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Synthesizing many-body interaction Hamiltonians is a central task in quantum simulation. How-
ever, it is challenging to synthesize Hamiltonians that have more than two spins in a single term. Here
we synthesize m-body spin-exchange Hamiltonians with m up to five in a superconducting quantum
circuit by simultaneously exciting multiple independent qubits with time-energy correlated photons
generated from a qudit. The dynamic evolution of the m-body interaction is governed by the Rabi
oscillation between two m-spin states, in which the states of each spin are different. We demon-
strate the scalability of our approach by comparing the influence of noises on the three-, four- and
five-body interaction and building a many-body Mach-Zehnder interferometer which potentially has
a Heisenberg-limit sensitivity. This study paves a way for quantum simulation involving many-body
interaction Hamiltonians such as lattice gauge theories in quantum circuits.

The synthesis of many-body interaction Hamiltonians
plays a vital role in quantum simulation and quantum
computing. Most quantum gates [1] rely on two-body in-
teractions, based on which state-of-the-art quantum cir-
cuits have been built [2–4] and quantum supremacy has
been claimed [2, 4]. Although these quantum circuits
contain tens of qubits, each term of the Hamiltonian in-
volves no more than two spin operators. To exploit the
full degree of freedom in simulating emergent many-body
physics with superconducting circuits, we need to synthe-
size arbitrary interaction among a large number of qubits
[5–8]. In particular, for the current stage of quantum
simulation in noisy intermediate-scale quantum circuits,
fermionic Hamiltonians are typically mapped into multi-
spin interaction Hamiltonians via a Jordan-Wigner trans-
formation [9]. To meet this challenge the anti-symmetric
spin-exchange interaction [10, 11] has been synthesized
by breaking the time-reversal symmetry through Floquet
modulation [12]. Similar techniques have been applied to
the synthesis of effective gauge field [13] and a three-spin
chirality Hamiltonian [14], which is a necessary element
in simulating chiral spin liquid [15] and promising to re-
alize the topological states of quantized light [16–18]. Up
to now the largest number of spin operators in a single
term of the Hamiltonian was achieved in the four-spin
ring-exchange interaction of cold atoms in optical lattices
[19], and in the four-spin phase gate in superconducting
circuits [20, 21].

While the direct capacitive or inductive coupling be-
tween superconducting qubits [22–24] is limited to two-
body interaction [25], many methods have been proposed
[26–32] to synthesize many-body interaction Hamiltoni-
ans in superconducting circuits. In particular, higher ex-
cited states in superconducting circuits can be used to

synthesize interactions involving more than two qubits
[33–35]. Nevertheless, interaction Hamiltonians involv-
ing many spin operators, which are necessary ingredients
for simulating lattice gauge theories [36–39] and topolog-
ical quantum computing [40], have been difficult to be
realized in superconducting qubits. Here we report the
synthesis of m-body (with m up to five) spin-exchange
interaction Hamiltonian with time-frequency correlated
photons [41] in a superconducting quantum circuit, which
breaks the record of the number of qubits in a single term
of interaction Hamiltonians thus far synthesized on artifi-
cial quantum platforms. The interaction strength is large
enough for collective coherence to be observed, allowing
for a one-step generation of genuinely entangled five-spin
Greenberger-Horne-Zeilinger (GHZ) states. We also use
such multi-spin interaction to build nonlinear interfer-
ometers and simulate the effect of noises in the quantum
tunneling between left- and right-handed molecules.

Five-body interaction in a superconducting circuit– The
experiment is performed in a superconducting circuit
where four transmon qubits are symmetrically coupled
to a central transmon qudit (see Fig. 1(a)). All the five
transmon circuits have a sinusoidal potential well that
hosts multiple energy levels [42]. The four surrounding
qubits Qj with j = 1 to 4 are used as two-level artifi-
cial atoms, while the central qudit Q0 plays the role of
a five-level atom, which generates cascade time-energy
correlated photon quadruples. The transition frequen-
cies between the ground state |0〉 and the first excited
state |1〉 of the transmon circuits are tunable from 4 to
6 GHz. The coupling strengths gj/2π between the sur-
rounding qubits Qj and the central qudit Q0 are around
23 MHz, while those between the surrounding qubits are
smaller than 1 MHz. The Hamiltonian of the system
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in the rotating-wave approximation is given by (we set
~ = 1),

H =
4∑

n=1

n∑
k=1

νk|n0〉〈n0|+
4∑
j=1

ωj |1j〉〈1j |

+
4∑

n=1

4∑
j=1

√
ngj(S+

n σ
−
j + σ+

j S
−
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(1)

where |nj〉 is the nth (n = 0, 1, 2, ...) level of Qj , S+
n ≡

|n0〉〈(n − 1)0| are the raising operators between the ad-
jacent levels of Q0, and σ+

j ≡ |1j〉〈0j | are the raising
operators of the qubit Qj , with S−n and σ− being their
lowering operators, νk is the kth transition frequency be-
tween the energy levels |k0〉 and |(k − 1)0〉 of the qudit
Q0, and ωj is the transition frequency of the qubit Qj .
The factor

√
n in the coupling strengths between Q0 and

other qubits is due to the bosonic nature of the mode
in the transmon circuit, i.e.,

√
nS−n is equivalent to the

matrix element of the annihilation operator between the
Fock states |n〉 and |n− 1〉.

The five-body spin-exchange interaction Hamiltonian
is realized when we arrange the transition frequen-
cies of all qubits to satisfy the four-photon resonance,∑4
k=1 νk =

∑4
j=1 ωj , while the single photon, two-photon

and three-photon resonances are avoided (see Fig. 1(b)).
The time-frequency correlated photon source, i.e., the qu-
dit, plays a vital role in achieving such multi-body inter-
action. The key element in our approach is that the qudit
emits four photons sequentially with different frequencies
ν4, ν3, ν2 and ν1. The resulted effective Hamiltonian is,

Heff = λΞ−4 σ
+
1 σ

+
2 σ

+
3 σ

+
4 + h.c., (2)

where Ξ−n ≡ |00〉〈n0| is the lowering operator of the qu-
dit from the nth excited state to the ground state, and
λ is the fourth order effective coupling strength. If we
replace the qudit with a resonator, i.e., in the traditional
central cavity configuration [43–45], the qubits cannot
be simultaneously excited, because all possible quantum
paths cancel out, and we obtain λ = 0 (see Supplemen-
tary Material [46]).

Dynamic evolution and the GHZ state– The controlling
sequence diagram for the dynamics of Heff is sketched
in Fig. 2(a). We prepare the qubits in the initial state
|Ψ(0)〉 = |01111〉 at their idle frequencies. Then the
four qubits are quickly biased to their interaction fre-
quencies ωj . After an interaction time τ , we bring the
qubits to their readout frequencies for measurement (see
[46] for values of transition frequencies for qubit ini-
tialization and readout). The results of the joint mea-
surement of the wave function |Ψ(τ)〉 = c1(τ)|01111〉 +
c2(τ)|40000〉, ignoring the insignificant terms, are shown
in Fig. 2(b), where the experimentally obtained proba-
bilities of |c1(τ)|2 and |c2(τ)|2 (colored dots with error-
bars) are plotted in comparison with the numerical sim-
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FIG. 1. (a) Device schematic and image illustrating the five
frequency-tunable transmon circuits labeled from Q0 to Q4,
with Q0 being surrounded by Q1 to Q4. Each circuit Qj has
its own flux bias line Zj for fast frequency tuning, microwave
line XYj for SU(2) spin rotation, and readout resonator RRj

that couples to a common transmission line TL for dispersive
readout of Qj ’s state. The dots in the image are bumps for
the flip-chip process. Inset shows the structure of the circuits
in the dashed line area including Q0 and Q1. (b) Energy
configurations of the qudit and four qubits for the five-body
interaction. The lines denote the levels with distances in ver-
tical direction proportional to their energy differences. The
double arrows denote the allowed transitions with the black
ones denoting the major contributing paths.

ulation (colored lines) obtained from the original Hamil-
tonian in Eq. (1). The Rabi oscillation between the two
states is observed as expected. In the numerical simula-
tion, we use the quantum master equation with the ex-
perimentally measured energy relaxation time T1,j and
the empirical pure dephasing time Tϕ,j (≈ 6T ∗2,j where
T ∗2,j is the experimentally measured Ramsey Gaussian
dephasing time) to capture the impact of decoherence
[45, 46, 54].

The Rabi oscillation period of the five-body spin-
exchange interaction is estimated to be about 0.6µs,
which is short compared with the decoherence time and
allows the generation of a five-spin GHZ state in a sin-
gle step. At τ = 170 ns, the state evolves to |Ψ〉 =
(|01111〉+ eiφ|40000〉)/

√
2 with φ being a trivial dynam-

ical phase. The measured fidelity, which is defined as
F = Tr(ρideal · ρexp) with ρideal and ρexp being the ideal
and experimental density matrixes, is estimated to be
0.685±0.022 by directly measuring the four non-zero ele-
ments of the density matrix from the many-body interfer-
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FIG. 2. (a) Sequence diagram for observing the dynamic evo-
lution. After preparing the system to the initial state |01111〉
by applying Xπ rotation (a π rotation around x axis) to Q1
to Q4, we quickly tune the transition frequencies of all qubits
to activate the five-body interaction. After a specific time τ ,
the occupational probabilities of the system for different com-
putational states are measured. (b) The experimentally mea-
sured occupational probabilities of |c1(τ)|2 for |01111〉 (blue
dots) and |c2(τ)|2 for |40000〉 (red dots) for different interac-
tion times τ . Error bars represent statistical errors. Lines
are the results obtained by numerical simulation, where five
and three levels are considered for Q0 and other qubits, re-
spectively. (c) The effect of noises on the evolution under
the m-body spin-exchange Hamiltonian. The low-frequency
noises are simulated by random detunings between the two
states in the interaction. Except for the added noises, the se-
quence diagrams are similar to the one in (a) but for different
m’s. The populations of the two relevant states are measured
as functions of time. The noises have a destructive effect on
the coherent tunneling between the two spin configurations,
which is demonstrated by the diminishing oscillation contrast
when we increase m from 3 to 5.

ence, which is consistent with the lower bound obtained
by quantum state tomography [46] and satisfies the cri-
terion of global entanglement. Based on the numerical
simulations, we attribute an intrinsic error of around
0.057 to interactions other than the five-body interac-
tion, and an error of around 0.087 to the decoherence
effects. The additional interaction inserted in detecting
the off-diagonal terms contributes to an error of around
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FIG. 3. (a) Sequence diagram for detecting magnetic field
leveraging the m-body interaction, with m = 5 here as an
example. The magnetic field is synthesized by applying to
each transmon circuit a square Z pulse to offset its transi-
tion frequency between states |0〉 and |m − 1〉 (|1〉) for Q0
(other qubits) by an amount of −∆B (∆B) for a time τB .
The dynamical phase accumulated during this process can be
detected by sandwiching itself between two m-body interac-
tion operations with a fixed time τI ∼ 2π/8λm. (b) The ex-
perimentally measured occupational probabilities of |c1(τB)|2
(blue dots) and |c2(τB)|2 (red dots) for different time τB .
Lines are the fitting results. The fitted oscillation frequen-
cies for m = 3, 4, 5 are 14.9, 19.5 and 24.2 MHz respectively,
agreeing well with the ratio of 3 : 4 : 5.

0.107. The remaining error of around 0.064 may come
from the imperfect control pulses.

In the traditional approach of GHZ state generation
[55–58], the effective Hamiltonian only contains two-body
terms and all states in the symmetric subspace are in-
volved, forbidding a two-state Rabi oscillation, while in
our approach only the two relevant states are involved,
such that we can simulate the quantum tunneling be-
tween the left- and right-handed molecules.

Simulating decoherence effect in the tunneling between
two chiral molecules– Since early days of quantum me-
chanics, the origin of chiral molecules has puzzled gener-
ations of physicists [59–64]. In particular, Hund argued
that the parity operator commutes with the electromag-
netic interaction Hamiltonian, such that stable molecu-
lar states shall conserve parity, which is contradictory
to the existence of chiral molecules [59]. To resolve the
paradox, an argument is that the left- and right-handed
molecules reside in two energy valleys and the tunneling
strength between them is so small that it takes a macro-
scopically long time for large chiral molecules to tunnel
from one configuration to the other. During this process
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environmental noises induce decoherence and hinder the
tunneling, which is similar to the quantum Zeno effect
[63]. The two quantum states involved in the five-body
interaction can be used to simulate the tunneling between
the left- and right-handed molecular states, such that the
effect of environmental noises can be investigated toward
the question on the stabilization of chiral molecules. We
need to emphasize that while two chiral molecules are
mirror symmetric to each other, the two states |40000〉
and |01111〉 in our simulation are time-reversal symmet-
ric to each other. The electromagnetic interaction be-
tween atoms in the chiral molecules preserves the parity
symmetry while the five-body interaction Hamiltonian
preserves the time-reversal symmetry. Since the argu-
ment in the Hund paradox is still valid by replacing parity
symmetry with time-reversal symmetry, we are simulat-
ing the quantum tunneling between two chiral molecules
with the one between two time-reversal symmetric spin
configurations, but not the chirality itself.

As a step in this direction, in Fig. 2(c) we simulate the
suppressed tunneling between two chiral molecules due to
slow environmental noises, which can also be considered
as a random potential difference between the two chi-
ral molecules. To demonstrate this, we artificially inject
arbitrary flux noises to the system during the five-body
interaction. Each circuit Qj is offset from its interac-
tion frequency by a small amount of δj,k, which is ran-
domly chosen in a range of [−∆j ,∆j ] but fixed for the
kth pulse sequence. In the experiment, the noise strength
∆0/2π ≈ 5 MHz for Q0 between the transition from the
state |00〉 to |40〉. The noise range ∆j/2π is set to be
about 5 MHz for all other qubits Qj . An ensemble of 20
pulse sequences are applied to emulate the random white
noise that shifts the energy of Qj . It has been shown
that this is an efficient way to simulate artificial dephas-
ing [65] and many-body localization [54, 66]. For each
sequence, we record the probabilities of the two states as
a function of time. We average over 20 traces and find
that the oscillation between the two states vanishes, as
shown in Fig. 2(c). By exciting Q0 to the second or third
excited state and coupling it to two or three qubits, we
synthesize the three- or four-body spin-exchange Hamil-
tonians, λ3Ξ−2 σ

+
1 σ

+
2 +h.c. or λ4Ξ−3 σ

+
1 σ

+
2 σ

+
3 +h.c., where

λ3/2π ≈ 2.25 MHz and λ4/2π ≈ 2.29 MHz are the inter-
action strengths obtained from the Rabi periods (see [46]
for parameters of the circuits). The same noise strength
has a smaller effect on the four- and three-body interac-
tion, resulting from a larger interaction strength and a
weaker noise-induced decoherence effect. The oscillation
between the two states are still visible, although partially
smeared by the noises.

Many-body interferometer– The many-body spin-
exchange Hamiltonian can be used to build a Mach-
Zehnder interferometer that has a Heisenberg-limit sen-
sitivity [67]. In the m-body interferometer, we introduce
an energy-splitting Hamiltonian Bz(

∑m−1
j=1 σzj − Ξzm−1)

where Ξzm ≡ |m0〉〈m0| − |00〉〈00| and Bz is an artifi-
cial magnetic field. The dynamic phase induced by this
Hamiltonian can be detected as follows. We first prepare
the state |0〉 ⊗ |1〉⊗(m−1) and then activate the m-body
interaction for a fixed time τI ∼ 2π/8λm to steer the sys-
tem to the GHZ state. In the experiment, τI is slightly
adjusted for an optimized GHZ state fidelity and set to
be 60 ns (55 ns, 170 ns) for m = 3 (4, 5). Then we apply
local magnetic fields on each spin-1/2 particle, which is
synthesized by applying a square Z pulse to each trans-
mon circuit for a specific time τB and with a strength of
−∆B (between states |0〉 and |m − 1〉) for Q0 and ∆B

for other qubits. ∆B/2π is fixed to be around 5 MHz
in the experiment. After activating the m-body inter-
action again for a time τI, we measure the occupational
probabilities of |c1(τB)|2 for |0〉⊗|1〉⊗(m−1) and |c2(τB)|2
for |m − 1〉 ⊗ |0〉⊗(m−1). The controlling sequence for a
five-body interferometer is shown in Fig 3(a). The os-
cillation frequency scales linearly with m, as shown by
the data in Fig. 3(b). Although the sensitivity is not en-
hanced to the Heisenberg limit due to a lowered visibility
of the oscillation for larger m, we note that the oscilla-
tion amplitude infers the off-diagonal term ρoff of the
GHZ state by |c1(τB)|2 = −|ρoff| cos(2πm∆BτB)+const,
which dramatically reduces the number of quantum op-
erations required to benchmark the GHZ state fidelity
compared with the traditional tomography method. We
note that the GHZ state obtained from the all-to-all spin
interaction can also be used to build a Heisenberg-limit
interferometer [68, 69]. However, in that case all states
in the symmetric subspace are involved and the approach
is more prone to noises compared with the current ap-
proach, which only involves two states.

Conclusion – We experimentally realize m-body spin-
exchange interaction Hamiltonians with m up to 5, which
can still be increased to larger numbers in upgraded cir-
cuits with larger coupling strengths and lower decoher-
ence rates. It is ready to be implemented in quantum
circuits of tens of qubits [70, 71], such as in a square lat-
tice where qubits interact with their four neighbours with
the five-body Hamiltonian Heff, in simulating the lattice
gauge theory or Jordan-Wigner transformed fermionic
Hamiltonians. The essential difference between our ap-
proach and existing methods in coupling multiple spins is
that we have m > 2 spins in one term of the Hamiltonian.
Such uniqueness enables us to simulate the quantum tun-
neling between chiral molecules and build a many-body
interferometer.
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