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We investigate the quantum metrological power of typical continuous-variable (CV) quantum
networks. Particularly, we show that most CV quantum networks provide an entanglement to
quantum states in distant nodes that enables one to achieve the Heisenberg scaling in the number of
modes for distributed quantum displacement sensing, which cannot be attained using an unentangled
probe state. Notably, our scheme only requires local operations and measurements after generating
an entangled probe using the quantum network. In addition, we find a tolerable photon-loss rate
that maintains the quantum enhancement. Finally, we numerically demonstrate that even when CV
quantum networks are composed of local beam splitters, the quantum enhancement can be attained
when the depth is sufficiently large.

Quantum metrology is a study on advantages of quan-
tum resources for parameter estimation [1–6]. In many
years, nonclassical features of quantum probes have been
shown to achieve a better sensitivity than any classical
means. Especially in continuous-variable (CV) systems,
a squeezed state, one of the most representative nonclas-
sical states, elevates the sensitivity of optical interferom-
eters [7, 8] including gravitational wave detectors [9–11].
In addition, enhanced phase estimation using a squeezed
state has been implemented in many experiments [12–14].
More recently, besides quantum enhancement from a

local system, much attention has been paid to employ a
metrological advantage from entanglement between dis-
tant sites. Particularly, distributed quantum sensing has
been proposed and extensively studied to enhance the
sensitivity by exploiting quantum entanglement consti-
tuted by a quantum network for estimating parameters
in distant nodes [15–25]. For example, a single-mode
squeezed vacuum state distributed by a balanced beam
splitter network (BSN) was shown to enable estimating
the quadrature displacement with a precision up to the
Heisenberg scaling in the number of modes, which cannot
be achieved without entanglement [18]. Such an enhance-
ment has also been found in distributed quantum phase
sensing [17, 19, 21, 25]. Furthermore, the enhancement
from entanglement between nodes has been experimen-
tally demonstrated in various tasks [19, 20, 22, 26].
While particular CV quantum networks provide an en-

hancement for distributed sensing, it is unclear whether
general quantum networks are beneficial. Since quan-
tum entanglement between distant nodes is the key to
improving the sensitivity in many cases, investigating
what kinds of quantum networks are advantageous for
distributed sensing is crucial fundamentally and practi-
cally. To answer similar questions such as the usefulness
of general quantum states, Ref. [27] has initiated a study
for quantum enhancement from typical quantum states
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by considering the role of interparticle entanglement for
quantum phase estimation and shown advantages of typi-
cal bosonic random states for quantum phase estimation.

In this Letter, motivated by Ref. [27], we study global
random CV networks and show that typical CV quan-
tum networks provide quantum metrological enhance-
ment. More specifically, we prove that most CV quantum
networks except for an exponentially small fraction in the
number of modes enable us to achieve the Heisenberg
scaling in the number of modes for a distributed quan-
tum displacement sensing scheme. Since we focus on the
Heisenberg scaling in the number of sensor nodes, the in-
termode entanglement is the key resource. On the other
hand, Ref. [27] investigates the Heisenberg scaling in the
number of particles for quantum phase estimation with
interparticle entanglement. In addition, we show that lo-
cal operations after an input quantum state undergoes a
CV quantum network are essential for the enhancement
because the Heisenberg scaling cannot be attained with-
out them with a high probability. We then study the
effect of photon loss and find tolerable loss amount that
maintains the Heisenberg scaling. Furthermore, we nu-
merically demonstrate that quantum networks composed
of local-random beam splitters also render the Heisenberg
scaling for distributed displacement sensing on average
within a depth proportional to M2 with M being the
number of modes.

Distributed quantum displacement sensing.— For dis-
tributed displacement sensing (see Fig. 1), we first pre-
pare a product state with a total mean photon num-
ber N̄ . The state is then injected into a BSN Û to
generate an entangled probe between M modes. Here,
a BSN is described by an M × M unitary matrix U ,
which transforms input annihilation operators {âi}Mi=1 as

âi → Û †âiÛ =
∑M

j=1 Uij âj . After the BSN, we perform

local phase shift operations, R̂(φ) ≡ ⊗Mj=1R̂j(φj) with

R̂j(φj) ≡ eiφj â
†
j
âj being a phase-shift operator on jth

mode for φj . Thus, for a given BSN, a local-phase op-
timization is implemented by manipulating φj ’s. The
entangled probe then encodes a displacement parameter
x of interest. We assume that the same displacement oc-
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FIG. 1. Schematic diagram of distributed quantum displace-
ment sensing (see the main text).

curs in all M modes, the operator of which is written as
⊗Mj=1D̂j(x) with D̂j(x) ≡ e−ip̂jx being a displacement op-
erator for jth mode along x-direction. Here, quadrature

operators of jth mode are defined as x̂j ≡ (âj + â†j)/
√
2,

p̂j ≡ (âj − â†j)/
√
2i for x and p directions in phase space,

respectively. Finally, we locally measure the output state
on each site using homodyne detection and estimate the
parameter x using the measurement outcomes. We em-
phasize that our scheme has tensor product inputs and
local measurements, while only the BSN can generate en-
tanglement. Note that the proposed scheme is similar to
the one in Ref. [18] except that we employ an arbitrary
BSN instead of a balanced one. Also, such a distributed
sensing scheme can offer advantages for many quantum
metrological applications [18, 28–30].

Meanwhile, when we estimate a parameter θ of interest
using a quantum state probe ρ̂, the estimation error of
any unbiased estimator, ∆2θ, is bounded by the quantum
Cramér-Rao lower bound as ∆2θ ≥ 1/H , where H is the
quantum Fisher information (QFI) for a given system
and a probe state ρ̂ [31, 32]. Therefore, QFI quantifies
the ultimate achievable estimation error using a given
quantum state. Especially for a pure state probe |ψ〉 and
a unitary dynamics with a Hamiltonian operator ĥ, the

QFI can be simplified as H = 4(∆2ĥ)ψ .

For a distributed displacement sensing, the attainable
QFI without an entangled probe scales at most linear
in N̄ and M (e.g., a product of identical states for M
modes such as squeezed states) [18, 33]. Remarkably, if
one employs the optimal entangled scheme (see Eq. (2)),
the corresponding QFI scales as N̄M [18, 33]. Therefore,
an entanglement provides an advantage for distributed
quantum displacement sensing if one prepares a suitable
CV quantum network, and the advantage is apparent
from the scaling of N̄M . For the purpose of the Letter
that is to study the scaling of QFI in terms of the number
of sensor nodes, we inspect the behavior of QFI as the
number of modes M grows with fixing the mean photon
number per mode n̄ ≡ N̄/M . It is worth emphasizing
that since random quantum networks do not evenly allo-
cate the input energy, the number of photons occupying

a single mode fluctuates and can be much larger than n̄.
Results.— We first derive the QFI for distributed dis-

placement sensing for a given CV quantum network,
characterized by an M × M unitary matrix U , with a
squeezed state input. After a BSN and phase shifters,
the probe state can be written as |ψ〉 = R̂(φ)Û |ψin〉,
where |ψin〉 is a product state of a squeezed state in the
first mode and (M − 1) vacua in other modes. Since

the Hamiltonian operator is ĥ =
∑M

j=1 p̂j , the QFI for
distributed displacement estimation can be obtained as

HLO(U) = max
φ

4(∆2ĥ)ψ = 2M + 4

(

M
∑

a=1

|Ua1|
)2

f+(n̄M),

(1)

where we have defined f+(n̄M) ≡ n̄M +
√
n̄2M2 + n̄M .

Here, the optimality condition of local phases for a given
U is written as e−iφ

∗
a = Ua1/|Ua1|, which depends only

on the first column of U . It is worth emphasizing that
the optimality condition is immediately obtained from U .
The derivation of the QFI and the optimality condition
is provided in Ref. [33].
Since the factor f+(n̄M) in Eq. (1) is order of M for

fixed n̄, whether the Heisenberg scaling can be achieved,
i.e., HLO(U) ∝ M2, is determined by the property of
BSN U . Particularly, for a trivial BSN, U = 1M , we do
not attain any entanglement and the QFI is linear in M .
Thus, it fails to achieve the Heisenberg scaling without
entanglement. Meanwhile, one may easily show that the
QFI is maximized by a balanced BSN, i.e., |Ua1| = 1/

√
M

for all a’s, which leads to the QFI as

Hmax ≡ max
U

HLO(U) = 2M + 4Mf+(n̄M). (2)

It clearly shows the quantum enhancement from an op-
timal CV quantum network and the entanglement gen-
erated from it. One can also prove that Hmax is the
maximum QFI not only in our scheme but also over any
quantum states [33].
Since our goal is to show a quantum metrological en-

hancement of typical CV quantum networks, we now
compute the average QFI over random CV quantum net-
works using Eq. (1), i.e., random unitary matrices drawn
from the Haar measure µ on U(M) group, and prove the
following lemma (See Ref. [33] for a proof):

Lemma 1. The average QFI over random U for dis-

tributed quantum displacement sensing using a single-

mode squeezed state is

E
U∼µ

[HLO(U)] = 2M + 4
[π

4
(M − 1) + 1

]

f+(n̄M). (3)

First of all, Lemma 1 shows that the average QFI over
random CV quantum networks follows the Heisenberg
scaling. Also, note that for large M , the ratio of the
average QFI to the maximum QFI Hmax approaches to
π/4. Therefore, one may expect that typical CV quan-
tum networks render a quantum metrological advantage.
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We prove that indeed, most CV quantum networks offer
a quantum enhancement for estimating displacement.

Theorem 1. For an M -mode CV quantum network,

characterized by an M ×M unitary matrix drawn from

the Haar measure µ on the M×M unitary matrix group,

the Heisenberg scaling of QFI can be achieved with a frac-

tion of BSNs such that

Pr
U∼µ

[

HLO(U) = Θ(M2)
]

≥ 1− exp [−Θ(M)] . (4)

Proof sketch. (See Ref. [33] for a formal proof.) From
the concentration of measure inequality [27, 34], we have

Pr
U∼µ

[
∣

∣

∣

∣

f(U)− E
U∼µ

[f(U)]

∣

∣

∣

∣

≥ ǫ

]

≤ 2 exp

(

−Mǫ2

4L2

)

, (5)

where f : U 7→ R is a real function and L is its Lipschitz
constant. If we let f(U) ≡ HLO(U), the averageHLO(U)
is given by Lemma 1. We then show that L is upper-
bounded by 8Mf+(n̄M). Finally, setting ǫ = Θ(M2)
leads to Eq. (4) [35].
Since a product state renders QFI at most linear inM ,

Theorem 1 indicates that typical CV quantum networks
with a squeezed vacuum state are beneficial for quan-
tum metrology. In other words, for a randomly chosen
CV quantum network except for an exponentially small
fraction, the proposed scheme achieves the Heisenberg
scaling of QFI for the distributed displacement estima-
tion. It also implies that most CV quantum networks
enable one to construct an entanglement using a single-
mode squeezed vacuum state since the Heisenberg scaling
can only be achieved using entanglement in our scheme.
Moreover, we prove that the QFIs can always be attained
by performing homodyne detection along x-axis without
an additional network [33]. Since the input state is prod-
uct and additional operations, such as local optimization
and measurement, are local, the entanglement is consti-
tuted only from CV quantum networks.
While our scheme with a squeezed vacuum state at a

fixed mode is sufficient for our goal, the input state can
be further optimized in principle. For example, one may
use an optimal input mode for a squeezed vacuum state
for a given BSN or a product of squeezed vacuum states
as an input.
Furthermore, since we can achieve the Heisenberg scal-

ing using the optimal local phase shifts φ∗, Theorem 1
can be interpreted from a different aspect. From the per-
spective of active transformation, the local phase shift
for ith mode R̂i(φ

∗
i ) transforms the quadrature opera-

tor p̂i into R̂
†
i (φ

∗
i )p̂iR̂i(φ

∗
i ) = x̂i sinφ

∗
i + p̂i cosφ

∗
i . Thus,

if we absorb the local phase shifters into displacement
operators by the above transformation, Theorem 1 im-
plies that the QFI of the state right after a BSN mostly
follows the Heisenberg scaling with respect to a parame-

ter x generated by operators
∑M
i=1(x̂i sinφ

∗
i + p̂i cosφ

∗
i ).

Consequently, we obtain the following corollary:

Corollary 1. When a single-mode squeezed vacuum

state undergoes a random BSN, most of the output states

The number of modes M

Q
F

I

-3

-2

-1

FIG. 2. QFI averaged over 20000 different Haar-random BSNs
with a squeezed state input (inset: log-log scale). The error
bars represent three times of the standard deviation of QFIs.

are beneficial for distributed quantum displacement sens-

ing with a specific direction of displacement.

Therefore, most CV quantum networks render an en-
tanglement that enables one to attain the Heisenberg
scaling for particular metrological tasks. Nevertheless,
if we fix the direction of displacement of interest, we find
that local optimization is essential for our protocol. In
fact, without local operation, i.e., φa = 0 for all a’s, we
cannot attain the Heisenberg scaling even if the input
state is chosen to be the optimal state that maximizes
QFI for a given U .

Theorem 2. Without local operation, the fraction of

random BSNs for which QFI attains Heisenberg scaling

is almost zero even if we choose the optimal input state

for a given U ,

Pr
U∼µ

[

H(U) = Θ(M2)
]

≤ exp [−Θ(M)] . (6)

where H(U) is the QFI of the optimal state.

Proof sketch. First, we find an upper bound of the
QFI of the optimal state for a given U without local
optimization. We then show that the upper bound scales
as M except for an exponential small fraction of U ’s in
M , which implies that the QFI scales at most linearly in
M except for an exponentially small fraction of U ’s. The
detailed proof is provided in Ref. [33].
We now numerically demonstrate our results. We sam-

ple random unitary matrices by following the standard
method that first generates Gaussian random matrix and
orthogonalizes its column vectors [33, 34]. Figure 2 ex-
hibits average QFIs over different Haar-random BSNs
with a squeezed vacuum state input. As implied by The-
orems 1 and 2, it clearly shows that when we optimize the
local phase shifts, we obtain QFIs following the Heisen-
berg scaling as the number of modes M grows, while if
we do not control the local phases, the Heisenberg scaling
cannot be achieved [36]. Here, the QFI for a single-mode
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FIG. 3. (a) CV quantum network composed of depth D local
beam splitters with a squeezed vacuum input. (b) Average
QFIs over 1000 different local Haar-random beam splitters
with (HMLO) and without (HLO) optimizing the input mode.
The error bars represent the standard deviation of QFIs over
samples. Black dashed (solid) line represents the asymptotic
average (maximum) QFI divided by M2, obtained by a ran-
dom (balanced) BSN, which is equal to 2πn̄ (8n̄).

squeezed state input injected into an optimal input mode
without local optimization is given by [33]

HMO ≡ max
1≤b≤M



2M + 4

∣

∣

∣

∣

∣

M
∑

a=1

Uab

∣

∣

∣

∣

∣

2

f+(n̄M)



 . (7)

Although we have used a single-mode squeezed state in-
stead of the optimal input state, the overall scalings of
HMO and H are equal when M is large [33]. Further-
more, the standard deviation of QFIs are small for both
cases, indicating that most BSNs with local-phase opti-
mization allow the Heisenberg scaling using our scheme,
while those without local-phase optimization does not.
Effect of loss.— We analyze the effect of photon loss

on the Heisenberg scaling with typical BSNs and find a
tolerable loss rate that maintains the Heisenberg scaling.
Photon loss can be modeled by a beam splitter with its
transmittivity η, which transforms an annihilation oper-
ator as âj →

√
ηâj +

√
1− ηêj , where êj is an annihila-

tion operator for environment mode for all j’s [37]; thus,
we assume that a photon-loss rate is constant over all
modes. Since a photon-loss channel of the uniform loss

rate commutes with beam splitters, our analysis includes
photon loss occurring either before or after a BSN. One
can easily find that in the presence of photon loss, the
corresponding QFI and its expectation value over random
U are degraded and their analytical expression can be
written by merely replacing f+(n̄M) in Eqs. (1) and (3)
by ηf+(n̄M)/ [2(1− η)f+(n̄M) + 1], which are shown in
Ref. [33]. Using these results we can show that Theorem
1 is still valid as long as a loss rate 1− η is smaller than
a threshold β = Θ(1/n̄M) [33], i.e., as M increases, a
threshold of the loss rate has to decrease at least as 1/n̄M
to maintain the Heisenberg scaling. We note that CV er-
ror correction scheme [38, 39] and quantum repeater [40]
can be considered to alleviate the effect of loss.
Local beam splitter network.— While a global random

BSN is suitable to model a sufficiently complex CV net-
work, it is also crucial to investigate how complicated the
network has to be to attain a metrological enhancement
from a practical perspective. To do that, we study a
CV quantum network composed of local Haar-random
beam splitters instead of a global random BSN (See
Fig. 3(a)) [41–44]. We numerically show that the Heisen-
berg scaling can also be achieved by using CV quantum
networks consisting of local beam splitters. Figure 3(b)
shows the averaged local-phase-optimized QFIs with and
without optimizing the input mode for a squeezed vac-
uum state. The QFI of the latter is given by [33]

HMLO ≡ max
1≤b≤M



2M + 4

(

M
∑

a=1

|Uab|
)2

f+(n̄M)



 , (8)

which is obviously equal or greater than HLO(U). Most
importantly, the QFI divided by M2 is almost con-
stant for a given D/M2 and different M ’s. It implies
that the Heisenberg-scaling can be achieved on average
with a depth proportional to M2, independent of input-
mode optimization, which is consistent with the result
in Ref. [42]. Nevertheless, by optimizing the input mode,
the Heisenberg scaling is achieved much faster. Moreover,
the figure shows that the standard deviation of QFIs is
very small, indicating that most local BSNs are bene-
ficial for distributed displacement estimation, and that
the standard deviation decreases asM grows. Since they
achieve the Heisenberg scaling on average, the quantum
networks of local beam splitters constitute sufficient en-
tanglement on average as expected in Ref. [42]; namely,
large entanglement can be obtained for a depth D ∝M2.
Discussion.— From a theoretical perspective, our re-

sults imply that most CV quantum networks have the
same scaling of estimation error for distributed displace-
ment sensing as the optimal one, i.e., from a balanced
BSN. Thus, for quantum enhancement in practice, one
may not necessarily implement a very special structure
such as a balanced BSN because most CV networks pro-
vide the same quantum enhancement when it comes to
scaling. Such an experimental generalization would be
particularly useful when one needs a large scale of net-
works. For example, if we already have a CV quantum
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network for various purposes, which is not necessarily
balanced but complex enough, we can immediately ex-
ploit the network for quantum-enhanced displacement
sensing. Furthermore, although we have focused on dis-
tributed displacement sensing, future research could con-
tinue to investigate if similar results hold for different
metrological tasks, such as multiparameter displacement
estimation [18, 20] or phase estimation [17, 19, 21]. It
is also worth mentioning that since our scheme only em-
ploys a squeezed state, beam splitters, and homodyne de-
tection, the current technology can already benefit from
our results.
We finally emphasize the major differences of our study

from Ref. [27]. While both consider random bosonic
states from the quantum metrological perspective, the
two schemes benefit from different kinds of entanglement.
Ref. [27] studies phase sensing that exploits interparti-
cle entanglement, while we study distributed displace-
ment sensing which benefits from intermode entangle-
ment. The difference is apparent from the following ex-
ample. The random state R̂(φ∗)Û |N, 0, · · · , 0〉 has mode
entanglement and typically brings quantum enhancement
for the distributed displacement sensing task whereas it
has no particle entanglement regardless of BSN U , so
it does not lead to an enhancement for phase estima-
tion [33]. Besides, our study considers a task where
a photon number fluctuates, which is unclear to inter-
pret by particle formalism, typically assuming a definite

photon number. It would be an interesting future work
to find a class of probes that is useful for both sensing
schemes and to identify the relation between interparti-
cle entanglement and intermode entanglement more rig-
orously.
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