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We consider a family of twisted graphene multilayers consisting of n-untwisted chirally stacked
layers, e.g. AB, ABC, etc, with a single twist on top of m-untwisted chirally stacked layers. Upon
neglecting both trigonal warping terms for the untwisted layers and the same sublattice hopping
between all layers, the resulting models generalize several remarkable features of the chiral model
of twisted bilayer graphene (CTBG). In particular, they exhibit a set of magic angles which are
identical to those of CTBG at which a pair of bands (i) are perfectly flat, (ii) have Chern numbers
in the sublattice basis given by ±(n,−m) or ±(n+m− 1,−1) depending on the stacking chirality,
and (iii) satisfy the trace condition, saturating an inequality between the quantum metric and the
Berry curvature, and thus realizing ideal quantum geometry. These are the first higher Chern
bands that satisfy (iii) beyond fine-tuned models or combinations of Landau levels. We show that
ideal quantum geometry is directly related to the construction of fractional quantum Hall model
wavefunctions. We provide explicit analytic expressions for the flat band wavefunctions at the magic
angle in terms of the CTBG wavefunctions. We also show that the Berry curvature distribution
in these models can be continuously tuned while maintaining perfect quantum geometry. Similar
to the study of fractional Chern insulators in ideal C = 1 bands, these models pave the way for
investigating exotic topological phases in higher Chern bands for which no Landau level analog is
available.

Introduction— The discovery of superconductivity and
strongly correlated phases of matter in twisted graphene-
based systems [1–3] has gone hand in hand with an
exploration of their unique electronic structure includ-
ing topological aspects [4–12] emphasized by the discov-
ery of intrinsic Chern insulating phases [13–15]. While
Chern quantization is topological, band geometry con-
trols other interaction driven phenomena, including topo-
logical mechanisms for superconductivity and fractional
Chern insulators (FCIs) [16–23]. Band geometry is quan-
tified by the Berry curvature and the Fubini-Study met-
ric. It is of great interest to understand the interplay
between band flatness, Chern number and geometry. Of
particular interest are bands with higher Chern number,
which have no direct Landau level analog but can be
realized in twisted graphene structures [24–29] without
magnetic field, unlike Hofstadter systems [30–32].

The bands of twisted bilayer graphene, described by
the Bistritzer-MacDonald (BM) model [4], are greatly
simplified in the “chiral” model introduced by Tarnopol-
sky et al. [33] where the same-sublattice moiré tunneling
vanishes. The chiral model has been extremely useful
in understanding the physics of the system [34] due to
its remarkable properties: (i) perfectly flat bands at a
set of magic angles, (ii) explicitly obtainable wavefunc-
tions that are equivalent to the wavefunctions of a Dirac
particle in a magnetic field [18, 33], (iii) wavefunctions
that satisfy the “trace condition” which relates the quan-
tum metric to the Berry curvature; this allows the con-
struction of Laughlin-like FCIs for short-range potentials
[18, 22]. If a band satisfies (iii) we say that it has ideal
quantum geometry. The chiral model has served as a
useful starting point in numerical studies of FCIs [19–21].
Furthermore, it has inspired an improved understanding

of ideal |C| = 1 bands [22] and ideal Chern bands more
broadly [35–41].

In this work we describe the first ideal higher Chern
bands that are not fine-tuned [42–44] or combinations of
C = 1 bands such as the lowest Landau level (LLL) [45].
Our models are continuum models of actively explored
experimental systems without magnetic field and are not
fine-tuned — their properties do not rely on specific re-
lationships between parameters; instead we turn off sub-
leading terms in the realistic Hamiltonians. We study a
class of chiral models of n chirally-stacked graphene lay-
ers, e.g. AB, ABC, etc, where each successive pair of
layers has the same Bernal stacking AB or BA, twisted
on top of m chirally-stacked graphene layers [68]. Many
of these structures are actively explored experimentally
including twisted mono-bilayer graphene, (n,m) = (2, 1)
[26–28, 46] and twisted double bilayer (n,m) = (2, 2)
in both AB-AB stacking [47–51] and AB-BA stacking
[29]. The flat bands and their Chern numbers have been
studied [50, 52–56] and anomalous Hall states have been
observed [24, 26–29]; it was noticed that these systems
have similar magic angles to TBG [50, 52, 55]. However,
the analytical nature of the wavefunctions and quantum
geometry is thus far unknown.

We show that our models realize perfectly flat bands
at the same magic angles as chiral TBG with ideal quan-
tum geometry and Chern numbers ±n and ∓m or ±1 and
∓(n+m− 1), depending on the chirality of the stacking
(e.g. AB vs BA). We also show that the ideal geometry
of these models is intrinsically |C| > 1; there is no de-
composition into |C| orthogonal ideal Chern ±1 bands.
We do this by identifying a general criterion for this split-
tability for C = 2 bands. Thus, our models go beyond
previous idealized models of higher Chern number bands
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FIG. 1: Schematic illustration of our multilayer setting
with n chirally stacked layers, e.g. AB, ABC, etc, such

that each successive layers have the same Bernal
stacking AB or BA, shown in blue with a twist angle θ

on top of m chirally stacked layers (shown in red).

consisting of |C| LLLs [45] while still maintaining ideal
quantum geometry.

The ideal quantum geometry of these bands makes
them especially suitable for realizing FCIs; we show
that ideal quantum geometry enables the construction
of FCI ground states through real-space holomorphicity.
The ensuing realization of FCIs in higher Chern number
bands would be remarkable, especially since defects in
such systems, dubbed “genons”, have non-Abelian statis-
tics [57, 58]. Unlike chiral TBG, these models allow for
arbitrarily inhomogeneous Berry curvature which will en-
able future studies to pinpoint the influence of inhomo-
geneous Berry curvature on the stability of FCI states.

Model— We consider the Hamiltonian for a single
graphene valley

H =

(
hn,σ TM
T †M hm,σ′

)
(1)

where TM is the chiral moiré tunneling which cou-
ples the n and n + 1 layers; it is zero except

for α
(

0 U(r)
U∗(−r) 0

)
in its lower left 2 × 2 block.

Here, U(r) =
∑3
n=1 e

2πi
3 (n−1)e−iqn·r with qn =

2kD sin
(
θ
2

)
R 2π(n−1)

3
(0,−1), kD = 4π

3
√

3aCC
, and α =

w
2~vF kD sin(θ/2) with w the opposite sublattice Moire

tunneling. All energies are measured in units of
2~vF kD sin θ

2 = w
α .

The Hamiltonian hn,σ, with σ = ±, takes the form of
n × n block diagonal matrix (with each block having a
2× 2 structure in sublattice space) given explicitly by

hn,± =


−iσ · ∇ T± 0 . . .

T †± −iσ · ∇ T± . . .

0 T †± −iσ · ∇ . . .

. . . . . . . . .
. . .

 , (2)

where T± = β
σx±iσy

2 , with σx,y,z denoting the Pauli ma-

trices in sublattice space, and β = γ
2~vF kD sin θ

2

, where

γ is the interlayer tunneling of Bernal-stacked graphene.
For realistic systems w ≈ 110 meV, γ ≈ 360 meV. The
first magic angle occurs for α = 0.586 at which β ≈ 1.9.

The models (1) all have a moiré translation symme-
try with lattice vectors a1,2 = 4π

3 (±
√

3/2, 1/2). It
is useful to define an analogue of the magnetic length
2π`2 = A where A is the unit cell area. The wave-
functions in layer l have the Bloch periodicity [33, 34]
ψl,k(r+a1,2) = ei(k−Kl)·a1,2ψl,k(r), where K = −q1 for
l ≤ n and K ′ = q1 for l > n and k = 0 corresponds
to the Γ point. To incorporate these boundary condi-
tions, we write ψl,k(r) = ei(k−Kl)·rul,k(r), where ul,k(r)
is periodic in r.

The Hamiltonian (1) is off-diagonal in the sublattice
basis, {H, σz} = 0, and so it may be written as

H =

(
0 D†
D 0

)
AB

. (3)

The ideal Chern bands will arise as zero modes of H.
They may be chosen to be sublattice polarized and thus
zero modes of D,D†. Note that the equation Dψ = 0
is equivalent to D̃u = 0 where D̃ is obtained from D by
replacing the l-th diagonal entry by −2i∂̄+k−Kl where
we use the non-bold letter k to denote kx + iky. We will

use this notation for other vectors as well. Because D̃
only depends on k and not k we may always choose uk
that are zero modes of D̃ to be holomorphic functions of
k as well [18, 34].
Band Geometry — Here we say that the quantum ge-

ometry of a band is ideal if the band satisfies the trace
condition. Without loss of generality we take C > 0;
complex conjugation may be applied to obtain analogous
statements for C < 0. The trace condition is the satura-
tion of the inequality

trg(k) ≥ Ω(k) (4)

where g is the Fubini-Study metric and Ω is the Berry
curvature. The trace condition is necessary for repro-
ducing LLL physics [18, 22, 34, 42, 59, 60] and it holds if
and only if the wavefunctions uk are holomorphic func-
tions of kx+ iky [22, 35]. If the trace condition holds and
the Berry curvature is homogeneous then the density op-
erators satisfy the Girvin-Macdonald-Platzmann algebra
[61] of the LLL [59, 60].

We now show that the trace condition enables the con-
struction of model fractional quantum Hall wavefunc-
tions. The trace condition implies that zψ = Pzψ for
z = x+ iy and P =

∑
k |ψk〉 〈ψk| the projector onto the

band of interest [41, 59]. Through iteration and power
series we have f(z)ψ = Pf(z)ψ; multiplication by holo-
morphic functions does not take the wavefunction out of
the band of interest. For many-body wavefunctions, we
may then attach factors such as

∏
i<j(zi − zj)n without

involving remote bands resulting in FCI ground states in
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flat bands with short range interactions [18, 34, 62, 63].
So far, this conclusion has only been derived for the case
of ideal C = 1 bands where the wavefunctions are re-
lated to LLL wavefunctions [22]. Our models allow for
the extension of these ideas to higher Chern bands.

While the trace condition is sufficient to guarantee an
FCI ground state in the limit of short ranged interactions,
this limit may be difficult to reach when the Berry curva-
ture is inhomogeneous. In the extreme limit of soleinoidal
Berry curvature the band can energetically resemble a
band of different Chern number [64]; this is easiest to see
in a finite-size system where a concentrated Berry cur-
vature is invisible to the momentum space grid. For the
models we study, the Berry curvature may be tuned to be
as inhomogeneous as one wishes, enabling future works to
isolate the effect of inhomogenous Berry curvature while
preserving the trace condition.

The Foundation: A Review of CMATBG— The foun-
dation of the solution to the general multilayer models is
n = m = 1, or CMATBG. Here we review the wavefunc-
tions of CMATBG on the A sublattice [18, 33] that form
a band of zero modes of the operator

D =

(
−2i∂̄ αU(r)

αU(−r) −2i∂̄

)
. (5)

The B sublattice wavefunctions are related by C2T :
ψ(r) 7→ ψ(−r).

We will write uk in terms of the (modified [65])
Weierstrass sigma function [22, 66] σ(z) = σ(z|a1, a2)
which satsfies σ(z) = −σ(−z) and σ(z + a1,2) =
− exp

(
− 1

2`2 a
∗
1,2(z +

a1,2
2 )
)
σ(z). Together these imply

σ(a) = 0 for all lattice vectors a.

The function φk(r) = e−
i
2 z
∗kσ(z + i`2k) satisfies

φk+bi(r) = e−ibi·reiθk,biφk(r) with θk,b = π− 1
2 i`

2b∗(k−
b/2) and is a building block for all the models in this
paper.

The chiral TBG periodic wavefunction may be written
as

uk(r) = φk(r)
uΓ(r)

σ(z)
= φk(r)e−K(r)n(r). (6)

Without the normalized layer spinor n(r), this wavefunc-
tion is that of a Dirac particle moving in an inhomoge-
neous magnetic field B(r) = ∇2K(r) with one flux quan-
tum per unit cell [18]. The spinor drops out of Bloch
overlaps and therefore does not influence the quantum
geometry of the system or the interacting physics for
density-density interactions.

Throughout this paper we consider wavefunctions that
are smooth in k but not periodic; one may always choose
such a gauge. The Chern number may then be computed
by taking the line integral of the Berry connection around
the Brillouin zone and using the k-space boundary con-
ditions. One obtains [22, 34]

C =
1

2π
Re(θk+b1,b2 − θk,b2 + θk,b1 − θk+b2,b1). (7)

For CMATBG we see that C = 1.
Simple example: chiral twisted mono-bilayer

graphene— We now show that the Hamiltonian (1)
has perfectly flat bands at the same set of magic angles
as chiral TBG. We start with n = 2, m = 1 and σ = +
corresponding to chiral twisted mono-bilayer. The zero
mode operator is

D(r) =

 −2i∂̄ β 0
0 −2i∂̄ αU(r)
0 αU(−r) −2i∂̄

 . (8)

Let us start with sublattice A. The equations from the
second and third rows of Dψ = 0 are identical to those of
CMATBG (5). Thus , we can write a solution to Dψ = 0
with ψ = (ψ1, ψ2, ψ3) as follows:

ψ2,k = λkψ
TBG
1,k , ψ3,k = λkψ

TBG
2,k , 2i∂̄ψ1,k = βλkψ

TBG
1,k

(9)
where λk is a k-dependent constant to be determined
soon.

In Fourier space, uk(r) =
∑

G eiG·ruk(G), the last
equation may be solved:

u1,k(G) = − βλk
k −K +G

uTBG
1,k (G), (10)

u2,k(G) = λku
TBG
1,k (G), u3,k(G) = λku

TBG
2,k (G). (11)

As discussed above, because (11) gives a band of zero
modes of the operator D̃ we may choose uk and λk to
only depend on k such that the band satisfies (4).

We now describe λk and obtain the Chern number. In
order for (11) to be normalizable, we need λk to have
a single zero at k = K − G and no others. This fixes
λk = φk−K(0) up to gauge transformations. Since the
phase of λk winds by 2π around the BZ, multiplication
by λk increases the Chern number by 1 compared to
CMATBG. We may also compute the Chern number from
the boundary condition method (7) and obtain 2 as well.

Let us now consider the B sublattice. Writing the op-
erator D† explicitly

D† =

 −2i∂ 0 0
β −2i∂ αU∗(−r)
0 αU∗(r) −2i∂

 (12)

There is a zero energy state given by ψB =
(0, ψTBG

B,1 , ψTBG
B,2 ). Thus, we reproduce the B sublattice

wavefunctions of CMATBG and obtain C = −1. Our re-
sult of two flat bands per valley with Chern numbers ±2
and ∓1 is compatible with realistic twisted mono-bilayer
graphene [28].

The previous analysis implies that the Hamiltonian (8)
has the same magic angles as TBG: remarkably the angles
are independent of the interlayer coupling β. This is
illustrated in Fig. 2a-c, which shows the band structure
at the first magic angle for different values of β. Although
the bands remain flat, the overall band structure and flat
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FIG. 2: Band structure and Berry curvature for
chiral twisted mono-bilayer graphene: Band

structure for the Hamiltonian (8) at the first magic
angle for β = 0.4, 2 (top panel) and Berry curvature of
the C = 2 band for β = 0.4, 1, 2 (bottom panel). For

small β, the Berry curvature is strongly peaked at the
K point and by increasing β, it gets more uniform with

the peak moving to the Γ point. It is easy to check
numerically that the trace condition trg(k) = |Ω(k)| is

always satisfied.

band wavefunctions depend on the parameter β. As β →
0 the band gap closes and the Berry curvature diverges,
as shown in Fig. 2e-g and the system decouples into C =
±1 chiral MATBG and graphene.

No decomposition into two ideal C = 1 bands— We
now show that upon doubling the unit cell with transla-
tion breaking wavevector Q, an ideal C = 2 band can be
decomposed into two ideal orthogonal C = 1 bands if and
only if the Berry curvature satisfies Ω(k) = Ω(k + Q).
Mono-bi graphene does not satisfy this condition.

We assume, and soon contradict, that the wavefunc-
tions of the two C = 1 bands |ũkζ〉 for ζ = 1, 2
are holomorphic in k and therefore may be written as
|ũζk〉 = αζk |uk〉+ βζke

iQ·r |uk+Q〉 for some holomorphic
αζk and βζk. The orthogonality 〈ũk2|ũk1〉 = 0 implies

− βk1βk2
αk1αk2

= ‖uk‖2

‖uk+Q‖2
, where we used 〈uk| eiQ·r |uk+Q〉 = 0

and we work in a patch of k space away from zeros of αζ .

The right hand side is positive; thus we have β2k

α2k
= −c β1k

α1k

for a real positive c. Let us define ewk = β1k/α1k; then

we have Rewk = log c‖uk‖
‖uk+Q‖ . Real parts of holomorphic

functions are harmonic (have zero laplacian), and a holo-
morphic function may be reconstructed from a harmonic
real part. Therefore the decomposition is possible and

unique if and only if∇2 log ‖uk‖
‖uk+Q‖ = Ω(k)−Ω(k+Q) = 0

for all k; here we used Ω(k) = ∇2 log ‖uk‖ [22, 39].

General case— We now generalize to arbitrary n, m,

(σ, σ′) Chern A Chern B

(+,+) n −m
(−,+) 1 −(n+m− 1)

(+,−) n+m− 1 −1

(−,−) m −n

TABLE I: Chern numbers for the A and B sublattice
bands for a configuration of n-layers twisted on top of

m-layers.

σ and σ′. It is sufficient to focus on sublattice A and
(σ, σ′) = (+,+), (+,−) and (−,+). Any sublattice B
band may be mapped to a sublattice A band using C2zT ,
under which valley is kept invariant, sublattices are ex-
changed, Chern number switches sign and layers are kept
invariant: (n,m, σ, σ′) 7→ (n,m,−σ,−σ′). Next, we may
map (−,−) → (+,+) stacking by C2yT under which
the valley, sublattice, and Chern number are kept in-
variant while l 7→ n+m− l+ 1 which switches chirality:
(n,m, σ, σ′) 7→ (m,n,−σ′,−σ).

We first consider (σ, σ′) = (+,−). As before ψn =
λkψ

TBG
1 and ψn+1 = λkψ

TBG
2 . The remaining compo-

nents are given by solving the equations 2i∂̄ψl = βψl+1

for l < n and 2i∂̄ψl = βψl−1 for l > n + 1. These equa-
tions have the solution

ul,k(G) = λk

(
−β

k −K +G

)n−l
uTBG

1,k (G), l ≤ n (13)

ul,k(G) = λk

(
−β

k −K ′ +G

)m−(l−n)

uTBG
2,k (G), l > n

(14)

This yields a normalizable wavefunction if and only if λk
has a zero of order n− 1 whenever k = K −G, a zero of
order m− 1 whenever k = K ′ −G, and no others which
gives a total Chern number of n+m− 1. We have λk =
φk−K(0)n−1φk−K′(0)m−1. For l < n, the wavefunction
ulk(r) contains the factor φk−K(0)l−1φk−K′(0)m−1, as
well as m− 1 zeros at k = K ′. Analogous considerations
apply to the case l > n.

For (σ, σ′) = (+,+) we may set ukl = 0 for l > n +
1. The l ≤ n wavefunctions are then the same as the
(σ, σ′) = (+,−) case with m = 1. Finally, for (σ, σ′) =
(−,+) we recover chiral TBG wavefunctions. A summary
of the results is provided in Table I. The wavefunctions
uk are always analytic in k which means that the bands
always have ideal quantum geometry.
Berry curvature variations— The models introduced

here provide a realization of ideal higher Chern bands
where the Berry curvature is continuously tunable and
arbitrarily inhomogeneous. This is illustrated in Fig. 3
by plotting the Berry deviation

F =

(∫
d2k

ABZ

[
ABZΩ(k)

2πC
− 1

]2
)1/2

(15)
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FIG. 3: Berry deviations: Plot of the Berry
inhomogeneity F defined in Eq. 15 as a function of β

for C = 2, 3, 4, 5 obtained from models with n = 2, 3, 4, 5
and m = 1. The dashed line indicates the corresponding

value of C = 1 CMATBG bands.

for bands with C = 2, 3, 4, 5 as a function of the Bernal-
stack coupling parameter β. As we can see, F diverges
in the decoupled β → 0 limit. The minimal value of F
occurs around β ≈ 0.75− 1, and for the realistic β ≈ 1.9
the inhomogeneity is not very large.

Conclusion Here we have shown that a family of chi-
rally twisted graphene structures can, in a particular
limit, realize flat and ideal Chern bands with arbitrary
Chern numbers. This setup has a new tuning param-
eter which strongly affects Berry curvature distribution
while keeping the ideal quantum band geometry intact
despite having the same magic angle as twisted bilayer
graphene. Although the ideal limit discussed here is not
perfectly realized in actual materials, additional terms
like a displacement field may help access this limit in
realistic systems. Independent of their realizability, our
models are a promising starting point for exploring ex-
otic topological phases at fractional filling of ideal flat
higher Chern bands whose interaction physics is poorly
understood due to the lack a Landau level analog.
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[67] appeared, which overlaps with the results reported
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in moiréflat bands. Nature Physics, 16(7):725–733, 2020.

[4] Rafi Bistritzer and Allan H. MacDonald. Moiré bands
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