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Nonlinear integrable equations serve as a foundation for nonlinear dynamics, and fractional equa-
tions are well known in anomalous diffusion. We connect these two fields by presenting the discovery
of a new class of integrable fractional nonlinear evolution equations describing dispersive transport
in fractional media. These equations can be constructed from nonlinear integrable equations using
a widely generalizable mathematical process utilizing completeness relations, dispersion relations,
and inverse scattering transform techniques. As examples, this general method is used to char-
acterize fractional extensions to two physically relevant, pervasive integrable nonlinear equations:
the Korteweg–de Vries and nonlinear Schrödinger equations. These equations are shown to predict
super-dispersive transport of non-dissipative solitons in fractional media.

Fractional calculus is an effective tool when describ-
ing physical systems with power law behavior such as in
anomalous diffusion, where the mean squared displace-
ment is proportional to tα, α > 0 [1–4]. This form of
transport has been observed extensively in biology [5–8],
amorphous materials [9–11], porous media [12–14], and
climate science [15] amongst others. Equations in multi-
scale media can express fractional derivatives in any gov-
erning term [16, 17], including dispersion, such as found
in the 1D nonlinear Schrödinger equation (NLS) in op-
tics [18–24] and the Korteweg-de Vries equation (KdV)
in water waves [25]. In the case of integer derivatives,
NLS and KdV are famously integrable equations, leading
to solitonic solutions and an infinite set of conservation
laws [26]. Integrable equations are key signposts in non-
linear dynamics as they provide exactly solvable cases
and, moreover, are an essential element of Kolmogorov-
Arnold-Moser (KAM) theory underlying our understand-
ing of chaos. The fundamental solution of 1D dispersive
integrable equations is the soliton, a robust nondispersive
localized wave. While in the space of possible nonlinear
evolution equations, integrable cases are extremely rare,
they arise frequently in application.

In this Letter, we present a new class of integrable frac-
tional nonlinear evolution equations which predict super-
dispersive transport in fractional media. Fractional me-
dia is “rough” or multiscale media that is neither reg-
ular nor random; it includes fractals but is more gen-
eral as it need not be self-similar. We use the fractional
NLS (fNLS) and fractional KdV (fKdV) equations as
case studies. We show their integrability, demonstrate
exact fractional soliton solutions, and make physical pre-
dictions about the speed of these localized waves. To
date, to our knowledge, no nonlinear fractional evolution
equation has been known to be integrable.

The building blocks of our demonstration are three
mathematical ingredients. Two are familiar to physicists
as they are well known concepts in physics. They are
completeness and the dispersion relations. However, in

our case the dispersion relation will use fractional, rather
than integer, derivatives. The third building block is
the fundamental ingredient of integrability, namely the
inverse scattering transform (IST), well known to re-
searchers in nonlinear dynamics.

Different versions of the fNLS equation defined in
terms of the Riesz fractional derivative have been studied
in, e.g., [20, 27, 28], but unlike the fNLS and fKdV equa-
tions that we introduce, none of these are integrable. The
fractional operators in the fNLS and fKdV equations are
nonlinear generalizations of the Riesz fractional deriva-
tive. In fact, the linear limit of the fNLS equation is the
well known fractional Schrödinger equation derived us-
ing a Feynman path integral over Lévy flights [29, 30].
Fractional equations defined using the Riesz fractional
derivative (alternately termed the Riesz transform [31]
or fractional Laplacian [32]) are effective tools when de-
scribing behavior in complex systems because the Riesz
fractional derivative is closely related to non-Gaussian
statistics [33]. It has found physical applications in de-
scribing movement of water in porous media [34], trans-
port of temperature in fluid dynamics [35], and power
law attenuation in materials [36] amongst many others
[37–39].

The KdV and NLS equations arise in many physi-
cal problems. The KdV equation is applicable in shal-
low water waves, internal waves, fluid dynamics, plasma
physics, and lattice dynamics amongst others [25]. Fur-
thermore, KdV is a universally important equation when-
ever weak dispersion balances weak quadratic nonlin-
earity cf. [18, 19]. Similarly, the NLS equation arises
in the quasi-monochromatic approximation with disper-
sion balancing weak nonlinearity and occurs widely in
physical applications, e.g. water waves, nonlinear op-
tics, spin waves in ferromagnetic films, plasma physics,
Bose-Einstein condensates, etc. [18, 19, 40, 41]. The KdV
equation was shown to be solvable using the IST and to
admit soliton solutions when associated with the linear
time-independent Schrödinger equation in [42]. Then,



2

the NLS equation with decaying data was solved and
shown to possess solitons via the IST in [43]. Soon af-
ter, the method was extended to the modified KdV and
sine-Gordon equations as well as general classes of equa-
tions written in terms of a linearized dispersion relation
[19, 44]. IST is now a large field cf. [18, 26, 45–47].

Here we show how to extend this formulation to encom-
pass fractional integrable nonlinear evolution equations.
As examples of this technique, we show that fKdV and
fNLS are solvable by the IST. These are two examples
of many possible fractional integrable equations that can
be characterized by this method.

The IST and anomalous dispersion relations — It is
well known that linear evolution equations of the form

qt + γ(∂x)qx = 0, (1)

can be solved by Fourier transforms when γ(∂x) is a ra-
tional function cf. [19]. We can do this because the com-
pleteness of plane waves gives an integral representation
of γ(∂x). The solution to (1) is explicitly

q(x, t) =
1

2π

∫ ∞
−∞

dkq̂(k, 0)eikx−ikγ(ik)t. (2)

However, as Riesz showed [31], the solution (2) makes
sense for much more general γ. Specifically, Fourier
Transforms can be used to solve linear fractional evo-
lution equations, e.g., γ(∂x) = | − ∂2

x|α, 0 < α < 1.
Here we show that similar analysis applies to nonlinear

evolution equations using the IST. We do this by asso-
ciating a class of integrable nonlinear equations with a
linear scattering problem (ingredient 1, IST), character-
izing the fractional equation with an anomalous disper-
sion relation (ingredient 2, dispersion), and defining the
fractional operator associated with this dispersion rela-
tion using the completeness of squared eigenfunctions of
the scattering equation (ingredient 3, completeness).

We will apply ingredients 1 and 2 to find the fKdV
and fNLS equations, and use ingredient 3 to define the
fractional operators in these equations. Associated with
the non-dimensionalized time-independent Schrödinger
equation for v(x) with potential q(x, t)

vxx +
(
k2 + q(x, t)

)
v = 0, |x| <∞, (3)

is the following class of integrable nonlinear equations for
q(x, t) [44]

qt + γ(LA)qx = 0, LA ≡ −1

4
∂2
x − q +

1

2
qx

∫ ∞
x

dy. (4)

Hence, equation (4) can be solved by the IST using
(3). We obtain the fKdV equation by choosing γ(LA) =
−4LA

∣∣4LA∣∣ε — this will be justified shortly. We take
0 < ε < 1 throughout this Letter.

Similarly, associated with the following 2 × 2 scat-
tering problem — termed the Ablowitz-Kaup-Newell-
Segur (AKNS) system — for the vector-valued function

v(x) = (v1(x), v2(x))
T

(T represents transpose)

v(1)
x = −ikv(1) + q(x, t)v(2), (5)

v(2)
x = ikv(2) + r(x, t)v(1), (6)

is the set of integrable nonlinear equations [44]

σ3∂tu + 2A0(LA)u = 0, σ3 =

(
1 0
0 −1

)
, (7)

where u = (r, q)
T

and the operator

LA ≡ 1

2i

(
∂x − 2rI−q 2rI−r
−2qI−q −∂x + 2qI−r

)
(8)

with I− =
∫ x
−∞ dy. Note that I− operates both on the

function immediately to its right and the functions to
which LA is applied. Taking r = ∓q∗, ∗ the complex
conjugate, and A0(LA) = 2i(LA)2|2LA|ε we find fNLS to
be the second component of (7).

These definitions are justified when we note that γ(LA)
and A0(LA) can be related to the dispersion relation of
the linearization of (4) and (7). Specifically, if we put
q = ei(kx−w(k)t) into the linearizations of (4) and (7), we
have

γ(k2) =
wK(2k)

2k
, A0(k) = − i

2
wS(−2k), (9)

where wK is the dispersion relation for the linear fKdV
equation and wS is the same for the linear fractional
Schrödinger equation. Therefore, γ(LA) and A0(LA)
for fKdV and fNLS are generated from the disper-
sion relations for linear fKdV and the linear fractional
Schrödinger equation. These equations are, naturally,

qt +
∣∣−∂2

x

∣∣ε qxxx = 0, iqt =
∣∣−∂2

x

∣∣ε/2 qxx, (10)

where | − ∂2
x|ε is the Riesz fractional derivative. So, the

corresponding dispersion relations are wK(k) = −k3|k|2ε
and wS(k) = −k2|k|ε which lead to the aforementioned
definitions of γ(LA) and A0(LA).

Spectral definitions of fKdV and fNLS by completeness
— To define the fKdV and fNLS equations we need to
determine what operating on a function with γ(LA) or
A0(LA) means. We do this using ingredient 3, complete-
ness of the associated linear scattering system.

In [44] it was shown that the eigenfunctions of LA are
any of the three functions: {∂xϕ2, ∂xψ

2, ∂x(ϕψ)} which
we represent generically as ΨA, each with eigenvalue λ =
k2. Here ψ and ϕ solve the time-independent Schrodinger
equation (3) subject to appropriate asymptotic boundary
conditions at x = ±∞. Furthermore, the eigenfunctions

of LA are ΨA and Ψ
A

each with eigenvalue λ = k. These
may be written in terms of solutions to equations (5) and
(6) (see Supplemental Material [48]).
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Starting from γ(LA) and A0(LA) operating on ΨA and
ΨA, we can write

γ(LA)ΨA = γ(k2)ΨA, (11)

A0(LA)ΨA = A0(k)ΨA. (12)

To extend this to γ(LA) and A0(LA) operating on any
function, we need to be able to express any function in
terms of ΨA and ΨA, i.e. we need a completeness relation
for each set of eigenfunctions.

In [49] it was shown that the eigenfunctions ΨA are
complete. Assuming the functions h(x) and q(x, t) are
sufficiently decaying and smooth in x, hmay be expanded
in terms of the eigenfunctions ΨA as

h(x) =

∫
Γ∞

dk
τ2(k)

4πik

∫ ∞
−∞

dy G(x, y, k)h(y), (13)

where Γ∞ = limR→∞ ΓR with ΓR the semicircular con-
tour in the upper half plane evaluated from k = −R
to k = R. τ is the transmission coefficient relating the
solutions ϕ(x, k)τ(k) = ψ(x,−k) + ρ(k)ψ(x, k), ρ is the
reflection coefficient, and

G(x, y, k) = ∂x(ψ2(x, k)ϕ2(y, k)− ϕ2(x, k)ψ2(y, k)),
(14)

Notice that time of the eigenfunctions is suppressed
throughout this manuscript. From (11) and (13) the op-
eration of γ(LA) on a sufficiently smooth and decaying
function h follows as

γ(LA)h(x) =

∫
Γ∞

dkγ(k2)
τ2(k)

4πik

∫ ∞
−∞

dyG(x, y, k)h(y).

(15)

Hence, equations (13)-(15) provide an explicit repre-
sentation of fKdV, i.e. equation (4) with γ(LA) =
−4LA

∣∣4LA∣∣ε, which may be written as

qt +

∫
Γ∞

dk|4k2|ε τ
2(k)

4πik

∫ ∞
−∞

dyG(x, y, k) (6qqy + qyyy)=0.

(16)

Notice that equation (16) is in non-dimensional coor-
dinates x and t. In the linear limit q → 0, we have
γ(LA)→ γ

(
−∂2

x/4
)
. So, for fKdV, γ(LA)→ −∂2

x

∣∣−∂2
x

∣∣ε
which is the Riesz fractional derivative. If we then set
ε = 0, we recover the KdV equation:

qt + 6qqx + qxxx = 0. (17)

We note that τ(k, t) has a finite number of simple poles
along the imaginary axis denoted kj = iκj for j =
1, 2, ..., J , so the above representation can be evaluated
by contour integration (see Supplemental Material [48]).

Similarly, the eigenfunctions ΨA are also complete
[50]. Thus, we can write the operation of A0(LA) on a

sufficiently smooth and decaying vector-valued function
h(x) = (h1(x), h2(x))

T
as

A0(LA)h(x)=

2∑
n=1

∫
Γ
(n)
∞

dkA0(k)fn(k)

∫ ∞
−∞

dyGn(x,y,k)h(y),

(18)

G1(x, y, k) = ΨA(x, k)Ψ(y, k)T , f1(k) = −τ2(k)/π,

G2(x, y, k) = Ψ
A

(x, k)Ψ(y, k)T , f2(k) = τ2(k)/π,

where Γ
(1)
R (Γ

(2)
R ) is the semicircular contour in the upper

(lower) half plane evaluated from −R to +R, Ψ(x, k),

Ψ(x, k) are eigenfunctions of L; ΨA(x, k), Ψ
A

(x, k) are
eigenfunctions of LA; and τ(k), τ(k) are transmission
coefficients defined similarly to fKdV. Notice that Gn

are 2× 2 matrices (see Supplemental Material [48]).
Thus equation (18) gives a representation for the fNLS,

equation (7) with A0(LA) = 2i(LA)2|2LA|ε and r = ∓q∗;
see the Supplemental Material [48]. In the linear limit,
fNLS is represented in terms of the Riesz fractional
derivative and for ε = 0 we recover NLS:

iqt = qxx ± 2q2q∗. (19)

With explicit expressions for γ(LA) and A0(LA) in equa-
tions (15) and (18), the fKdV and fNLS equations are
characterized. Further, because these equations are in-
side of the time-independent Schrödinger and AKNS
classes of integrable nonlinear equations in (4) and (7),
fKdV and fNLS are solvable by the IST.

Soliton solutions of fKdV and fNLS — Given an ini-
tial state q(x, 0) with sufficient smoothness and decay,
we can solve fKdV and fNLS, i.e. obtain q(x, t), using
the IST. To do this, we first map the initial state into
scattering space, evolve the resulting scattering data in
time, and reconstruct the solution in physical space from
these data. It turns out that solving fKdV and fNLS are
remarkably similar to solving KdV and NLS.

We note that, given the explicit representation of fKdV
in equation (16), and fNLS in Supplemental Material [48],
these equations can also be solved numerically in discrete
time by finding the kernels G/Gj and evaluating the in-
tegrals with respect to y and k at each time step.

The fractional soliton solutions of fKdV and fNLS are
given in equations (20-21). These correspond to bound
states of the Schrödinger and AKNS scattering problems
with one complex eigenvalue kK = iκ and kS = ξ + iη
respectively:

qK(x, t) = 2κ2sech2{κ((x− x1)− (4κ2)1+εt)}, (20)

qS(x, t) = 2ηe−2iξx+4i(ξ2−η2)|2kS |εtsech{zε(x, t)}, (21)

where zε(x, t) = 2η(x−x0− 4ξ|2kS |εt) and x0, x1 can be
characterized in terms of scattering data.

It can also be shown that the fractional solitons solve
their respective equations by evaluating γ(LA)∂xqK and
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A0(LA)∂xqS using contour integration methods (this
computation for the fKdV equation is given in the Sup-
plemental Material [48].) Further, higher order solitons
can be calculated and their interactions are elastic.

Physical Predictions – The fKdV and the fNLS equa-
tions describe the transport of fluid and photons in multi-
scale fluid channels and laser fiberoptic systems, respec-
tively. The multiscale characteristic of these materials
represents a certain “roughness” which is averaged over
in fKdV and fNLS. The solitonic solutions of these equa-
tions describe how localized waves of fluid/probability
are transported in such systems. Both fKdV and fNLS
predict solitons with anomalous motion, that is, super-
dispersive transport where speeds are larger than ex-
pected from regular or ordered systems (note that sub-
dispersive transport can also be realized by modifying
the dispersion relation). Specifically, the group velocity
of fKdV and fNLS and the phase velocity of fNLS are
given by

vK(ε, κ) =
(
4κ2
)1+ε

(22)

vS(ξ, η) = 22+εξ(ξ2 + η2)ε/2 (23)

vθ(ξ, η) = 21+ε
(
ξ2 − η2

) (
ξ2 + η2

)ε/2
/ξ (24)

In a wave tank of height 5 cm we expect solitons with
amplitude and KdV speed around 2/3 cm and 0.3 cm/s,
respectively. One can similarly associate physical values
to solitons in fiberoptics [51], spin waves in ferromagnetic
films [52], Bose-Einstein condensates [53], or any of the
many other contexts in which NLS is applicable.

Figure 1 shows the velocities in equations (22-24) as
they interpolate between KdV (NLS) for ε = 0 and ε = 1.
Notice that fKdV and fNLS predict a power law rela-
tionship between the amplitude of the wave, κ2 and η
respectively, and the speed of the wave characterized by
ε. Experimentally verifying these relations relies on com-
paring the amplitude of water waves and the amplitude
and phase of laser pulses in optical fibers to their speed
in multiscale media.

Importantly, the physical properties of fractional soli-
tons, besides the change in velocity described by equa-
tions (22-24), are identical to regular ones. From fig-
ure 2, fractional solitons propagate without dissipating
or spreading out. An open question is to compare the
solitons predicted by fKdV and fNLS to solitary waves
predicted by other, non-integrable versions of these equa-
tions. This could be done by studying how the velocity
of each equation varies with the fractional parameter ε
and whether soliton-soliton interactions are elastic or in-
elastic and what the predicted phase shifts are.

Conclusion — We have demonstrated a new class of
integrable equations, namely 1D fractional integrable
nonlinear evolution equations, derivable from a gen-
eral method. As ubiquitous examples of this class
we presented integrability and solitonic solutions of the

fractional nonlinear Schrödinger and Korteweg-de Vries
equations. We demonstrated the three basic mathe-
matical ingredients of our procedure: completeness, dis-
persion relations, and inverse scattering transform tech-
niques. We also gave fractional soliton solutions to these
equations and demonstrated super-dispersive transport
as a physical implication of the equations. Such fractional
equations model multiscale materials and open new direc-
tions in integrable nonlinear dynamics for such systems,
both artificial and naturally occurring. Our method pro-
vides a context for the discovery and understanding of 1D
fractional nonlinear evolution equations generally, with
integrability acting as a key signpost for fractional non-
linear dynamics.
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FIG. 1. Localized waves predicted by the fKdV and fNLS
equations, (22-24), show super-dispersive transport as their
velocity increases as ε increases from 0 to 1. Like anoma-
lous diffusion where the mean squared displacement is pro-
portional to tα, the velocity in anomalous dispersion is pro-
portional to Aε, where A is the amplitude of the wave. The
parameter values used are κ = 3/2, ξ = 2, and η = 1/2.

FIG. 2. Note that soliton solutions to the fKdV equation
propagate without dissipating or spreading out. The param-
eter values used are κ = 3/2 and x0 = 0.
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made tracer tests, Transport in porous media 42, 211
(2001).

[14] M. M. Meerschaert, Y. Zhang, and B. Baeumer, Tem-
pered anomalous diffusion in heterogeneous systems,
Geophysical Research Letters 35 (2008).

[15] E. Koscielny-Bunde, A. Bunde, S. Havlin, H. E. Roman,
Y. Goldreich, and H.-J. Schellnhuber, Indication of a uni-
versal persistence law governing atmospheric variability,
Physical Review Letters 81, 729 (1998).

[16] B. J. West, Colloquium: Fractional calculus view of com-
plexity: A tutorial, Rev. Mod. Phys. 86, 1169 (2014).

[17] W. P. Zhong, M. R. Belić, B. A. Malomed, Y. Zhang,
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