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Several architectures have been proposed for quantum neural networks (QNNs), with the goal
of efficiently performing machine learning tasks on quantum data. Rigorous scaling results are
urgently needed for specific QNN constructions to understand which, if any, will be trainable at
a large scale. Here, we analyze the gradient scaling (and hence the trainability) for a recently
proposed architecture that we call dissipative QNNs (DQNNs), where the input qubits of each layer
are discarded at the layer’s output. We find that DQNNs can exhibit barren plateaus, i.e., gradients
that vanish exponentially in the number of qubits. Moreover, we provide quantitative bounds on
the scaling of the gradient for DQNNs under different conditions, such as different cost functions
and circuit depths, and show that trainability is not always guaranteed. Our work represents the
first rigorous analysis of the scalability of a perceptron-based QNN.

Introduction.—Neural networks (NN) have impacted
many fields such as neuroscience, engineering, computer
science, chemistry, and physics [1]. However, their histor-
ical development has seen periods of great progress inter-
leaved with periods of stagnation, due to serious technical
challenges [2]. The perceptron was introduced early on
as an artificial neuron [3], but it was only realized later
that a multi-layer perceptron (now known as a feedfor-
ward NN) had much greater power than a single-layer
one [1, 2]. Still there was the major issue of how to train
multiple layers, and this was eventually addressed by the
backpropagation method [4].

Motivated by the success of NNs and the advent of
Noisy Intermediate-Scale Quantum devices [5], there has
been tremendous effort to develop Quantum Neural Net-
works (QNNs) [6]. The hope is that QNNs will harness
the power of quantum computers to outperform their
classical counterparts on machine learning tasks [7, 8],
especially for quantum data or tasks that are inherently
quantum in nature [9].

Despite several QNN proposals that have been suc-
cessfully implemented [10–17], more research is needed
on the advantages and limitations of specific architec-
tures. Delving into potential scalability issues of QNNs
could help to prevent a “winter” for these models, like
what was seen historically for classical NNs. This has
motivated recent works studying the scaling of gradients
in QNNs [18, 19]. There, it was shown that variational
quantum algorithms [20–30], which aim to train QNNs
to accomplish specific tasks, may exhibit gradients that
vanish exponentially with the system size. This so-called
barren-plateau phenomenon, where the parameters can-
not be efficiently trained for large implementations, was
demonstrated for hardware-efficient QNNs, where quan-
tum gates are arranged in a brick-like structure that
matches the connectivity of the quantum device [18, 19].

∗ The first two authors contributed equally to this work.

Analyzing the existence of barren plateaus in QNNs is
paramount to determining if they can lead to a quantum
speedup. This is due to the fact that exponentially van-
ishing gradients imply that the precision needed to esti-
mate such gradients grows exponentially. Since the stan-
dard goal of quantum algorithms is polynomial scaling as
opposed to the typical exponential scaling of classical al-
gorithms, a QNN with exponentially vanishing gradients
has no hope of achieving this goal. On the other hand,
a QNN with gradients that vanish polynomially means
that the algorithm requires a polynomial precision, and
hence that the hope of quantum speedup is preserved.

Here, we analyze the trainability and the existence of
barren plateaus in a class of QNNs that we refer to as dis-
sipative QNNs (DQNNs). In a DQNN each node within
the network corresponds to a qubit [31], and the connec-
tions in the network are modelled by quantum percep-
trons [32–37]. The term dissipative refers to the fact that
ancillary qubits form the output layer, while the qubits
from the input layer are discarded. This architecture has
seen significant recent attention and has been proposed
as a scalable approach to QNNs [37–39]. In particular, in
[37], based on small scale numerical experiments, it was
speculated that dissipative quantum neural networks do
not suffer from the barren plateau (vanishing gradient)
problem. However, contrary to [37], we here analytically
prove that DQNNs are not immune to barren plateaus.
For example, DQNNs with deep global perceptrons are
untrainable despite the dissipative nature of the architec-
ture.

Here we study the large-scale trainability of DQNNs.
In particular, we focus on tasks where DQNNs are em-
ployed to learn a unitary matrix connecting input and
output quantum states and for general supervised quan-
tum machine learning tasks where training data consists
of quantum states and corresponding classical labels. For
these tasks, we show that the barren plateau phenomenon
can also arise in DQNNs. We also discuss certain condi-
tions (e.g., the structure and depth of the DQNN) under
which one could avoid a barren plateau and achieve train-
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FIG. 1. Schematic diagram of a dissipative perceptron-based
quantum neural network (DQNN). Top: The DQNN is com-
posed of input, hidden, and output layers. Each node in the
network corresponds to a qubit, which can be connected to
qubits in adjacent layers via perceptrons (depicted as lines).
The input and output of the DQNN are quantum states de-
noted as ρin and ρout, respectively. Bottom: Quantum circuit
description of the DQNN. The j-th qubit of the l-th layer is
denoted qlj . Each perceptron corresponds to a unitary oper-
ation on the qubits it connects, with V lj denoting the j-th
perceptron in the l-th layer.

ability. In particular, our work implies that scalability is
not guaranteed, and without careful thought of the struc-
ture of DQNNs, their gradients may vanish exponentially
in the system sizen. As a by-product of our analysis
of specific perceptron architectures, we also show that
hardware-efficient QNNs are special cases of DQNNs.
Therefore, many important results for hardware-efficient
QNNs, such as the ones studied in Refs. [18, 19] also hold
for DQNNs. Finally, we remark that we employ novel
analytical techniques in our proofs (different from those
used in Refs. [18, 19]), which were necessary to develop
due to the dissipative nature of DQNNs. Our techniques
may be broadly useful in the study of the scaling of other
QNN architectures.

Preliminaries.— Let us first introduce the DQNN ar-
chitecture. As schematically shown in Fig. 1, the DQNN
is composed of a series of layers (input, hidden, and
ouput) where the qubits at each node are connected via
perceptrons. A quantum perceptron is defined as an arbi-
trary unitary operator withm input and k output qubits.
For simplicity, we consider the case when k = 1, so that
each perceptron acts on m+ 1 qubits. The case of arbi-
trary k is presented in the Supplemental Material.

The qubits in the input layer are initialized to a state
ρin, while all qubits in the hidden and output layers
are initialized to a fiduciary state such as |0〉hid,out =
|0 . . . 0〉hid,out. Henceforth we employ the notation “in”,
“hid”, and “out” to indicate operators on qubits in the in-
put, hidden, and output layers, respectively. The output
state of the DQNN is a quantum state ρout (generally

mixed) which can be expressed as

ρout ≡ Trin,hid
[
V (ρin ⊗ |0〉hid,out〈0|)V †

]
, (1)

with V = V out
nout

. . . V 1
n1
. . . V 1

1 , and where V lj is the percep-
tron unitary on the l-th layer acting on the j-th output
qubit. Here nl indicates the number of qubits in the l-th
layer.

Let us now make two important remarks. First, note
that the order in which the perceptrons act is relevant,
as in general the unitaries V lj will not commute. Second,
we remark that for this architecture the perceptrons are
applied layer-by-layer, meaning that once all V lj (for fixed
l) have been applied and the information has propagated
forward between layers l − 1 and l, one can discard the
qubits in layer l − 1. This implies that the width of the
DQNN depends on the number of qubits in two adja-
cent layers and not in the total number of qubits in the
network.

To train the DQNN, we assume repeatable access to
training data in the form of pairs {|φin

x 〉, |φout
x 〉}, with

x = 1, . . . , N . We note that, as discussed in the Sup-
plemental Material, our results also hold more generally
for supervised quantum machine learning tasks where the
training data is of the form {|φin

x 〉, yx}, with yx a label
assigned to the input state |φin

x 〉 [40].
We then define a cost function (or loss function) which

quantifies how well the DQNN reproduces the training
data. We assume that the cost is of the form

C =
1

N

N∑
x=1

Cx , with Cx = Tr[Oxρ
out
x ] . (2)

As discussed below, in general there are multiple choices
for the operator Ox which lead to faithful cost functions,
i.e., costs that are extremized if and only if one perfectly
learns the mapping on the training data. If the circuit
description of output states is provided, one can employ
the inverse of the corresponding unitary on the output of
a DQNN [41]. Then a measurement in the computational
basis estimates the cost function. Otherwise, one can
employ a recently developed procedure based on classical
shadows to estimate the state overlap [42].

When Ox acts non-trivially on all qubits of the output
layer, we use the term global cost function, denoted as
CG. Here one usually compares objects (states or oper-
ators) living in exponentially large Hilbert spaces. For
instance, choosing

OGx = 11− |φout
x 〉〈φout

x | , (3)

leads to a global cost function that quantifies the average
fidelity between each ρout

x and |φout
x 〉.

As shown in Ref. [19], local cost functions do not
exhibit a barren plateau for shallow hardware-efficient
QNNs. Therefore, it is important to study if local observ-
ables can also lead to trainability guarantees in DQNNs.
Henceforth, we use the term local cost function, denoted
as CL, for the cases when the operator Ox acts non-
trivially on a small number of qubits in the output layer.
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FIG. 2. Global and local perceptrons. a) The global percep-
tron acts non-trivially on all input qubits, i.e., m = n. b) The
local perceptron acts non-trivially only on a small number of
input qubits. For the case shown, m = 3.

Since the global cost in (3) is a state fidelity function,
in general it will not be possible to design a correspond-
ing faithful local cost. Therefore, we restrict ourselves
to the case when |φout

x 〉 is a tensor-product state across
nout qubits |φout

x 〉 = |ψout
x,1 〉⊗ . . .⊗|ψout

x,nout
〉. Then, we can

define the following local observable:

OLx = 11− 1

nout

nout∑
j=1

|ψout
x,j 〉〈ψout

x,j | ⊗ 11j , (4)

where 11j denotes the identity over all qubits in the output
layer except for qubit j. Equation (4) leads to a faithful
local cost that vanishes under the same condition as the
global cost defined from (3) [41, 43].

Finally let us introduce the term global perceptron
to refer to the case when the perceptron V lj acts non-
trivially on all qubits in the l-th layer, i.e., when m =
nl−1. On the other hand, a local perceptron is defined
as a unitary V lj acting on a number of qubits m ∈ O(1)
which is independent of nl−1. Figure 2 schematically
shows a global and a local perceptron.

To analyze the existence of barren plateaus and the
trainability of the DQNN one needs to define an ansatz
and a training method for the perceptrons. In what fol-
lows we consider two general training approaches.

Random parameterized quantum circuits.—We first
consider the case where the perceptrons are parametrized
quantum circuits (i.e., variational circuits) that can be
expressed as a sequence of parameterized and unparam-
eterized gates from a given gate alphabet [18, 44]. That
is, the perceptrons are of the form

V lj (θlj) =

ηlj∏
k=1

Rk(θk)Wk , (5)

with Rk(θk) = e−(i/2)θkΓk , Wk an unparameterized uni-
tary, and where Γk is a Hermitian operator with Tr[Γ2

k] 6

2n+1. Such parameterization is widely used as it can al-
low for a straightforward evaluation of the cost function
gradients, and since in general its quantum circuit de-
scription can be easily obtained [45–47].

A common strategy for training random parameterized
quantum circuits is to randomly initialize the parameters
in (5), and employ a training loop to minimize the cost
function. To analyze the trainability of the DQNN we
compute the variance of the partial derivative ∂C/∂θν ≡
∂νC, where θν belongs to a given V lj

Var[∂νC] =
〈
(∂νC)2

〉
− 〈∂νC〉2 . (6)

Here the notation 〈· · · 〉 indicates the average over all ran-
domly initialized perceptrons. From (5), we find

∂νC =
i

2N

N∑
x=1

Tr
[
Alj ρ̃

in
x (Alj)

†[11lj ⊗ Γk, (B
l
j)
†ÕxB

l
j ]
]
, (7)

where we have defined

Blj = 11l
j
⊗
ν−1∏
k=1

Rk(θk)Wk , A
l
j = 11l

j
⊗

ηlj∏
k=ν

Rk(θk)Wk , (8)

such that 11l
j
⊗ V lj = AljB

l
j , and where 11l

j
indicates the

identity on all qubits on which V lj does not act. Note
that the trace in (7) is over all qubits in the DQNN. In
addition, we define

ρ̃in
x = V lj−1 . . . V

1
1 (ρin

x ⊗ |0〉〈0|hid,out)(V
1
1 )† . . . (V lj−1)† ,

Õx = (V lj+1)† . . . (V out
nout

)†(11in,hid ⊗Ox)V out
nout

. . . V lj+1 .

If the perceptron V lj is sufficiently random so that Alj ,
Blj , or both, form independent unitary 1-designs, then
we find that 〈∂νC〉 = 0 (see Supplemental Material). In
this case, Var[∂sC] quantifies (on average) how much the
gradient concentrates around zero. Hence, exponentially
small Var[∂sC] values would imply that the slope of the
cost function landscape is insufficient to provide cost-
minimizing directions.

Here we recall that a t-design is a set of unitaries
{Vy ∈ U(d)}y∈Y (of size |Y |) on a d-dimensional Hilbert
space such that for every polynomial Pt(Vy) of degree
at most t in the matrix elements of Vy, and of V †y one
has [48] 〈Pt(V )〉V = 1

|Y |
∑
y∈Y Pt(Vy) =

∫
dµ(V )Pt(V ),

where the integral is over the unitary group U(d).
Let us assume for simplicity the case when the DQNN

input and output layers have the same number of qubits
(nin = nout = n). As shown in the Supplemental Mate-
rial, the following theorem holds.

Theorem 1. Consider a DQNN with deep global percep-
trons parametrized as in (5), such that Alj, Blj in (8) and
V lj (∀j, l) form independent 2-designs over n + 1 qubits.
Then, the variance of the partial derivative of the cost
function with respect to θν in V lj is upper bounded as

Var[∂νC
G] 6 g(n), with g(n) ∈ O

(
1/22n

)
, (9)
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FIG. 3. Shallow local perceptrons ansatzes. a) Here m = 1 so
that each perceptron acts on a single input and output qubit.
Moreover, for all j and l we have V lj = V . The unitaries V
are simply given by a SWAP operator followed by a single
qubit rotation around the y axis. b) Local perceptrons V lj
with m = 2. The local perceptrons are given by the unitaries
V1, or V2. Specifically, for l odd on j odd (even) V lj = V1(V2),
while for l even and j odd (even) we have V lj = V2(V1). Here
we also show the order in which the perceptrons are applied
so that we first implement the unitaries with j odd, followed
by the unitaries with j even. The W gate in V1 forms a local
2-design on two qubits.

if Ox is the global operator of (3), and upper bounded as

Var[∂νC
L] 6 h(n), with h(n) ∈ O (1/2n) , (10)

when Ox is the local operator in (4).

Theorem 1 shows that DQNNs with deep global per-
ceptron unitaries that form 2-designs [49, 50] exhibit bar-
ren plateaus for global and local cost functions. An im-
mediate question that follows is whether barren plateaus
still arise for shallow perceptrons, which cannot form 2-
designs on n+ 1 qubits. In what follows we analyze spe-
cific cases of shallow local perceptrons for which results
can be obtained.

Let us first consider the simple perceptrons of Fig. 3(a),
where m = 1, and where Ry denotes a single qubit ro-
tation around the y axis: Ry(θν) = e−iθ

νY/2 (with all
angles randomly initialized). In this case one recovers
the toy model example of [19], and we know that if Ox is
the global operator of (3), then Var[∂νC

G] = 1
8

(
3
8

)n−1.
On the other hand, if Ox is the local operator in (4), then
Var[∂νC

L] = 1
8n2 .

These results suggest that DQNNs with simple shallow
local perceptrons and global cost functions are untrain-
able when randomly initialized. On the other hand, they

also indicate that barren plateaus for DQNNs might be
avoided by employing: (1) shallow (local) perceptrons,
and (2) local cost functions.

Let us now consider the shallow local perceptron
of Fig. 3(b), where each unitary W forms a local 2-
design on two qubits. For this architecture the ensuing
DQNN can be exactly mapped into a layered hardware-
efficient ansatz as in [19], where two layers of the DQNN
correspond to a single layer of the hardware-efficient
ansatz [51]. Note that this mapping is not general, but
rather valid for the specific architecture in Fig. 3(b). As
shown in Ref. [19], when employing a global cost func-
tion, with Ox given by (3), one finds that if the number is
layers is O(poly(log(n))), then the DQNN cost function
exhibits barren plateaus as

Var[∂νC
G] 6 f̂(n) , with f̂(n) ∈ O

(
(
√

3/4)n
)
. (11)

On the other hand, for a local cost function with Ox given
by (4), if the number of layers is in O(log(n)), then there
is no barren plateau [19] as

ĝ(n) 6 Var[∂νC
L] , with ĝ(n) ∈ Ω (1/ poly(n)) . (12)

Here we remark that (12) was obtained following the
same assumptions as those used in Corollary 2 of [19].
Note that obtaining a lower bound for the variance im-
plies that the DQNN trainability is guaranteed.

Parameter matrix multiplication.—While in random
parametrized quantum circuits one optimizes and trains a
single gate angle at a time, other optimization approaches
can also be considered. In what follows we analyze the
trainability for a method introduced in Ref. [37] where
at each time-step all perceptrons are simultaneously op-
timized.

In this training approach, which we call parameter ma-
trix multiplication, the perceptrons are not explicitly de-
composed into quantum circuits, but rather are treated
as unitary matrices. The perceptrons V lj (0) are randomly
initialized at time-step zero, and at each step s they are
updated via

V lj (s+ ε) = eiεH
l
j(s)V lj (s) . (13)

The matrices H l
j are such that Tr[(H l

j)
2] 6 2n+1 and

are parametrized as H l
j(s) =

∑
uv h

l
j,u,vX

uZv, with
XuZv = Xu1

1 Zv11 ⊗ Xu2
2 Zv22 . . ., and where Xj and Zj

are Pauli operators on qubit j. The matrices Kl
j(s) are

called parameter matrices, and at each time-step the co-
efficients hlj,u,v need to be optimized. As shown in the
Supplemental Material, if at least one perceptron V lj (0)
is sufficiently random so that it forms a global unitary
1-design, then we find 〈∂C/∂s〉 ≡ 〈∂sC〉 = 0.

As proved in the Supplemental Material, the following
theorem holds.
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Theorem 2. Consider a DQNN with deep global percep-
trons, which are updated via the parameter matrix multi-
plication of (13). Suppose that for all j, l, the V lj (0) per-
ceptrons form independent 2-designs over n + 1 qubits.
Then the variance of the partial derivative of the cost
function with respect to the time-step parameter s is up-
per bounded as

Var[∂sC] 6 f(n), with f(n) ∈ O (1/2n) , (14)

when Ox is the global operator of (3), or the local oper-
ator in (4).

Although the updating method in (13) simultaneously
updates all perceptrons at each time-step, Theorem 2
implies that barren plateaus also arise when using the
parameter matrix multiplication method.

We note that our proof techniques invoke the pure state
properties of input and output states. Since the output
state of a randomly initialized DQNN will be close to a
maximally mixed across any bipartite cut [52], we spec-
ulate that our results can be extended to expectation
values of arbitrary Hamiltonian. We leave this question
for future work.

Conclusions.—In this work we analyzed the train-
ability of a special class of Quantum Neural Networks
(QNNs) called Dissipative QNNs (DQNNs). We first
proved that the trainability of DQNNs is not always
guaranteed as they can exhibit barren plateaus in their
cost function landscape. The existence of such barren
plateaus was linked to the localities (i.e., the number of
qubits they act non-trivially on) of the perceptrons and
of the cost function. Specifically, we showed that: (1)
DQNNs with deep global perceptrons are untrainable de-
spite the dissipative nature of the architecture, and (2)
for shallow and local perceptrons, employing global cost
functions leads to barren plateaus, while using local costs
avoids them. We note that our results are completely
general for DQNN architectures, e.g., covering arbitrary
numbers of hidden layers and general perceptrons acting
on any number of qubits.

In addition, we provided a specific architecture for
DQNNs with local shallow perceptrons that can be ex-
actly mapped to a layered hardware-efficient ansatz. This
result not only indicates that hardware-efficient QNNs
can be represented as DQNNs, but it also allows us to
derive trainability guarantees for these DQNNs. In this
case, since the perceptrons are local, each neuron only re-
ceives information from a small number of qubits in the

previous layer. Such architecture is reminiscent of clas-
sical convolutional neural networks, which are known to
avoid some of the trainability problems of fully connected
networks [53].

These results show that much work needs to be done
to understand the trainability of QNNs and guarantee
that they can provide a quantum speedup over classical
neural networks. For instance, interesting future research
directions are QNN-specific-optimizers [54–57], analyzing
the resilience of QNNs to noise [22, 41], and strategies
to prevent barren plateaus [58–61]. Another interesting
direction is to extend our results to the case when the
input and output states are mixed states, particularly
when the goal is to match marginals of the target out-
put state and the output of a DQNN [62]. Furthermore,
exploring architectures beyond DQNNs and hardware-
efficient QNNs would be of interest, particularly if such
architectures have large-scale trainability.

Acknowledgments

We thank Jarrod McClean, Tobias Osborne, and An-
drew Sornborger for helpful conversations. All authors
acknowledge support from LANL’s Laboratory Directed
Research and Development (LDRD) program. MC was
also supported by the Center for Nonlinear Studies at
LANL. PJC also acknowledges support from the LANL
ASC Beyond Moore’s Law project. This work was also
supported by the U.S. Department of Energy (DOE), Of-
fice of Science, Office of Advanced Scientific Computing
Research, under the Accelerated Research in Quantum
Computing (ARQC) program.
Supplemental Material.—The Supplemental Material

contains details of our proofs and References [63, 64].
Note Added.—Our work is the first to analyze barren

plateaus in the context of data science applications, and
also the first to consider perceptron-based quantum neu-
ral networks (QNNs). Our work has inspired more re-
cent studies of trainability for other QNN architectures,
such as quantum convolutional neural networks [65], tree-
based architectures [66], and others [67–69]. We also
note that our results can also be interpreted as a type
of entanglement-induced barren plateau. Here, a large
amount of entanglement in a parameterized quantum cir-
cuit can lead to trainability issues when qubits are dis-
carded, and the output qubits are concentrated around
the maximally mixed state. This phenomenon was fur-
ther studied in [52, 70].
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