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Boson sampling is a fundamentally and practically important task that can be used to demonstrate
quantum supremacy using noisy intermediate-scale quantum devices. In this work, we present
classical sampling algorithms for single-photon and Gaussian input states that take advantage of a
graph structure of a linear-optical circuit. The algorithms’ complexity grows as so-called treewidth,
which is closely related to the connectivity of a given linear-optical circuit. Using the algorithms, we
study approximated simulations for local Haar-random linear-optical circuits. For equally spaced
initial sources, we show that when the circuit depth is less than the quadratic in the lattice spacing,
the efficient simulation is possible with an exponentially small error. Notably, right after this depth,
photons start to interfere each other and the algorithms’ complexity becomes sub-exponential in
the number of sources, implying that there is a sharp transition of its complexity. Finally, when a
circuit is sufficiently deep enough for photons to typically propagate to all modes, the complexity
becomes exponential as generic sampling algorithms. We numerically implement a likelihood test
with a recent Gaussian boson sampling experiment and show that the treewidth-based algorithm
with a limited treewidth renders a larger likelihood than the experimental data.

Sampling from the probability distributions of random
quantum circuits is one of the problems to demonstrate
quantum supremacy using noisy intermediate-scale quan-
tum devices [1–5]. Boson sampling (BS) is one such
sampling problem using linear-optical devices believed
to be hard to classically simulate under some plausible
assumptions [6, 7]. While a scale of experimental BS
grows rapidly due to its importance [8–10], classical sim-
ulation algorithms taking advantage of current BS ex-
periments’ limitations are still restricted. Photon loss
and distinguishability of photons are representative limi-
tations, which have been extensively studied recently and
shown to be detrimental to quantum advantages [11–
17]. Another limitation of current experiments is that
the number of modes is not sufficiently large to reach a
collision-free BS, which may also reduce the complexity
of classical simulation [18, 19].

In this Letter, we focus on limited connectivity of a
linear-optical circuit. In general, typical global Haar-
random linear-optical circuits’ input and output modes
are fully connected, which makes it hard to classically
simulate. One possible implementation of global Haar-
random circuits is to prepare local beam-splitter arrays
[20], which corresponds to the current BS experiments’
setup. However, a deviation from a global Haar-random
unitary is apparent in the recent experiments [8, 9] be-
cause either the circuit depth is small or appropriate en-
semble of beam splitters are not employed [21]. Hence,
there is a chance that the connectivity of the circuit is
limited and that sampling from the underlying system
may not be as difficult as from a global Haar-random
circuit.

We propose classical algorithms using dynamical pro-
gramming [22, 23] taking advantage of a given circuit’s
limited connectivity for single-photon BS (SPBS) and

Gaussian BS (GBS) [6, 7]. Particularly, our algorithms’
complexity depends on connectivity of a relevant matrix’s
graph structure, characterized by the so-called treewidth
[24]. Since the algorithms’ complexity grows as the
treewidth instead of the system size, we may be able
to sample from some linear-optical circuits of a limited
treewidth faster than generic classical algorithms. By ap-
plying our algorithm to local beam-splitter circuits, we
analyze how the algorithms’ complexity grows as a circuit
depth and reveal a hierarchy of the complexity depend-
ing on the depth, namely, polynomial, sub-exponential,
and exponential regimes.

Boson sampling.— Consider an M -mode bosonic sys-
tem consisting of beam-splitter arrays characterized by a
unitary matrix U with N identical sources. Specifically,
the unitary matrix U represents the transformation of
mode operators {âj}Mj=1 as â†j → Û†â†jÛ =

∑M
k=1 Ujkâ

†
k

for a given beam splitter circuit Û . Let S ≡ {si}Ni=1 ⊂
[M ] be the set of input modes for identical sources. If
we measure an output state ρ̂ after beam splitters with
the photon number basis m̂ = ⊗Mj=1 |mj〉 〈mj |, the prob-
ability of an outcome m = (m1, ...,mM ) is given by
P (m) = Tr(ρ̂m̂). For simplicity, we define an equiva-
lent description of the output as r = (r1, . . . , rN ), where
ri’s represent modes that click. For single-photon state
input, the probability is written as [6]

P (m) =
|Per(USr )|2

m!
=

1

m!

∣∣∣∣∣∑
σ

N∏
i=1

Uri,sσ(i)

∣∣∣∣∣
2

, (1)

where the sum is over all permutations σ. Here, USr is
an N × N matrix obtained by choosing S columns and
r rows, and Per(U) is the permanent of matrix U , which
is related to counting bipartite perfect matchings in the
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FIG. 1. (a) Input (red dots) and output (blue dots) photon
configuration, corresponding bipartite and symmetric graphs
and their tree decompositions of width w = 2. (b) Graph and
its possible tree decomposition of width w = 3.

corresponding graph [25]. Meanwhile, for a squeezed vac-
uum state input, the probability of an outcome m is given
by [7]

P (m) =
|Haf(Bm)|2

m!
√

det(V + 1/2)
, (2)

where Bm is a matrix obtained by repeating ith column
and row of B ≡ UDUT for mi times, and Haf(Bm) is
the hafnian of matrix Bm, which is related to counting
perfect matchings in the corresponding graph [26]. Here,
D ≡ ⊕Mj=1 tanh rj , and V is the output state’s the covari-
ance matrix. Squeezing parameters are given by rj = r
for j ∈ S, and rj = 0 otherwise.

Let us clarify the relation between graphs and BS (see
Fig. 1 (a)). To compute the (marginal) probability for
an outcome, we consider all possible paths from input
photons to the output configuration, which essentially
corresponds to interference. They can be described by
all perfect matchings of a bipartite graph of USr with the
input modes S and output modes r being bipartite vertex
sets and the paths between them being edges for SPBS.
For GBS, vertices of a symmetric graph of Bm consist of
an output-photon configuration, and two vertices have an
edge if the two photons can come from the same source.
To compute a probability in this case, we consider all
possible perfect matchings of output photons, which cor-
responds to finding sources from which each pair of pho-
tons come. From this observation, when a given unitary
matrix’s connectivity is limited, we can expect that the
number of possible perfect matchings for each outcome
is small so that the induced graphs’ structure allows to
reduce the complexity.

Computing permanent and loop hafnian using dynam-
ical programming.— Before presenting sampling algo-
rithms, we first introduce classical algorithms comput-
ing the permanent and loop hafnian of a matrix. Here,

loop hafnian is generalized hafnian, related to counting
perfect matchings including loops [27, 28], which is nec-
essary for the sampling algorithm below. The complexity
of the best-known algorithms computing the permanent
and loop hafnian of a general N × N matrix scales as
2N and 2N/2, respectively [29, 30]. Meanwhile, there
are also various algorithms exploiting a matrix’s struc-
tures [27, 31, 32]. A particularly interesting algorithm is
dynamical programming that computes permanent [23].
A high-level idea of the algorithm is to construct tree de-
composition of bipartite graph for a given matrix, which
reveals the matrix’s structure (see Fig. 1). The algo-
rithm’s complexity grows as so-called treewidth, which
measures connectivity by exploiting the treelike struc-
ture of the graph [22]. We generalize the treewidth-based
algorithm to loop hafnian by using tree decompositions
for a given symmetric matrix and present the following
lemma, including the result in Ref. [23] as:

Lemma 1. If the treewidth of a graph representation of
an N ×N matrix is w, then dynamical programming can
compute its permanent and loop hafnian in O(Nw22w).

We provide the proofs of Lemmas and Theorems in
Ref. [33]. Notably, Lemma 1 shows that the complex-
ity’s exponent does not scale as the matrix size N but
the treewidth w. Therefore, for some structured matri-
ces, the complexity of computing their permanent or loop
hafnian can be highly reduced. For example, a forest,
i.e., disjoint union of trees, has treewidth 1 [34], so the
complexity does not grow exponentially as matrix size.
On the other hand, a complete graph, whose vertices are
all connected, has the treewidth N − 1 (N for bipartite
complete graph) [34]. Note that we recover the same ex-
ponent of the algorithm for a general matrix, i.e., 2N , for
permanent whereas it has a gap for loop hafnian (2N/2

for general loop hafnian) [27, 30].
Classical sampling algorithms based on treewidth.— We

now introduce classical sampling algorithms of SPBS and
GBS using limited connectivity. Although we have al-
gorithms computing permanent or loop hafnian using a
given graph’s structure, how to use such algorithms for
sampling is not clear. Remarkably, we show that if we
employ as a main routine chain rule of marginal prob-
abilities, such as the Clifford-Clifford algorithm [35] for
SPBS, and a recently proposed GBS algorithm [36], and
use our dynamical programming to compute permanent
or loop hafnian as a subroutine, we can fully utilize the
graph structure of a given circuit including computing
marginal probabilities [33]. For simplicity, we focus on
collision-free events, i.e., mi = {0, 1}, while we provide
algorithms for collisions in Ref. [33].

Theorem 1. (Classical sampling algorithm) If the
treewidths of bipartite graphs of USr are at most w for
all possible outcome r, we can classically simulate SPBS
in O(MN2w22w). Similarly, if symmetric graphs of Bm
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have the treewidths at most w for all outcomes m, we
can classically simulate GBS in O(MNw22w).

Theorem 1 enables us to recover and generalize some
previously known results. One such example is effi-
cient simulability of shallow 1D GBS, i.e., depth D =
O(logM) by using limited bandwidth of the circuit’s uni-
tary matrix [37, 38]. Since bandwidth is a special case
of treewidth, we recover the result and also find that the
result holds for 1D SPBS. For 2D cases, however, even for
a constant depth, we encounter with an output described
by a graph including

√
N ×

√
N grid, whose treewidth

is w =
√
N [33, 39]. This is consistent with the recent

hardness result of high-dimensional GBS [40].
Approximate sampling.— When an approximation of

a given circuit has limited connectivity, we can expect
that an approximate sampling is possible using this struc-
ture. However, it is not straightforward to apply the
same method if we approximate the circuit matrix by a
nonunitary matrix because the corresponding process or
the output state may no longer be physical. Also, the
chain-rule-based algorithms implicitly assume unitarity
of the process or a legitimate quantum state. We present
a method to overcome this by introducing additional vir-
tual M modes to make the process physical again and
investigate its approximation error in Ref. [33]:

Theorem 2. (Approximate sampling) If a circuit uni-
tary matrix U is approximated by U−dU , one can imple-
ment sampling with the same complexity up to constant

as Theorem 1 with an error of poly(N, ‖dU‖1/4F ).

We assess a simulation’s error by total variation dis-
tance

∑
m |P (m)−Pa(m)|/2 between an ideal probabil-

ity distribution P (m) and a classical algorithm’s output
probability distribution Pa(m) and desire an approxi-
mation error to be O(1/poly(N)). In the following sec-
tion, we study an experimentally relevant physical model,
which is local Haar-random circuits. Since a current GBS
experiment does not employ a specialized ensemble to im-
plement a global Haar-random circuit [9], its setup can
be considered as a typical instance of the model. Also, it
can be interpreted as an extreme case where beam split-
ters’ reflectivities have a large uncertainty. We emphasize
that our approximation method in Theorem 2 is straight-
forwardly applicable to similar dynamics (e.g. Ref. [41]).

Approximate sampling for local Haar-random
circuits.— Consider N identical sources equally
distributed in M = kNγ modes of a d-dimensional
lattice [42] and local Haar-random beam-splitter arrays,
as illustrated in Fig. 2. The lattice consists of d-cube
sublattices of edge length L = (M/N)1/d, containing a
single source. For simplicity, let L be a positive integer.

As recently studied, random beam-splitter arrays can
be characterized by a classical random walk [43]. There-
fore, photons propagate diffusively on average. Using
this property, we find an upper-bound on the leakage

(1) (2)

(3) (4)

(a) (b)

(c) (d)

}
}

FIG. 2. Initial state in (a) 1D and (c) 2D architectures. Red
dots represent sources. Lα represents a sublattice having a
single source sα. Beam-splitter arrays in (b) 1D and (d) 2D
architecture. A single round consists of four steps (1)-(4). The
structure can be generalized for d-dimensional architecture,
where a single round consists of 2d steps.

rate from a source at sα up to κL denoted as ηα(κ) ≡∑
j |Uj,sα |2, where j is the sum over modes away from α

more than κL:

Lemma 2. For depth D ≤ dk2/dκ2N2(γ−1)/d−ε/2 with
ε > 0, the leakage rate ηα to distance κL is bounded from
above as

ηα(κ) ≤ exp(−N ε) (3)

with a probability 1− δ over Haar-random beam-splitter
arrays, where δ is exponentially small in N .

For later usage for d = 1, we note that the same in-
equality holds forD ≤ k2κ2N2(γ−1)−ε(logN)2/2 for leak-
age rate to distance κL logN . Motivated by Lemma 2,
our approximate sampling strategy is to discard the ele-
ments of a unitary matrix that are geometrically farther
from sources than κL, i.e., U → Ũ ≡ U − dU and imple-
ment Theorem 2. Since ‖dU‖2F =

∑
α∈S ηα(κ) is expo-

nentially small, the sampling error is too. From now on,
we focus on typical circuits, emphasizing that the portion
of atypical circuits is exponentially small.

Consider a special case (κ = 1/2) where interference
between photons from different sources is negligible typ-
ically. In this case, for SPBS, possible outputs can be
described by a disconnected graph, in which at most two
vertices are connected; thus, the treewidth is 1. For GBS,
assuming that a single source emits constant number of
photons at most, graphs describing possible outcomes are
again disconnected with constant number of vertices and
have bounded treewidth. One may also show that sam-
pling for this regime is easy by noting that the hafnian
of a low-rank matrix can be efficiently computed without
the assumption [27]. Thus,
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(a) (b)

FIG. 3. GBS on 2D lattice with N = 36, M = N2, and
γ = 2. (a) Red dots represent initial sources. Black solid
line describes the region at which a particular input photon
can typically propagate for D = Θ(L2(1−ε)) = Θ(N1−ε). (b)
Possible tree decomposition of the symmetric graph Bm when
outputs are at the same position with input sources. An upper
bound on the treewidth is Θ(

√
N) as shown: the first bag

(blue) and the second one (yellow).

Theorem 3. (Efficient-sampling regime) Approximate
BS can be efficiently performed for typical circuits
of depth D ≤ Deasy ≡ dk2/dN2(γ−1)/d−ε/8 =
Θ(N2(γ−1)/d−ε) . Especially for d = 1, the upper bound
becomes D ≤ k2κ2N2(γ−1)−ε(logN)2/2.

We note that the distinct upper-bound for 1D arises
because the treewidth O(logN) can be efficiently simu-
lated.

After D > Deasy (or κ > 1/2), photons from a sub-
lattice can now propagate to other lattices so that pho-
tons from different sources start to interfere (see Fig. 3
(a)). Thus, induced graphs have edges between sources
and photons from different sublattices (SPBS) or photons
from different sources (GBS) as shown in Fig. 3 (b). In
this case for 2D architecture, there exists an outcome cor-
responding to a graph containing a grid whose treewidth
is unbounded, i.e., w =

√
N . Therefore, the sampling

complexity starts to scale exponentially in
√
N [33],

which reveals a sharp transition of the complexity at
D = Deasy from polynomial to sub-exponential. Simi-
larly, when photons propagate further and for arbitrary
dimension, i.e., D = Θ(N2α/dDeasy) with 0 ≤ α ≤ 1
(equivalently κ = Θ(Nα/d)), we can find a tree decom-

position whose width is Θ(N
α
d+ d−1

d ) for any outcomes.
Therefore, we have the following theorem:

Theorem 4. ((sub-)exponential regime) One can
sample from typical linear-optical circuits of D =
Θ(N2α/dDeasy) with 0 ≤ α ≤ 1 by complexity

O(poly(N)2Θ(N
α
d

+ d−1
d )).

Especially when α = 1, any photons can propagate
to all modes, i.e., photons fully interfere each other,
which forms the complete graph for all outcomes, so that
treewidth becomes Θ(N). Since generic global Haar-
random circuits are fully connected, at least Θ(N2γ/d) =
Θ(M2/d) order of depth is required to implement a global
Haar-random circuit using a local Haar-random circuit

Easy for any 

circuits*

Easy for 

typical circuits (Complete graph)

FIG. 4. The complexity diagram for local Haar-random BS.
As the star-marked, a sharp transition occurs for the complex-
ity of our algorithm. Easiness for any circuits (*) is proved in
Ref. [41]. Note that for 1D, the depth that is easy for typical
circuits is larger (see Theorem 3).

and such an input configuration. Fig. 4 summarizes the
result.

Interestingly, the recent GBS experiments’ circuit
depth scales as

√
M [9, 10], which implies that their cir-

cuit is not sufficient to form a global Haar-random circuit.
Nevertheless, aside from the deviation from global Haar-
random matrices, locality in their circuit is not apparent
because the scale is intermediate while our analysis fo-
cuses on an asymptotic regime. Therefore, our approxi-
mate algorithm might result in a large simulation error
for this intermediate-scale GBS because of a large con-
stant factor of the error.

One may also consider other initial configurations un-
der local Haar-random circuits, for example sources are
concentrated on a certain region. We show that for those
cases, one already needs a depth D = Θ(NDeasy) to
reach collision-free regime, and thus collision occurs with
a high probability, while equally spaced sources reach the
collision-free regime when D = Θ(Deasy) [33].
GBS validation test.— Finally, we implement the like-

lihood test to experimental samples [10] against sam-
ples generated by our treewidth-based approximate al-
gorithm:

ratio ≡ log
Prideal(Samples from experiment)

Prideal(Samples from treewidth algorithm)
,

(4)

which is equivalent to the test implemented in Refs. [9,
10]. Thus, we compare the likelihood of each sample set
with respect to the (lossy) ideal probability distribution.

For the treewidth algorithm, we have approximated
local Haar-random with limited propagation (see Fig. 5
(a)) and sampled from the approximated circuit using
Theorem 2. Specifically, we have rearranged the 144
modes one-dimensionally and set a propagation length
K for approximation. Note that setting a propagation
length K implies that the corresponding GBS’s treewidth
is w = 2K+1 and that a complete graph has a treewidth
w = M . To compensate the lost photons from the ap-
proximation, we have increased the squeezing parameters
and thermal photons to have the same average total pho-
ton numbers.

In Fig. 5 (b), we present the likelihood ratio as the
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FIG. 5. Likelihood test for the recent GBS experiment [10].
(a) Rearranged mode-configuration with squeezed states
sources (red dots). For approximated sampling, we discard
elements of a circuit matrix U that is farther than K for
the sources. (b) Log-likelihood ratio of experimental samples
against those from the treewidth algorithm.

number of samples increases for two classically verifiable
instances of the experiments in Ref. [10]. It clearly shows
that the treewidth-based approximate algorithm renders
larger likelihood than the experiment. We also provide
evidence in Ref. [33] for GBS experiments in the quantum
supremacy regime by investigating the likelihood ratio for
marginals that the treewidth-based algorithm might give
a larger likelihood with a limited treewidth. Therefore,
the numerical results imply that a fully connected circuit
is crucial for more rigorous quantum-advantage demon-
stration.

Discussion.— We have presented classical samplers
taking advantage of limited connectivity of a circuit. It is
an interesting open question to find more efficient sam-
pling algorithms than the one based on the treewidth.
Another open problem is to close the gap of complex-
ity for computing loop hafnian between the treewidth-
based algorithm (2N ) and the best-known algorithm
(2N/2) [36].

Finally, Theorem 3 shows that typical linear-optical
circuits up to depth D ≤ Deasy = Θ(N

2
d (γ−1)−ε) al-

low an efficient classical simulation except for an ex-
ponentially small fraction of random circuits. Mean-
while, there exists a circuit hard to classically simulate for

D = Ω(N
γ−1
d +ε) under reasonable complexity-theoretic

conjectures [6, 41, 44]. Theorem 3 can be compatible
with the hardness results since together the implication
is that the worst-case instances occupy only at most an
exponentially small faction of the space of all linear op-
tical circuits.
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