-Ion Program (J-PARC-HI) (2016), https://j-428 parc.jp/researcher/Hadron/en/Proposal_e.html#1707. 429
- 430 [31] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977), [Erratumibid. 38 (1977) 617]. 431
- 432 [32] K. H. Ackermann et al. (STAR), Nucl. Instrum. Meth. A 499, 624 (2003). 433
- 434 [33] C. A. Whitten (STAR), AIP Conf. Proc. 980, 390 (2008).
- W. J. Llope (for STAR), Nucl. Instrum. Meth. A 661, 435 [34] S110 (2012). 436
- M. Anderson et al., Nucl. Instrum. Meth. A 499, 659 437 [35] (2003), nucl-ex/0301015. 438
- R. L. Ray and M. Daugherity, J. Phys. G 35, 125106 439 [36] (2008), nucl-ex/0702039. 440
- 441 [37] J. Adam et al. (STAR), Phys. Rev. C 103, 034908 (2021), 442 arXiv:2007.14005.
- M. Zyzak et al. (2013), The KFParticle package for the 443 [38] fast particle reconstruction in ALICE and CBM. Ver-444 handlungen der Deutschen Physikalischen Gesellschaft. 445
- 446 [39] R. Brun et al. (1987), CERN-DD-EE-84-1.
- 447 [40] G. Keyes et al., Nucl. Phys. B67, 269 (1973).
- 448 [41] G. Keyes et al., Phys. Rev. D1, 66 (1970).
- 449 [42] G. Bohm et al., Nucl. Phys. B16, 46 (1970), [Erratum ibid 16 (1970) 523]. 450
- 451 [43] G. Keyes et al., Phys. Rev. Lett. 20, 819 (1968).
- ⁴⁵² [44] S. A. Avramenko et al., Nucl. Phys. A 547, 95 (1992).
- 453 [45] H. Outa et al., Nucl. Phys. A 585, 109 (1995).
- 454 [46] N. Crayton et al. (1962), pp. 460-462, Proceedings of 11th International Conference on High-energy Physics. 455
- F. Hildenbrand and H. W. Hammer, Phys. Rev. C 102, 456 47 064002 (2020), arXiv:2007.10122. 457
- M. Ravet and R. H. Dalitz, Nuovo Cim. A 46, 786 (1966). 458 [48]
- [49] J. G. Congleton, J. Phys. G 18, 339 (1992). 459
- 460 [50] H. Kamada et al., Phys. Rev. C 57, 1595 (1998), nucl-461 th/9709035.

- 463 arXiv:1811.03842.
- 464 [52] A. Gal, SQM2021 Proceedings (2021), arXiv:2108.10179.
- 465 [53] P. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020). 466
- 467 [54] J. Cohen, Phys. Rev. C 42, 2724 (1990).
- [55]H. Outa et al., Nucl. Phys. A 639, 251c (1998). 468
- 469 [56] J. D. Parker et al., Phys. Rev. C 76, 035501 (2007), [Erratum-ibid. 76, 039904 (2007)]. 470
- 471 [57] T. A. Armstrong et al. (E864), Phys. Rev. Lett. 83, 5431 (1999), nucl-ex/9907002. 472
- 473 [58] B. I. Abelev et al. (STAR), Phys. Rev. C 79, 034909 (2009), arXiv:0808.2041. 474
- 475 [59] V. L. Lyuboshitz and V. V. Lyuboshitz, Phys. Atom. Nucl. 70, 1617 (2007). 476
- 477 [60] P. Liu, J. Chen, D. Keane, Z. Xu, and Y.-G. Ma, Chin. Phys. C 43, 124001 (2019), arXiv:1908.03134. 478
- Y. Nara, N. Otuka, A. Ohnishi, K. Niita, and S. Chiba, 479 [61] Phys. Rev. C 61, 024901 (1999). 480
- [62]H. Liu, D. Zhang, S. He, K.-j. Sun, N. Yu, and X. Luo, 481 Phys. Lett. B 805, 135452 (2020), arXiv:1909.09304. 482
- 483 [63] A. Andronic et al., Phys. Lett. B 697, 203 (2011), arXiv:1010.2995 (update, preliminary). 484
- M. Abdallah et al. (STAR) (2021), arXiv:2108.00924. 485 [64]
- [65]S. Gläßel et al. (2021), arXiv:2106.14839. 486
- V. Kireyeu et al., Bull. Russ. Acad. Sci. Phys. 84, 957 487 [66](2020), arXiv:1911.09496. 488