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We show that macroscopic thermalization and transport impose constraints on matrix elements
entering the Eigenstate Thermalization Hypothesis (ETH) ansatz and require them to be correlated.
It is often assumed that the ETH reduces to Random Matrix Theory (RMT) below the Thouless
energy scale. We show this conventional picture is not self-consistent. We prove that energy scale
at which the RMT behavior emerges has to be parametrically smaller than the inverse timescale of
the slowest thermalization mode coupled to the operator of interest. We argue that the timescale
marking the onset of the RMT behavior is the same timescale at which hydrodynamic description

of transport breaks down.

Thermalization of isolated quantum systems has at-
tracted significant attention recently. For the quantum
ergodic systems without local integrals of motion it is
currently accepted that thermalization can be explained
with the help of the Eigenstate Thermalization Hypoth-
esis (ETH) [1-8]. At the technical level the ETH can
be understood as an ansatz for the matrix elements of
observables in the energy eigenbasis [5],

Aij = A*N(E)y; + VB [(Bywri, (1)
E:(EZ+EJ)/2, w:Ei—Ej.

Here A is an observable satisfying ETH (1), Q(E)dE is
the density of states, A°*" and f are smooth functions of
their arguments, and 7;; are pseudo-random fluctuations
with unit variance. The diagonal part of the ETH ansatz
explains thermalization, at least in the sense that the
expectation value of A in some initial state with mean
energy F, after averaging over time, is equal to ther-
mal expectation value of A at the effective temperature
B~YHE) =dInQ/dE. The dynamics of thermalization is
encoded in the off-diagonal matrix elements 7;;, as well as
in the initial state ¥, and is not universal. In this paper
we show that macroscopic thermalization, in particular
the type of transport present in the system, imposes con-
straints on the correlations of r;;.

Numerical studies confirm that the r;; behave “ran-
domly” and oscillate around zero mean seemingly with-
out any obvious pattern. Certainly the r;; can not be
random in the literal sense as the form of A;; is fixed
once the Hamiltonian and A are specified. Moreover, A
often has to satisfy various algebraic relations. For ex-
ample, in a spin lattice model one can choose A to be
a Pauli matrix acting on a particular site. In this case
A% = 1, which requires r;; to be correlated. Similarly,
the r;; can be constrained by the expected behavior of
the four-point correlation function [9-12], etc.

While the whole matrix r;; can not be random, there is
a strong expectation that fluctuations r;; can be treated
as random if the indexes i, j are restricted to belong to a

sufficiently narrow energy interval. Assuming the interval
is centered around some FE, we define AEryT as the
largest possible interval such that all r;; with

|E; — E|,|E; — E| < AErut/2, (2)

can be treated for physical purposes as being random
and independent (without necessary being normally dis-
tributed). The expectation that r;; reduces to a Gaus-
sian Random Matrix inside a sufficiently narrow inter-
val is consistent with numerical studies which confirm
that the r;; are normally distributed [13-15] and that
the form-factor f becomes constant for w smaller than
inverse thermalization timescale 27 /7, called Thouless
energy! [17, 19-21]. Furthermore, for real symmetric A;;
the variances of the diagonal and off-diagonal elements
have been numerically shown to satisfy (rZ) = 2(7"%)
[22-24], which is consistent with and necessary for r;; to
become a Gaussian Orthogonal Ensemble. Random be-
havior of r;; also naturally emerges in the recent attempt
to justify ETH analytically [25]. From the physical point
of view the “structureless” form of A;; inside a small
energy interval is expected on the grounds of the hypo-
thetical universal behavior of observables at late times
[26-33].

Reduction of r;; to an RMT below 27/7 is seemingly
in agreement with the conventional picture of thermaliza-
tion. Assuming 7 is the characteristic time of the slowest
transport mode probed by A, after the time ¢t 2 7 the
system will be in the ergodic regime, i.e. value of A will
not be sensitive to the initial state. This suggests r;;

1 Thouless energy AFEry, is often defined as a scale of applicability
of RMT to describe statistics of energy spectrum. Thermaliza-
tion time 7 is defined as time when the autocorrelation function
of an operator A approximately saturates to a constant. The in-
verse scale 27/7 is the size of the “plateau” of f2(w), and is also
called Thouless energy in the literature. For certain systems and
operators probing slowest thermalization mode both quantities
are known to coincide AETy, ~ 27w /7 [16-18].



should become structureless for AEgyt ~ 27/7 [17, 21].
In this Letter we show this is not the case, and AEruT
has to be parametrically smaller than the Thouless energy
27/T.

The key observation is that the ETH ansatz (1) with
random mutually-independent r;; is constrained by pres-
ence of states with extensively long thermalization times.
Let us consider an initial state |¥), which describes an
out-of-equilibrium configuration with an order one over-
lap with the slowest mode probed by A. Then at late
times

SAMU) ~e VTt 2T (3)

where

OA(L, U) = (W[A(H)[¥) — Z Cil?AM (B (4)

Here second term is simply the equilibrated value of A,
such that A asymptotes to zero at late times. We also
assume |¥) has less than extensive energy variance AFE.
While our argument is more general, for concreteness one
can think of a 1D spin chain of length L exhibiting diffu-
sive transport of energy, and A would be a local operator
coupled to energy. In this case the initial state can be
taken to describe a quasi-classical configuration with an
extensive displacement of energy, while timescale in (3)
would be diffusive time 7 ~ L?/D. An explicit con-
struction of such a state |¥) is given in the Supplemental
Materials (SM).

To connect thermalization time 7 to matrix elements of
A we introduce a parameter-dependent average, which is
somewhat similar to the “average distance” used in [34],

o in(27t/T
A= [ sa, ST 4 )
e T
Here T is a free parameter. When T becomes large, (5)
reduced to the conventional average over time 7. After
representing A(t) in the energy eigenbasis using (1) and
performing the integral in (5) we find

(0A)r = (V|0A7[W), (6)

where the operator § AT written in the energy eigenbasis
has the form

_ [ QB (B wrij, B — Ej| < 21/T,
(0A7):s = { 0, \E; - B;| > 2myT. ("

In other words the matrix (6Ar);; has a band structure,
it coincides with A;; (after subtracting the non-random
diagonal part) inside a diagonal band of size 27 /T, and
is zero outside. This is schematically shown in Fig. 1.

The expectation value (V|§Ar|¥) can be bounded by
the largest eigenvalue of d Az, which we denote by z(T),

(W16A7]W)| < (T). (8)
Let us assume now that T is sufficiently large such
that 2r/T < AEgrpr. Then (6Ar);; is a band ran-
dom matrix with independent matrix elements and its
largest eigenvalue is controlled by the variance function
(0A7)7; = Q7' f*(w) [35]. In the limit of a narrow band
TAE > 1, see SM,

27 /T
(E2 = 2 w)aw.
(T) =8 /0 f(E,w)d (9)

Technically, (9) assumes absence of correlations, while
the definition of AEgrpyr (2) does not exclude possible
correlations of r;; and ryj along the diagonal, i.e. when
(EH—E})—(E;—{—E;-) is large while |E; — E;| and |E; — Ej/|
are small. In SM we justify (9) rigorously, using the
result of [22], by converting it into an inequality. Looking
ahead, our main result, inequality (11), continue to hold
with different numerical coefficients.

With help of (1) the integral in the right-hand-side of
(9) can be expressed through the connected autocorre-
lation function of A calculated at the effective inverse
temperature 37! = dInQ/dFE [17, 19, 20],

(A(H)A(0)) = (E|A[)A(0)|E) — (E|A(0)| E)*. (10)
Now combining (8) with (9) written with help of (10)

we find the inequality, which should be satisfied so far
T > Trut = 27/ AERMT,

FIG. 1. Visualization of the band matrix (6A7):; (7).



sin(27t/T)
i

(U5 A2 W) 2 = \/w 5A(t, )

The inequality (11) is our main technical result, which
implies strong limitations on AFEryT. As the charac-
teristic size L of the system grows, the autocorrelation
function of A approaches its thermodynamic form, which
follows from quasi-classical hydrodynamic description,

(A()A0))p ~ (tp/t) (12)

with some L-independent o« > 0 and tp. Coeflicient o
depends on the type of transport A couples to. The be-
havior (12) applies for ¢ 2 ¢p and persists until ¢ ~ 7,
after which the autocorrelation function becomes zero
[17, 20]. Around the time ¢ ~ 7 the value of full au-
tocorrelation function, i.e. without the asymptotic value
subtracted, should be inverse proportional to volume, in-
dicating that the conserved quantity coupled to A has
spread across the whole system

tp\¢ 1
— —. 13
CRT—
Here L is a characteristic size of the system in dimen-
sional units, e.g. the number of spins, while d is the num-
ber of spatial dimensions. Using (12), and for T > ¢p the

right-hand-side of (11) can be approximated as follows,
where we dropped all numerical coefficients,

| camacon, =D

t
{ (tp/T)", T2T > tp,

(14)

(tp/7)er/T, T 2T

For late times T > tp (14) is very small irrespective of
the value of 7/T. Strictly speaking the estimate above
is only correct far o < 1 such that the integral gets its
main contribution for large ¢. In most cases this requires
d=1.

The behavior of the left-hand-side of (11) is quite dif-
ferent. Starting from the expoential decay (3) we find for
large T > 7,

o sin(27t/T) T
/0 0A(t, ) — dt T (15)

which is in agreement with the qualitative picture that
0A(t, V) remains of order one for the time ¢ ~ 7 and
then quickly approaches zero. When T is large but not
necessarily larger than 7 (15) remains of order one and
the inequality (11) can not be satisfied. For (11) to be
satisfied T" has to be parametrically larger than 7,

7\ 2 tp\ % 7
_ < (= = > d
(T) ~ (7’) T = TRMTNTL . (16)

2 o)
dt| < a*(T) = 4/ (A(t)A(0))s

sin(27t/T) gt

e (1)

— 00

(

To summarize, we see that the inequality (11) imposes a
stringent bound on the energy scale AEgyr = 27/ TrMmT,
which should be parametrically smaller than the Thouless
energy 27 /7. In particular, for a 1D diffusive system and
a local operator A coupled to conserved quantity we find

Tamr = 7L ~ L3 . (17)

More generally, for any 1D system with local interactions
transport can not be faster than ballistic, 7 o« L, and
therefore for any local operator, Trmt =, 7L ~ L2.

We illustrate the inequality (11) and the resulting dif-
ference between AFgyt and 77 with help of an open
non-integrable 1D Ising spin-chain with two polarizations
of magnetic field. The operator A = o} is a one-site oper-
ator. This model is diffusive. In SM, where all technical
details can be found, we numerically justify (3) as well
as (12) with a = 1/2. The result, the left-hand-side and
the right-hand-side of (11), is shown in Fig. 2. The in-
equality is saturated for times T significantly larger than
thermalization time 7, when the autocorrelation func-
tion plateaus (see the inset). This confirms the conclu-
sion that the RMT time scale Tryr is much larger than
thermalization time. Smallness of 7/TrymT < 1 was also
recently confirmed numerically in [24, 36].

For a translationally-invariant system it is also inter-
esting to consider an operator Ay with a constant mo-
mentum. Keeping in mind a 1D diffusive spin lattice
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FIG. 2. Plots of the LHS and the RHS of (11) in loga-

rithmic scale: In [(¥|6A7|¥)|? (blue) and Inz?(T) (orange).
Also shown in brown IndA(t, V). Its approximately linear
form (before saturation) confirms exponential decay (3). In-
set: plot of autocorrelation function. All plots are for non-
integrable Ising spin chain with L = 24 spins with open b.c.,
see SM for details.



system of length L, we denote by A(,,) a local operator
A located at the site m. Then

g1/2 L
Ay = YAV Z cos (km) Ay, (18)
m=1

where L is dimensionless. The normalization factor
(2/L)'/? is chosen such that the connected autocorre-
lation function is L-independent in the thermodynamic
limit

(AgMA_p) g ~e /™ 7 o« k?/D. (19)

With the same normalization the expectation value (4) in
the state with a macroscopic amount of energy displaced
will be

SA(t, W) ~ LY 2=t/ (20)

Although the t-dependence in (19) and (20) is the same,
different L-dependent prefactor will result in a constraint
for Trmr. For large T > 75, we can estimate

/ Sln(?mﬁ/T)e*t/T’“dt Tk (21)
0 T

mt

After ignoring unimportant numerical prefactors (11)
yields, in agreement with (16),

TRMT z Tk L (22)

To conclude, we have shown that the energy scale
AFEgryvt at which the ETH ansatz reduces to Random
Matrix Theory has to be parametrically smaller than
the inverse thermalization time, i.e. characteristic time
of the slowest mode probed by the corresponding oper-
ator. For a 1D system and a local operator A coupled
to diffusive quantity we found AFERryT to be bounded by
(tL)~! ~ L=3, where L is the system size and 7 ~ L?/D
is the diffusion time.

Our result (11,16) is an inequality, which raises the
question of identifying the correct scaling of AFEgrwyT
with the system size and understanding significance of
the associated timescale TRyt = 27T/AEI;§/IT from the
point of view of thermalization dynamics. We conjecture
(16) reflects the correct scaling Tryt o 7L¢ and pro-
pose the following interpretation. The timescale TryvT
which marks the onset of random matrix behavior for an
observable A coincides with the end of macroscopic ther-
malization, i.e. applicability of hydrodynamic description
of transport. The expectation value § A(t, ¥) ~ e~*/7 will
decay exponentially until it saturates into exponentially
small fluctuations of order e=/2, where S o L% is en-
tropy. This happens around time

T x 78, (23)

which we conjecture to agree with Tryr up to constant
prefactors. This interpretation, and scaling, is consistent
with the onset of RMT-defined universal behavior of au-
tocorrelation function at late times [37, 38]. It is also

consistent with the numerics shown in Fig. 2, where by
the time the inequality (11) is satisfied the expectation
value 0A(t, ) has firmly saturated into the asymptotic
fluctuation regime.
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