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The ability to control light polarization state is critically important for diverse applications in
information processing, telecommunications, and spectroscopy. Here, we propose that a stack of
anisotropic van der Waals materials can facilitate the building of optical elements with Jones matrices
of unitary, Hermitian, non-normal, singular, degenerate, and defective classes. We show that the
twisted stack with electrostatic control can function as arbitrary-birefringent wave-plate or arbitrary
polarizer with tunable degree of non-normality, which in turn give access to plethora of polarization
transformers including rotators, pseudorotators, symmetric and ambidextrous polarizers. Moreover,
we discuss an electrostatic-reconfigurable stack which can be tuned to operate as four different
polarizers and be used for Stokes polarimetry.

Introduction – Polarization optics or the science of con-
trolling the polarization state of electromagnetic waves
has broad applicability in areas such as polarimetric
imaging, biosensing, and optical communication [1–3].
The central building blocks in polarization optics are
polarization transformers; optical devices which scatter
polarized light into a pre-defined polarization state.
Broadly speaking, there are two strategies used to build
such devices. One way is to cascade transmissive optical
elements, where stacking order and relative orientation
between the principal axes of the elements determine
the polarization output [4, 5]. For instance a common
way to build a circular polarizer is by cascading a linear
polarizer and a quarter-wave plate, with the transmission
direction of the polarizer at 45◦ to the fast axes of the
retarder. However, state-of-art quarter-wave plate uses
bulky linear birefringent crystals, since it requires a
significant propagation distance to establish the phase
difference between orthogonal polarizations. The other
way is to utilize metasurfaces with patterned metallic
or dielectric structures, whose meta-elements can be
designed to deliver a pre-selected polarization transfor-
mation [6–13]. For example, patterned structures with
no rotational symmetry, but with out-of-plane (including
surface normal) mirror symmetry would guarantee linear
birefringence upon normal illumination [14, 15]. The
built-in spatial symmetries of meta-elements by design
restricts the transformation functions these devices can
deliver.

The family of atomically thin two-dimensional ma-
terials which emerged in 2004 with the isolation of
graphene [16–18], now includes materials with diverse
optical properties ranging from dielectrics to metals
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with anisotropy or hyperbolicity in the terahertz to
mid-infrared spectral range [19–22]. In addition to the
steady growth in the 2D materials library, there has
been great progress on the fabrication of high quality
van der Waals heterostructures [23–25], control of twist
angle between stacked layers [26, 27], and modulation
of Drude weight via doping up to maximum carrier
concentration of 1014 cm−2 [28].

The previous works on hetero-stack twisted 2D
materials has been exclusively on near-field polaritonic
optics [29, 30]. Here, however, we will explore their
potential for polarization control in the far-field. We
focus on non-depolarizing polarization transformers, i.e.
those which can be described via Jones matrix [31]. We
show that stacking of twisted anisotropic 2D materials,
even in its homogenous form without any patterning,
allows for facile realization of diverse optical polarization
transformers. Herein, both anisotropy and twist are key
ingredients breaking the rotational and mirror symme-
tries, which in turn allows for a free-form Jones matrix
which can be selectively tuned via controlled twisting
and stacking order. We theoretically demonstrate how
electrostatic doping can give the stack an unprecedented
ability to toggle between functionalities via tuning the
eigen-spectrum and eigen-polarization of the Jones
matrix.

Mathematical Preliminaries – The Jones matrix of an op-
tical element provides a full description of the polariza-
tion changes that a beam of light undergoes as it passes
through the element. The Jones matrix in its general
form can be written as [32, 33]:

J =

[
Jxx Jxy
Jyx Jyy

]
= P Λ P−1 (1)

The second equality in (1) is the Jordan decomposition,
which states that for any Jones matrix there exists an
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FIG. 1. The eigen-view of various classes of Jones matrices constructed by twisted stack of BP and MoO3 which are represented
by light grey and dark grey planes, respectively. In (a)-(c): the left panels depict the two eigenvalues and the corresponding
polarization ellipses of the Jones matrices of the structures shown on the right.

invertible matrix P and a Jordan matrix Λ which can
adopt one of the following forms:

Λ1 =

[
λa 0
0 λb

]
,Λ2 =

[
λ 1
0 λ

]
(2)

The Jordan form Λ1 corresponds to matrices J that
are diagonalizable and have two linearly independent
eigenvectors |a〉, |b〉 and two eigenvalues λa, λb, re-
spectively. In this case, P is a matrix whose columns
are the eigenvectors |a〉 and |b〉, with |a〉 6= |b〉. The
diagonalizable J is normal or non-normal depending
on whether 〈a|b〉 = 0 or not. Note that Hermitian and
unitary Jones matrices are normal. The diagonalizable
J is degenerate if λa = λb or singular if λa or λb is zero.

The Jordan form Λ2 corresponds to defective matrices
J that are not diagonalizable. They have only one eigen-
vector |a〉 with eigenvalue λ. In this case, the eigenvector
|a〉 and the so-called generalized eigenvector which satis-
fies the equation (J−λI)|g〉 = |a〉 constitute the columns
in P. Here, I is the identity matrix. Note the defective
J can also be singular if λ = 0. We use Eqs. (1) and (2)
to construct a desired Jones matrix given its eigenvalues
and eigenvectors. Mathematically, Jones matrix can also
be written in the following way (see supplemental info,
S1):

J =
λa
〈b⊥|a〉

|a〉〈b⊥|+
λb
〈a⊥|b〉

|b〉〈a⊥| (3)

for diagonalizable J, and

J = λI +
1

〈a⊥|g〉
|a〉〈a⊥| (4)

for defective Jones matrices. Here, |a⊥〉 = [−a∗y, a∗x]T is

the orthogonal state to the eigenstate |a〉 = [ax, ay]T,
i.e. 〈a⊥|a〉 = 0. Note that the normal Jones matrix is a
special case in Eq. (3) with |b〉 = |a⊥〉.

Designer Jones Matrices via Stack & Twist – Here
we consider normal illumination along z-axis. The
chosen operating frequency of the devices is 20 THz.
The 2D materials we use are black phosphorus (BP)
and orthorhombic molybdenum trioxide (α-MoO3),
see supplemental info, S2 for the material parameters

[34–39]. We assume that the 2D layers are embedded
within a uniform dielectric background (air). This rules
out asymmetric effects due to the presence of a substrate
and dielectric spacers. The scattering coefficients of the
N -layer stack, where each layer can be either α-MoO3

or BP are obtained via the transfer-matrix-method
(see supplemental info, S3) [40]. The twist angle for
each layer is measured relative to x-axis. The design
parameters (including thickness and twist angle of
BP and α-MoO3, the layer spacing, and the chemical
potential in BP) are determined numerically by use
of the nonlinear programming solver FMINCON in
MATLAB and minimization of the cost function defined
as:

∑
ij |Jij − Jdij |, where {i, j} ∈ {x, y} and Jd is the

element of desired Jones matrix. We should comment
on the choice of BP and MoO3. This is because for
these materials the analytic conductivity expressions for
different thicknesses and dopings are available and one
can efficiently solve for the stack which minimizes the
cost function.

Figure 1 shows examples of Jones matrices in three
classes which can be generated from a few layer stack of
BP and α-MoO3. In Fig. 1(a) the structure gives a de-
generate (λa = λb = 0.5i) and non-normal (〈0◦|45◦〉 6= 0)
Jones matrix. In panel (b), the Jones matrix is normal
(〈−45◦|45◦〉 = 0) and singular (λa = 0, λb = 0.5i). In
panel (c), the stack gives a nearly defective Jones ma-
trix, i.e. the parameter setting points to an exceptional
point in polarization space where the eigenvalues and
eigenvectors of the Jones matrix nearly coalesce on 0.5i
and |45◦〉, respectively.

The stacks in Fig. 1 are examples of static Jones
matrix engineering, static in the sense that one Jones
matrix corresponds to one stack. Next, we focus on elec-
trostatic doping and its ability to tune the eigen-vectors
and eigenvalues of a few polarization transformers.
More explicitly, we discuss transformers in which the
layer number, layer separations, and twist angles are
fixed and we only change the doping in the BP layers
[41, 42]. Note that the MoO3 optical response is due
to its optical phonons and is not tunable with doping.
We will further show that with a increase in complexity,
it is possible to have a single system which presents
several (doping dependent) Jones Matrix functionalities.
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FIG. 2. (a) The 7-layer BP and MoO3 stack to achieve (b)
elliptical-birefringent QWP, (c) circular-birefringent QWP,
and (d) linear-birefringent HWP. The Fermi energies for each
constituent BP multilayer are listed in the order which gives
the result in panels (b), (c), and (d). In (b)-(d), the circles de-
note the eigen-states while crosses represent |0◦〉 and JR|0◦〉
to showcase the waveplate-induced rotations in the Poincaré
sphere.

Additionally, one can use electrostatic control to retrieve
the desired functionality in the case when twist angles
or layer thicknesses deviate from the optimum settings
(see supplemental info, S4).

To better guide the reader, here we outline what lays
ahead: (1) We begin with tunable wave-plates. We de-
scribe how the Jones matrix of a generic wave-plate looks
like (unitary). We show that the electrostatic control
allows for tuning both the wave-plate retardation (its
eigenvalues) and birefringence type (its eigenvectors).
(2) We discuss polarizers next and introduce the Jones
matrix of a generic polarizer (Hermitian and singular).
We will use these polarizers to build a Stokes polarime-
ter. The twisted stack can function as four different
polarizers, where one can switch from one polarizer to
the other via change in the BP doping. (3) We close with
a discussion on non-normal and ambidextrous polarizers.
The first corresponds to non-normal and singular while
the other corresponds to defective and singular Jones
matrices. These polarizers are peculiar in a sense that
they are asymmetric, i.e. they act differently depending
on which direction light propagates through the stack.

Arbitrary - Birefringent Wave Plates – The term wave
plate (retarder) refers to birefringent optical elements
where the element anisotropy induces a phase shift η be-
tween its two orthogonal eigen-polarizations. The most
general case is an elliptic retarder, whose eigenstates are

given by a pair of orthogonal Jones vectors,

|a〉 =

[
cosα

sinαeiδ

]
, |b〉 =

[
− sinαe−iδ

cosα

]
(5)

corresponding to eigenvalues, λa = eiη/2 and λb = e−iη/2,
respectively. The (α, δ) pair determines the orientation
φ, φ + π/2 and ellipticity angles ε, −ε for |a〉 and |b〉,
respectively, such that: tan 2φ = tan 2α cos δ, sin 2ε =
sin 2α sin δ [43]. A generic retarder is then represented
by a unitary Jones matrix JR:

JR(α, δ, η) =

[
c2αe

iη/2 + s2αe
−iη/2 is2αsη/2e

−iδ

is2αsη/2e
iδ s2αe

iη/2 + c2αe
−iη/2

]
(6)

where, sx ≡ sinx and cx ≡ cosx. Note that δ = 0
denotes linear retarders. α = 45◦ and δ = ±90◦ gives
circular retarders which can also be interpreted as η/2
polarization rotator i.e. it only rotates the major axis
of the polarization ellipse with angle η/2 but keeps the
ellipticity and handedness intact. The retarder action on
the Poincaré sphere can be described as a rotation with
the rotation axis defined by the points corresponding to
|a〉 and |b〉, i.e. eigen-polarization of JR and its rotation
angle with retardance η.

In Fig. 2(a) we show an example of a tuneable wave-
plate. In Fig. 2(b), the stack operates as a quarter-wave

4.
57

   
m

2.
98

   
m

1.
83

   
m

3.
48

   
m

4.
12

   
m

3.
02

   
m

17 layer 
BP, 98

0.4, 0.17, 0.39, 0.08 eV

34 layer 
BP, 68

0.4, 0.05, 0.05, 0.32 eV

31 layer 
BP, 5

0.19, 0.4, 0.15, 0.36 eV

34 layer 
BP, 150

0.06, 0.39, 0.39, 0.39 eV

24 layer 
BP, 79

0.05, 0.22, 0.09, 0.39 eV

24 layer 
BP, 32

0.32, 0.39, 0.26, 0.05 eV

21 layer 
BP, 122

0.4, 0.22, 0.4, 0.2 eV

x-linear

-1
1+S2

-1

1+ S1

-1

1+

S3

y-linear

-1
1+S2

-1

1+ S1

-1

1+

S3

-1
1+S2

-1

1+ S1

-1

1+

S3

45 -linear

-1
1+S2

-1

1+ S1

-1

1+

S3

R-circular

a b

c

d

e

f
x

z y
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right, the input Jones vectors are [1, 0]T, [0.7071,−0.7071]T,
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plate (QWP, η = 90◦) with elliptic birefringence charac-
terized by α = 27.4◦, δ = 45◦. In Figs. 2(c) and (d) we
show, by modifying the electrostatic doping the same
structure can also function as a circular or linear birefrin-
gent (CB or LB) retarder. The CB-QWP is basically a
45◦-polarization rotator. The LB half-wave plate (HWP)
with α = 22.5◦ corresponds to a 45◦-pseudorotator. The
latter produces an improper rotation, i.e. it rotates the
polarization ellipse major axis by 2α = 45◦ and reverses
the ellipse handedness. The LB-HWP can be used to
implement right-left circular polarization conversion.
Note that the structure in Fig. 2 has transmission
efficiency of ∼ 0.5 for its two eigen-polarizations. This
suggests that the polarization effect is primarily birefrin-
gence and not dichroism. The non-unity transmission
also indicates that the corresponding Jones matrices are
scaled unitary, i.e. JJ† ∝ I. We note that the wave-plate
functionalities in Fig. 2 can be implemented separately
using stacks with fewer layers (see supplemental info, S5).

Stokes Polarimetry & Asymmetric Polarizer – A di-
attenuator refers to an optical element that exhibits
anisotropic intensity attenuation. The most general case
of a diattenuator is the elliptic diattenuator (or elliptic
partial polarizer), whose eigenstates are given by a pair of
orthogonal Jones vectors |a〉 and |b〉 as defined in Eq. (5)
corresponding to real eigenvalues λa = p1 and λb = p2,
respectively, with 0 ≤ p1,2 ≤ 1. A generic diattenuator is
then represented by a Hermitian Jones matrix JD:

JD(α, δ, p1, p2) =

[
p1c

2
α + p2s

2
α sαcα(p1 − p2)e−iδ

sαcα(p1 − p2)eiδ p1s
2
α + p2c

2
α

]
(7)

where, sx ≡ sinx and cx ≡ cosx. When p2 = 0, the
diattenuator totally extinguishes the eigenstate |b〉 and
is called an elliptic polarizer.

Here we show that the cascaded twisted 2D materials
can be used for Stokes polarimetry, i.e. to determine

the unknown polarization state of the input light. The
polarimetry is achieved by electrically toggling between 4
distinct polarizers with different doping configurations as
light passes through a 7-layer twisted BP stack (see Fig.
3). The doping can tune the polarizer eigen-vectors, as
it allows the stack to switch between linear and circular
polarizers. We can also tune the polarizer eigen-values,
while not changing its eigen-vectors. This is shown in
Figs. 3(b) and (c), where the stack can be switched
between x- and y-linear polarizers. These so-called cross
polarizers have similar eigen-vectors, but have the zero
eigenvalue swapped. The eigen-vectors corresponding to
non-zero eigenvalues are used to accurately recover the
input polarization state via polarimetric data reduction
equation (see supplemental info, S6) [44].

Till now, we have discussed only polarizers resulting
from normal Jones matrices. These are symmetric
polarizers i.e. they project any input into one output
polarization, in both forward and backward propagation
directions [45]. To infer this, one should note that back-

ward and forward Jones matrices are related: Jb = JT

[46]. This together with Eq. (3) gives J ∝ |a〉〈a| and

Jb ∝ |ab〉〈ab|, where |a〉 = [ax, ay]T and |ab〉 = [a∗x, a
∗
y]T

denote identical polarization states in forward and
backward propagation directions (see supplemental info,
S7) [47, 48].

Broadly speaking, the polarizer action can also be
achieved via non-normal or defective singular Jones
matrices [49]. These matrices represent asymmetric
polarizers. Let us illustrate this for the case of a
defective Jones matrix, where Eq. (4) gives J ∝ |a〉〈a⊥|.
Note the eigenvector of this so-called ambidextrous
polarizer corresponds to an eigenvalue of zero, i.e. |a〉
the eigenstate of the optical element is blocked. The
corresponding backward Jones matrix can be written as
Jb ∝ |ab⊥〉〈ab|. Note the blocked eigenstate of Jb is |ab⊥〉.
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In Fig. 4 we show that a 7-layer BP stack, via
electrostatic doping, can function as both non-normal
asymmetric polarizer |45◦〉〈L| and nearly ambidextrous
polarizer |45◦〉〈−45◦|. From Figs. 4(b) and (c), it is clear
that the doping can tune the angle between polarizer
eigen-vectors, i.e. its degree of non-normality. The latter
is measured with Θ, the angle subtended between the
polarizer eigenstates on the Poincaré sphere. Θ = 0◦

and 180◦ denote ambidextrous and normal polarizers
respectively. In Figs. 4(d)-(g) we highlight the asym-
metric operation of the non-normal and ambidextrous
polarizers. Note that the non-normal polarizer acts as
a linear polarizer in forward and a circular polarizer
in backward directions, while the nearly ambidextrous
polarizer has orthogonal linear polarization states as its

outputs in both forward and backward directions.

Concluding Remarks – Our results concretely demon-
strate that it is possible to control the Jones matrix en-
tries of such stratified structures by adjusting the doping,
twist angle, and stacking order of anisotropic 2D layers.
Note that the two material systems included in this work
do not allow the access to all possible signs of conductiv-
ity components changes in the mid-IR. This restrict the
input-output polarization mapping that can be assessed
by our BP-MoO3 structure. However, using new materi-
als including metallic 2D stacks with larger conductivity
and even patterned structures, which allow access to their
plasmons, clearly suggest twisted hetero-2D stacks con-
stitute a solid choice to build electrostatic-reconfigurable
polarization transformers.
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[38] W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan,
J. Mart́ın-Sánchez, J. Taboada-Gutiérrez, I. Amenabar,
P. Li, S. Vélez, et al., Nature 562, 557 (2018).
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