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Building upon the bulk-boundary correspondence in topological phases of matter, disclinations
have recently been harnessed to trap fractionally quantized density of states (DoS) in classical wave
systems. While these fractional DoS have associated states localized to the disclination’s core, such
states are not protected from deconfinement due to the breaking of chiral symmetry, generally leading
to resonances which, even in principle, have finite lifetimes and suboptimal confinement. Here, we
devise and experimentally validate in acoustic lattices a paradigm by which topological states bind to
disclinations without a fractional DoS but which preserve chiral symmetry. The preservation of chiral
symmetry pins the states at the mid-gap, resulting in their protected maximal confinement. The
integer DoS at the defect results in two-fold degenerate states that, due to symmetry constraints, do
not gap out. Our study provides a fresh perspective on the interplay between symmetry-protection
in topological phases and topological defects, with possible applications in classical and quantum

systems alike.

Although originally conceived to explain electronicss
quantum phases of matter mﬁ], it was later theoreti- se
cally shown by Haldane and Raghu that topological band s
theory applies to wave phenomena E] Hence, it is rel-ss
evant to a wide range of classical systems and has re-se
cently found fertile ground in acoustic [ﬁ, ]7 mechani- eo
cal [§], and photonic platforms IQ] For example, it pro-e:
vides mechanisms for the generation of robust one-way ez
states IE, H], topologically robust corner states m—lﬂ , 63
symmetry-protected bound states in the continuum 64

ﬂ] in classical wave systems, which have the potentiales

in applications such as topological wave steering [@, ], o6
topological lasers [20, 21 et al. o7

At the core of these phenomena is the existence of "
robust in-gap states, which are protected by a bulk- -
boundary correspondence; if the bulk of the material is o
topological, in-gap states robust against perturbations or o
deformations will exist at its boundaries, as long as cer- N
tain symmetries are preserved. An important extension e
of this principle applies to specific topological defects,”
where the existence of topological states hinges on an in- .
terplay between the bulk topology of the lattice and the v
topological charge of the defect m—lﬂ] Notable exam- .
ples include topological states bound to vortices [@—@]

dislocations [32-35], and disclinations [36-140]. *

79

Topological defects allows binding topological states so
within the bulk —as opposed to the boundaries— in pe-s:
riodic synthetic platforms. These states are particularly sz
beneficial if they lie at mid-gap, as this guarantees both ss
spectral isolation and maximal confinement, which insa
turn maximizes nonlinear effects and wave-matter inter- ss
action for sensing purposes. In order to pin topolog-ss

ical states to mid-gap, chiral symmetry must be pre-
served. Unfortunately, in many classical systems, dislo-
cations and disclinations often disrupt chiral symmetry
as they destroy the bipartite nature of chiral-symmetric
lattices. Consequently, topological states associated with
these defects are not protected from deconfinement. This
is the case of the recently realized disclination states of
Refs. [37 and 38, In them, a topological fractional density
of states protect states bound to disclinations. However,
the reported associated states are either (i) hybridized
with bulk states forming resonances [37] or (i) bound
states fine-tuned to be in-gap but not protected by sym-
metry to be at mid-gap |3§].

In this work, we demonstrate in theory and experi-
ments how states bound to the core of disclinations can
be symmetry-protected to lie at mid-gap in certain ob-
structed atomic limit (OAL) topological phases, thus en-
suring spectral isolation of these states from bulk states
and maximizing their confinement to the defect’s core.
The underlying protection mechanism arises not from the
interplay of bulk and defect topologies Iﬁ, @], but from
the interplay of chiral symmetry in the lattice at large,
the point group symmetry of the topological defect, and
the topological phase of the lattice. Said succinctly, the
protection mechanism rests on the fact that zero energy
states with opposite chiral charges —which can generally
hybridize into the bulk- are prevented from doing so
when they form a two-dimensional irreducible represen-
tation of some point group symmetry. The point group
symmetry of the defect forces the states to be degener-
ate, and chiral symmetry forces them to be pinned at
mid-gap.
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To demonstrate this protection mechanism, we have
devised acoustic lattices that preserve a homogeneous
coupling strength across the lattice despite the curvature
induced by the disclinations. We implement our protec-
tion mechanism in this acoustic system and present the
first experimental observation of degenerate, symmetry-
protected, mid-gap states at the core of topological de-
fects in synthetic platforms. Our ability to protect mul-
tiple degenerate topological states at a single topologi-
cal defect further advances the technological relevance of
these states, as it increases the density of states available
for lasing m, |ﬂ] or coupling to external devices.

Our acoustic lattice relies on a coupled-cavity acous-
tic model [41-143]. As shown in Fig. @(a), two identical
cylindrical cavities with radius » = 0.5 cm are coupled
via a tube with a deep sub-wavelength cross-section. The
length of the tube plus the diameter of the cavity is ag
and the height of the cavity is hg = 4 cm. Here, the first-
order resonance (4289Hz), which has a cosine-function
acoustic profile along the cavityaAZs axial direction with
one nodal plane in the middle, is used as the onsite or-
bital. To produce a chiral symmetric system, the ratio
between ag and hg is set at an optimal value 0.75 based
on the eigenmode analysis using COMSOL Multiphysics,
as shown in Fig.[d(b) [43]. An acoustic honeycomb lattice
is then constructed as shown in Fig. [[{c). Our acoustic
model has two salient features that enable us to investi-
gate the symmetry-protected disclination states. First,
the coupling tube can be coiled [Fig. [{a)| while preas
serving its coupling strength. This feature stems fronuaa
the fact that only the fundamental mode is permittedus
in these subwavelength channels. It then follows that theus
coupling is dictated by the total length of the tube rathenas
than the separation between two cavities. Such a coilingas
mechanism is vital for studying deformed lattices sinceas
it allows the arbitrary placement of atoms while main-so
taining a homogeneous coupling strength throughout thes:
entire lattice. Assuch, this system is well-suited to impleas:
menting disclinations, which induce curvature singulariass
ties that result in geometric distortions when projectecisa
onto flat surfaces. Second, the coupling among cavities isss
proportional to the local acoustic amplitudes in the cavase
ities, which follows a cosine function along the cavity’sss
axial length. Thus the ratio between couplings withimss
a unit cell (c¢ipt) and couplings among neighboring unitise
cells (cext) is tunable by the position of the external andieo
internal coupling tubes ] We construct the honey-e:
comb lattice with Kekule modulations of the couplings taes:
generate two obstructed atomic limit (OAL) topologicahes
phases, both of which are chiral symmetric lﬂ, @, @]m
[Fig. Z(a) and 2(b)]. The Kekule modulation consistses
of having two different couplings: ¢jut within unit cellszes
and cext among neighboring unit cells. When ¢ <cCoxt 67
the lattice is in an OAL phase with Wannier centers aties
Wyckoff position 3¢ of the unit cell as shown in the inseties
figure of Fig. B(a) (See Supplementary Material [44] fonro
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FIG. 1. (a) Top: the top view of a conventional straight tube
coupled-cavity model and a coiled tube coupled-cavity model.
Bottom: a 3D view of a coiled tube coupled-cavity model. (b)
Frequency spectrum of the coupled cavity system with coiled
coupling tubes shown in (a), bottom, as a function of the ra-
tio between ag/ho. The blue markers represent the frequen-
cies of the symmetric modes (lower frequency) and the anti-
symmetric modes (higher frequency).The average frequencies
of the symmetric and anti-symmetric modes are marked with
red circles. The symmetric and anti-symmetric modes are dis-
tributed symmetrically about the zero-energy level(4289Hz)
at ao/ho=0.75, indicating chiral symmetry. (c) The top-view
of the OAL(3c) honeycomb lattice with coiled coupling tubes,
where the external coupling tubes are situated at the bottom
of the cavity and the internal coupling tubes are located at
ho/4 above the center of the cavity. The figure on the top
right shows a single unit cell with coiled coupling tubes.

more details on the OAL(3c) lattice). On the other hand,
when ¢t > Cext, the lattice is in an OAL phase with three
Wannier centers at Wyckoff position 1a of the unit cell at
half-filling as shown in the inset figure of Fig.[2(d). While
in both phases the bulk polarization [47] vanishes due to
the presence of C's symmetry , ], the OAL(3c) phase
has nontrivial second-order topological index Iﬁ, |. At
Cint=Cext, the lattice is in the perfect honeycomb config-
uration.

We introduce a disclination to the honeycomb lattices
by the Volterra process of removing a 27/3 section of a
hexagonal sample m, @] Such a process generates a
disclination with a Frank angle of 27/3 and an overall
Cy, symmetric structure, with the center of rotation at
the core of the disclination. The curvature singularity de-
forms the lattices as shown in Figs.2l(a) and[2(d) for both
OAL phases. To counter the effect of this deformation
on the couplings, the coupling tubes are coiled at each
site to ensure a uniform overall length (and thus coupling
strength) across the entire lattice via the mechanism in-
troduced earlier. Our configuration sacrifices a fractional
density of states at the disclination in the OAL(3c) phase
(which is obtained in the same lattice but with a 7/3
disclination m, 38, @] which was the first one to pre-
dict this fractionalization of the density of states), in fa-
vor of preserving chiral symmetry [@] As we will show,
the presence of chiral symmetry and either C4y and time-
reversal or Cy, symmetry protect two degenerate states
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FIG. 2. (a) The OAL(3c) lattice with a 27/3 disclination?
Each shade represents one unit cell. Two different sublattices12
are distinguished by red and blue circles. The inset figureas
shows a unit cell with its Wannier centers at half-filling at,,,
Wyckoff position 3c. (b) Numerically computed eigenfrequen-,
cies for the OAL(3c) structure. The topological corner states,

edge states, and trivial corner states are represented by red,2 *
green, and brown circles, respectively. (c) The four degener®*”
ate topological corner states at 4304 Hz. (d) The OAL(lap®
lattice with a 27 /3 disclination. The inset figure shows a unite1e
cell with its Wannier centers at half-filling at Wyckoff posizzo
tion la (three-fold degenerate). (e) Numerically computed,,,
eigenfrequencies for the OAL(1a) structure. (f) The pair of,,
degenerate disclination bound states at 4285 Hz. The dotted

lines highlight the quadrants. Only the region surrounding>
the lattice core is shown for better visualization. 224
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at the core of the disclinations in only one of the twaa2r
OAL phases. 228
Chiral-symmetric systems have Hamiltonians h that-ze
obey IIhII~! = —h, where II is the chiral operator. Forso
every eigenstate 1 of h with energy e (such that hi) =
e)), there is a second eigenstate Iy with energy —e. Thiss.
can easily be seen by operating hlly) = —I1hty) = —ellt)23s
Thus, the energies in a system with chiral symmetry comesa
in pairs (e, —¢), and their states are related by the chiraless
symmetry operator II. Our acoustic model is composedss
of a lattice with 4 unit cells per side. The OAL(3c) latticesr
hosts 4 topological corner states at zero-energy, as showress
in Figs. BIb) and 2(c) and reported earlier in Ref.
The symmetry of the spectrum indicates that the lat-zso
tice with disclination preserves chiral symmetry. Furthema:
confirmation comes from the fact that the corner statesa:
have support only on one sublattice at each corner, in-zass
dicating that they are eigenstates of the chiral operatomaa
with well-defined chiral charges and thus are zero-energysas

m] 239

states. The OAL(la) lattice, on the other hand, does
not possess corner states. However, it possesses a pair
of mid-gap degenerate states confined to the disclina-
tion core, as illustrated in Figs. 2e) and 2(f). These
states are originally presented in this work and are the
main finding of our paper. Tight binding model (TBM)
simulation results show similar mode distributions in the
bandgaps, which corroborates our COMSOL simulation
results ] These two states have support over both
sublattices, indicating that their overall chiral charge is
zero; however, these two states form a 2D irreducible
representation (irrep) of Cy plus time-reversal symmetry
(TRS) or Cy, (i.e., C4 symmetry plus reflection symme-
try), which prevents them from being lifted away from
the zero-energy level. The 2D irrep of Cy, or Cy and
TRS can be described by the basis 1, = %(17 i,—1,—i)T
and ¢_ = %(17 —i,—1,4)T, where the entries correspond
to the disclination’s sites at each quadrant, respectively,
as shown in Fig. BIf), top (the states in Fig. 2f) are
proportional to %(1/4 +1_)). The states ¢+ are eigen-
states of Cy and map to one another under TRS or re-
flection symmetry. Since ¢+ are a basis for the 2D irrep,
they must remain degenerate in energy as long as the
above-mentioned symmetries are preserved. This basis is
convenient because, in the presence of chiral symmetry,
1y are chiral partners of each other, i.e., ¢4 = IIYp_ and
vice versa, from which it follows that these two states
should have energies of opposite sign, ¢, —e. Thus, under
Cyp symmetry or Cy symmetry plus TRS, as well as chi-
ral symmetry, ¢+ must both have ¢ = 0 identically. In
contrast, the OAL(3c) phase does not enclose the 2D rep-
resentation at the core (only at its corners), and thus it
does not trap zero-energy states at the disclination core.

We have experimentally measured two samples cor-
responding to the OAL(la) and OAL(3c) lattices con-
taining the 27/3 disclination. Ounly the results of the
OAL(1a) lattice are discussed here, while the OAL(3c)
results showing corner states can be found in the Supple-
mentary Material [44]. An illustration of the OAL(la)
acoustic lattice is shown in Fig. B{a). The internal and
external coupling tubes are machined on two separate
aluminum blocks as shown in Fig. B(b) and then stacked
together. We measure both the bulk and disclination re-
sponses of the acoustic lattice, and the results are shown
in Fig.Bl(c). Details of the experiment can be found in the
Supplementary Material M] The bulk spectrum shows a
gap around 4.3 kHz, while the disclination core response
shows a single peak located at the mid-gap and two lower
peaks within the bulk band frequencies. The symmetry
of the two spectra around mid-gap is a signature of the
well-preserved chiral symmetry in the acoustic lattice.
We then raster-map the response profile in the entire lat-
tice by measuring the pressure amplitude at the top of
each cavity. The results show that the mid-gap peak
indeed corresponds to the pair of degenerate, symmetry-
protected disclination bound states as shown in Fig. Bl(d).



These two states are at 4340 Hz, slightly off from the
numerically predicted frequency (4285 Hz) due to fab-
rication variations. The degenerate disclination bound
states are orthogonal to one another, and thus they must
be separately excited. The other two lower peaks within
the bulk band frequencies are resulted from two states at
the disclination which are orthogonal to mid-gap ones,
and are not maximally localized.

Since the symmetry representations of the states
within a topological phase in the lattice are stable as
long as the symmetries are preserved, our protection
mechanism is robust to symmetry-preserving perturba-
tions. In a chiral-symmetric lattice, our zero energy
states can be removed from the core only upon a topo-
logical phase transition from the OAL(1la) phase to the
OAL(3c) phase, where a reconfiguration of the irreps
occurs (the 2D irrep of the zero states moves from the
disclination core to the corner states). To examine the
robustness of the disclination bound states, we have con-
ducted additional simulations with different types of per-
turbations to the disclination core, and the results can
be found in the Supplementary Material @], along with
additional discussion on the protection mechanism of the
zero-energy disclination modes.

In conclusion, we have theoretically and experimen-
tally studied a mechanism that protects the maximal
confinement of states at topological defects with chiral
symmetry. Our mechanism relies on the interplay of the
point group symmetry of the topological defect and the
topological phase of a lattice. The sonic mid-gap discli-
nation states not only could inspire new routes for con-
trolling acoustic local density of states for sound emis-
sion control @] but also paves the way of novel en-
ergy transportation mechanisms via topological disclina-
tion pumps ] In addition to acoustics, our theory
can be potentially applied to other waves such as elec-
tromagnetic waves, and is equally applicable to quantum
systems in condensed matter physics. We finally note
that, the conclusion of this study can be extended to
other Frank angles. The simplest example is a disclina-
tion with Frank angle —27/3, which also possesses Cly,
symmetry IA_AI] More generally, chiral symmetry and a
point group symmetry with an N-dimensional represen-
tation could protect N degenerate states at a topologicako:
defect. 302
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FIG. 3. (a) (top panel) The acoustic OAL(1a) lattice. Only
the inner 3 by 3 unit cells are shown here for better visu-
alization. (bottom panel) A close-up view of three cavities
in the dashed line box shows the position of the external
and internal coupling tubes. The transparent cut-plane in-
dicates the interface between the two layers used to construct
the experimental acoustic sample. (b) Photographs of the
OAL(3c) acoustic lattice sample with its cavities (the larger
holes) and coupling channels. The two blocks are stacked and
then sealed to form the coupled-cavity lattice. The smaller
holes without tubes are for mounting purposes. (c) Spectra
of the normalized pressure amplitude |p| of the disclination
(purple) and bulk (grey) states. The degenerate disclination
states are marked with the red star (two degenerate states
at 4340 Hz). (d) The pressure distribution maps of the two
disclination states at the frequency marked by the red star
in (¢). The area of the circle represents the amplitude of the
pressure. Note that the entire lattice is measured, but the
pressure amplitudes are too weak away from the disclination
core.
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