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Biological processes, from morphogenesis to tumor invasion, spontaneously generate shear stresses inside
living tissue. The mechanisms that govern the transmission of mechanical forces in epithelia and the collective
response of the tissue to bulk shear deformations remain, however, poorly understood. Using a minimal cell-
based computational model, we investigate the constitutive relation of confluent tissues under simple shear
deformation. We show that an initially undeformed fluid-like tissue acquires finite rigidity above a critical
applied strain. This is akin to the shear-driven rigidity observed in other soft matter systems. Interestingly,
shear-driven rigidity can be understood by a critical scaling analysis in the vicinity of the second order critical
point that governs the liquid-solid transition of the undeformed system. We further show that a solid-like tissue
responds linearly only to small strains and but then switches to a nonlinear response at larger stains, with
substantial stiffening. Finally, we propose a mean-field formulation for cells under shear that offers a simple
physical explanation of shear-driven rigidity and nonlinear response in a tissue.

Monolayers of tightly connected cells provide essential
physical barriers and filters to all organs in vivo. The tight
connections between cells allow the tissue to resist exter-
nal deformation and withstand stress, while maintaining its
integrity. At the single cell level, researchers have used a
broad repertoire of experimental techniques[1–6] to reveal a
rich mechanical behavior, including power-law rheology[7]
and stress stiffening[8]. At the mesoscopic level, traction
force microscopy has allowed the mapping of intercellular
forces[9–11], revealing a rough stress landscape, with spatial
fluctuations correlated over several cells[12–15].

There is increasing consensus that mechanical deforma-
tions can directly influence collective cell behavior[16–20]
and play a central role in driving developmental processes[21–
28], physiology[14, 29–33], and tumor progression[34–36].
Experiments[30, 37–39] have shown that epithelial monolay-
ers respond nonlinearly to external mechanical stretch, with
observed stress-stiffening and even fracturing. Similar behav-
ior has been observed in tissues deformed by internal active
motile forces[40] and in curved epithelial sheets enclosing an
expanding lumen[41]. Importantly, these experimental stud-
ies have typically focused on probing the behavior of solid-
like tissue, where cells do not spontaneously exchange neigh-
bors. On the other hand, the last decade has seen a surge of
evidence demonstrating that living tissue can spontaneously
undergo transitions between a solid-like (jammed) state and a
fluid-like (unjammed) state. [42–55]. Despite its fundamen-
tal importance and direct relevance to biology, the response of
a cell collective to mechanical deformation at the tissue level
remains poorly understood, especially in the vicinity of the
tissue solid-fluid transition.

A growing number of theoretical studies has begun to
address this gap. Various groups have used vertex-based
models[56, 57] to simulate the linear[58] and nonlinear[59–
61] rheology of a tissue under steady shear. The effects of
active tension fluctuations[60, 62] and cell division[63] have
been explored. An earlier study[64] has showed that the ver-
tex model exhibits a nonlinear mechanical response qualita-

tively similar to experiments[37]. Despite this growing body
of work, to date there is no systematic study of the mechanical
response of an amorphous epithelial tissue near the solid-fluid
transition.

Here we use a cell-vertex model to investigate the tissue re-
sponse to externally imposed shear deformations. We show
that a tissue which is fluid-like when undeformed acquires
rigidity above a threshold value of the applied strain. This
is akin to the shear-driven rigidity of fiber networks and shear
jamming in granular matter[65]. The onset of shear-driven
rigidity in the liquid state is characterized by a discontinuous
jump in the tissue shear modulus, and the size of the jump
depends on the distance to the second order liquid-solid crit-
ical point of the undeformed system. We find that nonlinear
elasticity becomes increasingly dominant closer to the critical
point, where the mechanical response is completely nonlin-
ear. This intrinsic critical nonlinearity was also demonstrated
in recent work on a vertex models of regular polygons, where
it was shown to arise from purely geometric constraints[66].
While Ref.[66] focused on the response to infinitesimal per-
turbations, demonstrating the failure of linear elasticity, here
we examine the nonlinear response in the presence of topo-
logical rearrangements that mediate plasticity. We addition-
ally extend the mean-field (MF) formulation of [66] to account
for the emergence of shear-induced rigidity in the liquid state.
The MF predicts exactly the nonlinear response and stress-
stiffening exponents observed in the simulations.

Model. We model a 2D cell layer using the Voronoi-based
implementation[67, 68] of the vertex model[51, 57, 69–72].
Here, the cell centers {ri} are the degrees of freedom and
their Voronoi tessellation determine the cellular structure[67].
The mechanics of the cell layer is governed by the energy
function[73] E = ∑

N
i=1
[
KA(Ai−A0)

2 +KP(Pi−P0)
2
]
. The

first term, quadratic in the cell areas {Ai}, originates from the
incompressibility of cell volume, giving rise to a 2D area elas-
ticity constant KA and preferred area A0[57, 73]. The second
term quadratic in the cell perimeters {Pi} arises from the con-
tractility of the cell cortex, with an elastic constant KP[57].
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Figure 1. (a) Stress-strain at different p0 and κA = 0. An ini-
tially fluid-like tissue undergoes strain-driven rigidity above a criti-
cal threshold γC(location indicated by vertical arrows). (b) The criti-
cal strain γC(p0) defines a boundary that separates a fluid-like tissue
from a solid-like tissue. Inset: γc vs p0 on log-log scale.

Here P0 is the target cell perimeter[74], representing the in-
terfacial tension set by the competition between the cortical
tension and the adhesion between adjacent cells[73]. In this
work, we focus on the case where all cells have homogeneous
single cell parameters KA,KP,A0,P0, while noting that the re-
sults are easily generalized to a tissue containing cell-to-cell
heterogeneity[69] and are not qualitatively affected by this as-
sumption. We choose A0 = Ā, the mean cell area, which also
serves as the length unit. The resulting non-dimensionalized
energy is

E =
N

∑
i=1

κA(ai−1)2 +(pi− p0)
2, (1)

with κA = KAĀ/KP the rescaled area elasticity. Here p0 =

P0/
√

Ā is a crucial model parameter called target cell shape
index. To study tissue response beyond the linear regime[71],
we impose quasistatic simple shear using Lees-Edwards
boundary conditions[75]. Starting from a strain-free state (γ=
0), the strain γ is increased in increments of ∆γ = 2× 10−3,
while cell center positions are subject to an affine displace-
ment ∆ri = ∆γ yi x̂. Following each strain step, Eq.(1) is
relaxed using the FIRE algorithm[76] until all forces Fi ≡
−∂E/∂ri are vanishingly small ( < 10−14). For all results pre-
sented in this work, we used 84 random initial configurations
and N = 400 cells.

The unstrained tissue is known to exhibit a liquid-solid tran-
sition as a function of p0 [71, 74, 77]. When p0 is below the
critical cell shape index p∗0 = 3.81 and κA = 0 the unstrained
tissue behaves as a rigid solid, with a finite linear-response
shear modulus G0 ≡ limγ→0 ∂σ/∂γ. When p0 ≥ p∗0, the un-
strained tissue is fluid and G0 = 0. This solid-fluid transi-
tion at γ = 0 is now well-understood in terms of a Maxwell
constraint-counting approach[71, 78] and as driven by geo-
metric incompatibility[71, 74, 79–81].

Nonlinear shear response. To characterize the mechani-
cal response at finite γ, we compute the tissue shear stress[82–
84] σ = σxy ≡ L−2

∑i< j T x
i jl

y
i j, where li j is the vector of the

junction shared by cells i, j and L is the simulation box size.
At each junction, the line tension vector is given by Ti j =

∂E/∂li j = 2[(pi− p0)+ (p j − p0)]l̂i j. The stress-strain rela-
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Figure 2. Strain-driven rigidity transition (a) The shear modu-
lus G near the onset of the strain-driven solidification for p0 = 3.84
and different area elasticities κA = 0,10−10,10−8,10−6,10−4,0.05.
Color legends provided in(b). Inset: G immediately below and
above the transition shows a gap that narrows with increasing κA.
The dashed line corresponds to a slope of 1 on log-log scale. The
transition is discontinuous in G at γ = γC (b) The Non-affinity pa-
rameter near the onset of the transition for p0 = 3.84 and different
κA. Non-affine cell displacements at below(c) and at(d) the onset of
the transition.

tion shown in Fig. 1(a) for a range of values of p0 and κA = 0
reveals three regimes. For infinitesimal strain the solid re-
sponds linearly with modulus G0. In the fluid, G0 = 0. At
intermediate strain (0 < γ < 1) we observe strong stiffening.
In particular, the liquid acquires a finite rigidity for γ above
a critical value γC(p0). At larger strains (γ & 2), the tissue
undergoes plastic rearrangements via T1 transitions, result-
ing in intermittent stick-slip behavior. We define the dynamic
yield stress σyield(p0) by averaging σ in the plastic regime
(2 < γ < 6). The yield stress is large in a solid tissue and de-
creases as p0 increases, vanishing at p0 ∼ 4.03 (see Fig.S1).
The main focus of this work is the stress response in the in-
termediate region of strain stiffening and strain-induced rigid-
ity, which is also the regime most relevant to experiments[37].
We show below that in this regime the linear response (γ→ 0)
cannot predict what happens at finite strain values.

Shear-induced rigidity transition. When the unstrained
tissue is fluid (p0 > p∗0), an applied shear strain γ ≥ γC yields
a finite stress (Fig. 1(a)). The line γC(p0) where the instanta-
neous shear modulus G ≡ ∂σ/∂γ vanishes identifies a strain-
induced rigidity transition (Fig.1(b)). In the solid (p0 < p∗0),
we observe stiffening for any finite γ, and γC(p0) = 0. For
p0 ∈ [p∗0,4.03], a nonzero value of strain is always required
for rigidity and γC(p0) grows monotonically with p0. Be-
yond p0 & 4 the tissue remains fluid-like regardless of the
applied shear strain. This is consistent with the vanishing of
σyield for p0 > 4.03. The shear stiffening of the liquid was
also reported in recent work on a regular (crystalline) vertex
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model[58], in spring-networks[80]and in deformable particle
models[85]. The mean-field analysis below provides a univer-
sal explanation for this behavior.

The nature of the strain-induced rigidity transition depends
on the value of the area stiffness κA. This is evident in
Fig.2(a), where we plot G near the rigidity onset as a function
of γ−γC. At κA= 0, the onset of rigidity is discontinuous. The
jump discontinuity at γC remains finite well above κA = 0 and
becomes vanishingly small and indistinguishable from a con-
tinuous increase in G at κA & 10−3. For γ < γC the tissue is
a marginally rigid solid[79, 80] with G ≈ κA(Fig.2(a):inset).
This is highlighted by the behavior of the fluctuations near the
strain-driven rigidity transition, which are quantified with the
non-affinity parameter δΓ = 1

NĀ∆γ2 〈
(
δri−δraffine

i
)2〉[86–88].

Here δri is the displacement of cell i after a strain step and
δraffine

i = ∆γ yi x̂ is the affine deformation of the cell located
at ri = (xi,yi). As shown in Fig.2(b), at low area elasticity
(κA . 10−3), δΓ grows monotonically with strain and exhibits
a sharp peak at γC, which coincides with the rigidity transition.
At higher κA, there is no pronounced peak in δΓ, indicating a
smooth cross-over from the marginal solid to a rigid solid,
rather than a discontinuous transition.

Relating mechanical response to cell shape. The strain
stiffening behavior above γC(p0) can be understood in terms
of shear-induced changes in the structural properties of the
cellular network. Past work on vertex models has shown that
the observed cell shape index, q ≡ 〈p/

√
a〉, is an important

metric of the rheological state of the tissue[42, 51]. We have
examined the evolution of this order parameter with applied
shear. We note, however, that the applied strain γ does not
uniquely define the state of the tissue due to plastic events
and non-affine deformations. Instead we use the true strain
γtrue [89] to quantify the degree of deformation of the tissue.
γtrue is calculated from the instantaneous deformation tensor
of the whole tissue and therefore captures the degree of cumu-
lative strain deformation [90]. The motivation for introduc-
ing γtrue is similar to that behind the fabric tensor in granu-
lar materials[91] or the recoverable strain in rheology[92]. In
Fig.3(a,b) we show the stress σ and the structural order pa-
rameter q as functions of γtrue . It is evident from Fig.3(b)
that under shear cell shapes in the fluid stay constant at the
energetically preferred value p0 until the fluid strain-stiffens,
while in the solid q always starts out at the universal value
p∗0 and grows quadratically with γtrue . This behavior is well
described by

q =

{
p0, γtrue ≤ γC(p0)

p∗0 + c γ2
true, γtrue > γC(p0).

(2)

In the next section, we offer a theoretical derivation of this
form. A similar functional dependence of the observed cell
shape on the cell elongation induced by internally generated
active stresses was reported in a recent study of the developing
fruit fly[28].

Eq.(2) suggests that the quantity δq ≡ q− p∗0 can be used
as a morphological order parameter, quantifying the devia-
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Figure 3. Cell shapes under shear (a) A plot of σ as a function of
γtrue for different p0’s spanning the solid and liquid regimes. (b) The
cell shape index q vs the true strain γtrue for the same range of p0 as
in (a). (c) A plot of δq ≡ q− p∗0 vs. σ for various values of p0 as
indicated. (d) Replotting of the data in(c) using the universal scaling
ansatz (Eq.(3)). Here ∆ = 3/2, φ = 1. All figures are for κA = 0.

tion of the measured cell shape from the critical cell shape.
Moreover, Figs.3(a,b) suggest that the three state variables
(σ,γtrue,δq) are not independent, and that any two are suffi-
cient to describe the state of the tissue. Therefore, we elim-
inate γtrue and plot δq as a function σ (Fig.3(c)) for a large
range of p0 ∈ [3.72,4]. This plot shows typical hallmarks of a
critical point, with qualitatively different behavior above and
below p∗0, suggesting a scaling ansatz

δq = |p0− p∗0|
φQ±

(
σ

|p0− p∗0|
∆

)
. (3)

Here Q±(x) are the branches of the universal scaling function
for p0 > p∗0 and p0 ≤ p∗0, respectively, with x = σ/|p0− p∗0|

∆.
This ansatz provides a nearly perfect collapse of the data
(Fig.3(d)), with ∆ = 3/2 and φ = 1. For p0 > p∗0 the behav-
ior is controlled by Q+(x), with Q+(x)→ constant for x→ 0,
i.e., σ→ 0, implying δq ∝ |p0− p∗0|

φ. When p0 < p∗0, the
scaling is controlled by Q−(x). In the limit of δq→ 0 (i.e.,
y = δq/|p0− p∗0|

φ→ 0), the inverse of Q− tends to a constant,
hence σ ∝ |p0− p∗0|

∆. For |p0− p∗0| → 0 and σ� 0, the two
universal branches merge and Q+(x) = Q−(x) = xφ/∆.

A nonlinear constitutive equation for sheared tissue. In
tissues strained beyond γC both the stress σ (Fig.1a) and the
shear modulus G (Fig.2a) are nonlinear functions of the ap-
plied strain γ. To quantify the nonlinearity and extract a con-
stitutive equation for the tissue, we use σ, instead of γ, as a
state variable and plot G as a function of σ in Fig.4a for vari-
ous p0 ∈ [3.66,3.81]. At small σ, G = G0 is independent of σ,
corresponding to linear elasticity. At higher stress, the elastic
response is nonlinear and G ∝ (σ/σc)

b, with b = 2/3. Us-
ing G = ∂σ/∂γ and eliminating G, this yields a constitutive
relation σ ∝ γ

1
1−b = γ3. The linear and nonlinear regimes are

separated by a critical stress threshold σc(p0)∼ |p0− p∗0|. The
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linear-response modulus G0 also shows power-law scaling in
|p0− p∗0|[71, 74]. This behavior can be summarized through
a scaling ansatz to describe the behavior of G in the vicinity
of the critical point p∗0

G = |p0− p∗0|
φ G

(
σ

|p0− p∗0|
∆

)
. (4)

This form provides an excellent collapse of all our data onto a
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Figure 4. (a) The shear modulus G vs. stress σ at various p0 and
κA = 0. (b) Rescaled G/G0 vs σ/σc for same set of p0 as in(a).

single master curve independent of p0 (Fig.4b). From the scal-
ing collapse we obtain G0 ∝ |p0− p∗0|

φ and σc ∝ |p0− p∗0|
∆,

where ∆ = 3/2 and φ = 1. Crucially, the stress-stiffening scal-
ing collapse (Eq.(4)) is directly related to the cell shape-stress
scaling relation (Eq.(3)) as b = φ/∆.

Mean-field model of a sheared tissue. To gain a theoreti-
cal understanding of the strain-driven rigidity and emergence
of nonlinear elasticity, we examine a mean-field theory (MFT)
formulation of the vertex model[66, 93, 94]. Neglecting cell-
cell correlations, we consider the shear deformation of a single
n-sided polygonal cell. Under affine deformations, the vertex
coordinates of a polygon transform according to R′ = D̂R,
where D̂ is the deformation tensor given by D̂ =

(
Dxx Dxy
Dyx Dyy

)
.

We neglect in Eq.(1) the contribution from cell area which is
typically small compared to the perimeter term and examine
area-preserving affine deformations with det D̂ = 1. For sim-
ple shear Dyx = 0 and Dyy = 1/Dxx, leaving only Dxx and Dxy
as independent components of D̂.

The perimeter of a deformed polygon can then be expressed
in terms of the components of D̂. For example the perimeter
of a quadrilateral (n = 4) is given by

P =
√

2
[√

D−2
xx +(Dxx−Dxy)2 +

√
D−2

xx +(Dxx +Dxy)2

]
.

(5)
Expressions for any deformed n-gon are given in the SI[90].
For any n, the isoperimetric inequality defines the perimeters
compatible with a fixed area as P > Preg, where Preg is the
perimeter of a regular polygon with unit area (e.g., Preg = 4
for n = 4). The condition P(Dxx,Dxy)≥ Preg, with P(Dxx,Dxy)
given by Eq. (5), then defines a manifold in the (Dxx,Dxy)
plane where there exist deformed polygons that statisfy the
isoperimetric constraint (Fig.5(a)). The maximum value of

Dxy along the isoperimetric contour defines the largest simple
shear Dmax

xy that a cell can sustain by changing its shape, while
maintaining its area and perimeter constant. This value is γ =
γC = Dmax

xy ∝ (p0 − p∗0)
1/2 and precisely corresponds to the

location of the strain-driven rigidity γ = γC in the simulations.
The exponent 1/2 is in excellent agreement with the γC scaling
in the vicinity of p∗0, shown in Fig.1:inset.

The isoperimetric contours are centered at (Dxx = 1,Dxy =
0) and well approximated by an ellipse for small P−Preg. We
introduce polar coordinates with radius M(θ) and polar an-
gle θ: Dxx−1 = M(θ)cosθ and Dxy = M(θ)sinθ and expand
Eq.(5) to O(M2) to give ( see SI[90])

P≈ Preg +
15
32

Preg

[
1+

3
5

cos(2θ)

]
M(θ)2. (6)

Using Eq.(6), we rewrite the vertex model energy (Eq.(1))
to obtain a Landau-type energy

Em f =
1
2

t α m(θ,M)2 +
1
4

βm(θ,M)4, (7)

where m(θ,M) =
[
1+ 3

5 cos(2θ)
]1/2

M is the order parameter,
α = (60/32)p∗0

2, β = (30/32)p∗0
2 are positive constants, and

t = (p∗0− p0)/p∗0 controls the distance to a continuous phase
transition in m(θ,M). For t > 0, Em f has a single minimum
at m∗ = 0 (Fig.5b), corresponding to the rigid state. When
t < 0, the minimum m∗(θ,M) corresponds to the isoperimet-
rically degenerate liquid state. In the energy landscape these
states are connected by a Goldstone mode (Fig.5c).

The MFT explains the origin of the nonlinear elasticity. For
t > 0, Emf has a single minimum at m∗ = 0 (corresponding to
an undeformed solid state) and deformations away from it can
be calculated using Eq.(7)

σ = ∂Em f /∂m = α tm+βm3

G = ∂
2Em f /∂m2 = α t +3βm2.

(8)

For small m we recover linear elasticity with G0 = α t ∝

(p∗0− p0). At large m the response is nonlinear, with G ∝ σ2/3.
The cross-over stress between the two regimes can be calcu-
lated: σc = 2βα3/2t3/2 ∝ (p∗0− p0)

3/2. These predictions are
in excellent agreement with simulations results.

We have used a vertex model to study the nonlinear re-
sponse of a tissue to shear. Using simulations and MFT,
we showed that a tissue that is liquid when unstrained stiff-
ens upon shear. Liquid-solid transitions in VM of biolog-
ical tissues are driven by geometric frustration and active
mechanisms. Recent work by some of us [66] showed that
geometric incompatibility controls the response to infinitesi-
mal deformations, providing the underlying unifying mecha-
nism for rigidity in a broad class of underconstrained systems.
The present work additionally incorporates active processes
that mediate plastic response. Plasticity dominates at higher
strains and is likely to underlie the rheology of real tissue.
Both works use a MFT to highlight the geometric origin of
the degeneracy of the liquid ground state. The same MFT
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Figure 5. (a) When the perimeter of a polygon is larger than that of
its regular counterpart, deformations can lead to a family of isoperi-
metric shapes defined by the contours shown for a 5-sided polygon.
(b) The mean-field energy as a function of (Dxx− 1,Dxy) for t > 0
has a single ground state. (c) The mean-field energy as a function
of (Dxx − 1,Dxy) for t < 0 has degenerate ground states which are
connected by Goldstone modes along δθ .

is extended here to investigate the response to deformations.
While a Voronoi-based model is used, we have observed the
same quantitative behavior using a vertex-based model and
the results are independent of the model implementation.

Finally, it was shown in Ref. [66] that at the critical point
the VM shares many of the properties of odd elasticity [95]
- for instance, spontaneous shear upon uniaxial extension -
although this behavior arises from geometry, not from an en-
ergy input at the microscale. Exploring the response to defor-
mations other than simple shear and the possible connections
with odd elasticity is an important direction for future work.
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