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While the fluctuation theorem in classical systems has been thoroughly generalized under vari-
ous feedback control setups, an intriguing situation in quantum systems, namely under continuous
feedback, remains to be investigated. In this work, we derive the generalized fluctuation theorem
under quantum jumps with continuous measurement and feedback. The essence for the derivation
is to newly introduce the operationally meaningful information, which we call quantum-classical-
transfer (QC-transfer) entropy. QC-transfer entropy can be naturally interpreted as the quantum
counterpart of transfer entropy that is commonly used in classical time series analysis. We also
verify our theoretical results by numerical simulation and propose an experiment-numerics hybrid
verification method. Our work reveals a fundamental connection between quantum thermodynamics
and quantum information, which can be experimentally tested with artificial quantum systems such
as circuit quantum electrodynamics.

Introduction.—In the last few decades, the framework
of thermodynamics has been applied to small systems
in which thermodynamic quantities behave stochastically
due to the presence of thermal or quantum fluctuations
[1–6]. A key relation that quantifies a universal behavior
of such systems is the fluctuation theorem (FT)

〈e−σ〉 = 1, (1)

where σ is the stochastic entropy production and 〈·〉 de-
notes the ensemble average. The FT characterizes the
behavior of the entropy production even in the nonlinear
nonequilibrium region, and also implies the second law
of thermodynamics (SL) at the average level: 〈σ〉 ≥ 0.

In light of thermodynamics of information, originated
in the gedanken experiment of Maxwell’s demon [7], it
has been revealed that measurement and feedback leads
to generalizations of the laws of thermodynamics [8–33].
For instance, the FT has been generalized by incorporat-
ing information gain i obtained from the measurement
as

〈e−σ−i〉 = 1, (2)

which implies the generalized SL: 〈σ〉 ≥ −〈i〉. The gen-
eralized FT in the form of Eq. (2) has been derived for
classical systems under single measurement and feedback
[10, 11] as well as continuous measurement and feedback
[12–14], and also derived for quantum systems under sin-
gle measurement and feedback [21, 22] (see Fig. 1 (a)).
There are also a few works about the role of continu-
ous quantum measurement on the SL or the FT [34–39].
However, the role of continuous measurement and feed-
back in the quantum regime has not yet been elucidated,
despite its significance as described below.

Continuous measurement and feedback has been of
keen interest due to its capability of creating and stabiliz-
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FIG. 1. (a) Summary of previous research of information
thermodynamics. In all of the three cases shown here, the FT
has been generalized in the form of Eq. (2) with appropriate
choices of the information gain i, whereas quantum systems
under continuous feedback control have not been studied. (b)
Setup of the present work. We find that the QC-transfer
entropy is the relevant information gain i in this setup.

ing desired quantum states via feedback loop. It is rele-
vant to various quantum systems [40] including its appli-
cations to thermodynamics [41–43], and is developing due
to the recent advancement of experimental techniques
[44–50]. It is also noteworthy that arbitrary Markovian
open quantum systems described by the Lindblad mas-
ter equation can be interpreted to be under continuous
(non-selective) measurement [40]. These facts tells us
the framework of continuous quantum measurement and
feedback gives a unified description of systems under ar-
tificial control or interaction with external systems.
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In this Letter, we generalize the SL and the FT for
systems under quantum jumps with continuous mea-
surement and feedback, by introducing the quantum-
classical-transfer (QC-transfer) entropy as a relevant in-
formation gain. The QC-transfer entropy is defined as
the accumulation over time of the conditional QC-mutual
information [51–54] under the past measurement out-
comes. Therefore, it can naturally be interpreted as the
quantum counterpart of the transfer entropy [55] that
is used to derive the generalized FT for classical sys-
tems [12–14]. We also verify the generalized FT by nu-
merical simulation in a two-level system, and propose an
experiment-numerics hybrid verification method of the
generalized FT.

Dynamics of the system.— Let us consider a quantum
system interacting with the heat bath at inverse tem-
perature β under continuous measurement and feedback
(Fig. 1(b)). To simplify the argument, we suppose that
the Born-Markov and rotating-wave approximations can
be applied to the system-bath interaction [56, 57]. We
discretize time as tn ≡ n∆t, consider the time evolution
from t = 0 to t = τ ≡ tN , and later take the contin-
uous time limit ∆t → 0, N → ∞ while keeping τ con-
stant. The time evolution in [tn, tn+1) is described by
the stochastic master equation:

ρ
Yn+1

tn+1
= ρYntn +

∑
y

∆NyG[My]ρYntn

+∆t
{
−i[Htn + htn , ρ

Yn
tn ] +

∑
d

D[Ld]ρ
Yn
tn

+
∑
y

−1

2
{M†yMy, ρ

Yn
tn }+ Tr[Myρ

Yn
tnM

†
y ]ρYntn

}
,

(3)

where G[m]ρ ≡ (mρm†/Tr[mρm†]) − ρ and D[c]ρ ≡
cρc† − 1/2{c†c, ρ}. We define yn as the newly obtained
measurement result at tn and Yn ≡ (y1, y2 . . . , yn) as the
outcomes until tn. Here, ρYntn represents the conditional
density operator at tn when the measurement results are
Yn. We define Ht as the intrinsic system Hamiltonian
and ht as the external driving Hamiltonian. The inter-
action between the system and the heat bath can be de-
scribed by the Lindblad operators {Ld}, where Ld repre-
sents the dissipation of energy ∆d to the heat bath (i.e.,
[Ld, Htn ] = ∆dLd), and satisfies the detailed balance con-

dition with respect to Ht (i.e., Ld′ = L†de
− β2 ∆d with d′

being uniquely determined from ∆d = −∆d′). The effect
of continuous measurement is represented by the Lind-
blad operators {My}, and the feedback is performed by
changing the Hamiltonian. In the following, we give a
more detailed explanation on continuous measurement
and feedback.

Continuous measurement reads out system’s informa-
tion via interaction with the measurement apparatus
(e.g., the monitoring of an emitted photon from the sys-
tem). The measurement outcome obtained at tn+1 is

denoted as yn+1 with the corresponding quantum jump
represented by Myn+1 (e.g., the detection of a photon). If
no measurement jump is detected at tn+1, yn+1 is defined
as 0. The system’s conditional dynamics is described by
the set of Kraus operators which is composed of both the
measurement-jump detection operators {My

√
∆t} and

no detection operator 1− ∆t
2

∑
yM

†
yMy. In Eq. (3), the

first and third lines correspond to the detection and no
detection event, respectively, and the Poisson increment
∆Ny is defined as ∆Ny = 1 if the jump My occurs,
and ∆Ny = 0 otherwise [40, 58]. We here emphasize
that, by taking the ensemble average over the outcomes
Yn+1, Eq. (3) reduces to the ordinary master equation
that describes dynamics interacting with an external sys-
tem without post-selection of the measurement results.
Such a decomposition that allows us to recover the mas-
ter equation is called unraveling.

Continuous feedback is provided by varying Ht and/or
ht according to the measurement results. Because of the
causality, the Hamiltonians in [tn, tn+1) are completely
determined by measurement results before tn (i.e., Yn)
while it does not depend on those after tn. In our setup,
the following types of the Hamiltonian variations are sup-
posed: adiabatic change of the system Hamiltonian Ht

[57, 59], perturbation of the external field (i.e., ht � Ht)
[60–62], and sequential pulses (i.e., ht =

∑
i viδ(t− si)).

Hamiltonian variations other than those may not be
given in the form of Eq. (3) [63, 64], and hence are ex-
cluded in the following argument. Note that the depen-
dence on Yn of some operators and variables (such as
Ht, ht, Ld,∆d,∆Ny) is abbreviated for simplicity.

Generalized second law.— In this setup, the ensemble
average of thermodynamic quantities such as the heat
〈Q〉 dissipated to the heat bath and the entropy change
〈∆S〉 between the initial and final states can be defined
as follows [22, 65, 66]:

〈Q〉 ≡ −
N−1∑
n=0

∑
Yn

P [Yn]
∑
d

Tr[HtnD[Ld]ρ
Yn
tn ]∆t,

〈∆S〉 ≡ S(ρτ )− S(ρ0),

(4)

where ρ0 and ρτ ≡
∑
YN

P [YN ]ρYNτ are the initial and fi-
nal density operators, and S(ρ) ≡ −Tr[ρ ln ρ] represents
the von Neumann entropy. The average entropy produc-
tion is defined as 〈σ〉 ≡ 〈∆S〉+ β〈Q〉.

We now introduce the QC-transfer entropy as

〈iQC〉 =

N−1∑
n=0

∑
Yn

P [Yn]IQC(ρYntn : yn+1), (5)

where IQC represents the QC-mutual information. Here,
IQC is defined as IQC(ρ : y) ≡ S(ρ) −

∑
y P [y]S(ρy),

where P [y] is the probability of the outcome y, and ρy

denotes the conditional density operator after the mea-
surement of y. QC-mutual information quantifies the in-
formation obtained by quantum measurement [51, 52] so
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that it gives the upper bound of the accessible classical
information [53, 54], and also has an operational inter-
pretation through an informational task called measure-
ment compression [67–69]. On the basis of the foregoing
definitions, the SL is generalized as

〈σ〉 ≥ −〈iQC〉. (6)

This inequality gives the lower bound of 〈σ〉 under con-
tinuous measurement and feedback and reveals the rela-
tionship between the entropy production and quantum
information at the level of ensemble average.

We here discuss the relationship between the QC-
transfer entropy and the (classical) transfer entropy [55]
(Fig. 1(a)). The transfer entropy is defined as

〈iTE〉 ≡
N−1∑
n=0

I(xn : yn+1|Yn), (7)

where xn denotes a state of a classical system at
tn. We define I as the conditional mutual infor-
mation I(xn : yn+1|Yn) ≡

∑
Yn
P [Yn](HYn(xn) −∑

yn+1
P [yn+1|Yn]HYn,yn+1(xn)), where HYn(xn) denotes

the Shannon entropy of xn when the measurement results
are Yn. From Eqs. (5) and (7), we can see that in classi-
cal systems, information transfer in [tn, tn+1) is described
by the conditional mutual information I(xn : yn+1|Yn),
whereas in quantum systems it is represented by the QC-
mutual information of the conditional density operator
ρYntn . Therefore, 〈iQC〉 is the quantum counterpart of
〈iTE〉, in that they both represent the total information
gain obtained by accumulating conditional information
transfer over time.

We note that the QC-transfer entropy defined as
Eq. (5) converges to a finite value even in the continu-
ous time limit. This is because the information obtained
in [tn, tn+1), i.e.,

∑
Yn
P [Yn]IQC(ρYntn : yn+1), is O(∆t)

as a consequence of our setup that the quantum jump is
detected. Such measurement has been studied as the typ-
ical continuous quantum measurement [40, 56] and also
is experimentally feasible [44–50].

Generalized fluctuation theorem.— We next introduce
the generalized FT under continuous measurement and
feedback, which is the main result of this Letter. Since
the generalized FT is the equality concerning the stochas-
tic entropy production σ and the stochastic information
gain iQC, we need to introduce proper definitions of these
quantities. On the basis of a special class of stochastic
decomposition of Eq. (3), which we name fine unraveling,
both of these quantities can be defined for individual un-
raveled trajectories, which we call fine trajectories. In
the following, we elaborate on these concepts.

As the preliminary step toward defining the fine un-
raveling, we first introduce another unraveling, which we
call standard unraveling. In this unraveling, we mon-
itor the heat-bath dissipation in addition to the orig-
inal continuous measurement of yn+1 in Eq. (3). We
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FIG. 2. The illustration of the standard unraveling, the
alternate interaction situation, and the fine unraveling in
[tn, tn+1).

here define ∆Nd as the Poisson increment of Ld and
dn+1 as the outcome of the heat-bath monitoring in
[tn, tn+1). We further perform two-time projective mea-
surement at t = 0 and τ , just as in the standard scheme
in stochastic thermodynamics [4, 54]. Here, the two-
time measurement is performed in the diagonalized bases
of the density operators ρ0 ≡

∑
a0
p0(a0) |a0〉 〈a0| and

ρτ ≡
∑
aτ
pτ (aτ ) |aτ 〉 〈aτ |, and their outcomes are de-

noted as a0 and aτ , respectively. Thus, the dynamics of
Eq. (3) is decomposed according to the measurement out-
comes ψτ ≡ (a0, aτ , {yn}Nn=1, {dn}Nn=1). We refer to the
unraveled trajectory designated by ψτ as the standard
trajectory. We remark that Eq. (3) can be recovered
from the standard unraveling by taking the ensemble av-
erage over the results of the two-time measurement a0, aτ
and the heat-bath monitoring {dn}.

The fine unraveling is introduced by the following
two-step transformation from the standard unraveling
(see Fig. 2). We first consider the situation that a
measurement and an interaction with the heat bath
occur alternately every ∆t, and then insert the pro-
jective measurements in the diagonalized bases of ρYntn
and σ

Yn+1

tn right before and after the measurement of
yn+1, respectively. The diagonalizations are defined

as ρYntn ≡
∑
bn+1

pYn(bn+1) |bn+1〉 〈bn+1| and σ
Yn+1

tn ≡∑
cn+1

pYn+1(cn+1) |cn+1〉 〈cn+1|, and the outcomes of the
inserted measurements before and after the monitoring of

yn+1 are bn+1 and cn+1, respectively. Here, σ
Yn+1

tn rep-
resents the conditional density operator when the mea-
surement results are Yn+1 in the alternate interaction
situation. Thus, the fine unraveling decomposes Eq. (3)
according to ψτ and πτ , where πτ ≡ ({bn}Nn=1, {cn}Nn=1)
denotes the outcomes of the inserted projective measure-
ments all together. By taking the ensemble average over
πτ , along with a0, aτ and {dn}, the fine unraveling repro-
duces the original dynamics of Eq. (3). It should be em-
phasized that these projective measurements do not de-
stroy the measured states at the ensemble average level,
because of their choices of the bases.

For each fine trajectory, we can define both the
stochastic entropy production and the QC-transfer en-
tropy, and derive the generalized FT. The stochastic en-
tropy production is defined as σ[ψτ , πτ ] ≡ ∆S[ψτ , πτ ] +
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FIG. 3. The schematics for the experiment-numerics hybrid
verification method. The verification protocol is composed
of the experimental part, in which the standard trajecto-
ries ψτ are sampled, and the numerical calculation part, in
which F [ψτ ] are calculated, and then their average value is
taken. The average value coincides with the left-hand side of
Eq. (10).

βQ[ψτ , πτ ], where the stochastic heat and stochastic en-
tropy change are defined as follows [22, 70–74]:

Q[ψτ , πτ ] ≡
N−1∑
n=0

∑
d

∆Nd∆d,

∆S[ψτ , πτ ] ≡ − ln pτ (aτ ) + ln p0(a0).

(8)

The stochastic QC-transfer entropy is then defined as

iQC[ψτ , πτ ] ≡
N−1∑
n=0

− ln pYn(bn+1) + ln pYn+1(cn+1). (9)

We can confirm that the ensemble averages of the
stochastic quantities (8) and (9) coincide with Eqs. (4)
and (5). Based on the foregoing definitions, the general-
ized FT is expressed as

〈e−σ−iQC〉 = 1. (10)

This equality implies the generalized SL (6) and reveals
the relationship between the entropy production and the
QC-transfer entropy at the trajectory level. See Supple-
mental Material for the full proof of Eq. (10) [75].

Protocol of the hybrid method.— Although the direct
realization of the fine unraveling in real experiments is
difficult, the generalized FT (Eq. (10)) can be verified
by an experiment-numerics hybrid verification method,
in which the standard trajectories are sampled in an ex-
periment and the auxiliary numerical calculation is per-
formed in a classical computer (Fig. 3). The detection of
the standard trajectories is feasible in real experiments
such as circuit QED [41, 42, 49, 50] and cavity QED
[44, 45]. Then, by the auxiliary numerical calculation,
we can evaluate the left-hand side of Eq. (10). The con-
crete protocol of the hybrid method is as follows:

1. By a real quantum experiment, sample the stan-
dard trajectories.

2. By classical numerical simulation, calculate

F [ψτ ] ≡
∑
πτ

P [ψτ ,πτ ]
P [ψτ ] e−σ[ψτ ,πτ ]−iQC[ψτ ,πτ ] for each

experimentally sampled trajectory ψτ :

(a) Calculate the realization probability P [ψτ ] by
solving the stochastic Schrödinger equation of
the standard unraveling.

(b) Calculate the dynamics of conditional density

operators ρYntn and σ
Yn+1

tn by solving Eq. (3).

(c) Calculate P [ψτ , πτ ], iQC[ψτ , πτ ] and σ[ψτ , πτ ]
for realizable fine trajectories {ψτ , πτ}πτ with
same ψτ by using the solution of (b).

3. Average F [ψτ ] over all sampled trajectories, which
gives the left-hand side of Eq. (10).

We make a remark on the first step above. In order to
perform the two-time measurement of the standard un-
raveling, we need to know the eigenbases of the initial and
final states ρ0, ρτ . The simplest case is that the system is
initially prepared in a Gibbs state and evolves to another
Gibbs state. In this case, the projective measurements
of ρ0 and ρτ are essentially equivalent to the measure-
ments of the initial and final Hamiltonians, because they
share the same eigenbases. In general cases where we do
not have any prior knowledge about the initial state, we
need to perform quantum state tomography [76] before
we start the feedback protocol. Once the initial state is
known, we can obtain the final state by taking the ensem-
ble average over the sampled trajectories in the hybrid
method. We note that the general two-time measurement
has been investigated and reviewed in Refs. [4, 5, 54, 77]
in detail. See also Refs. [32, 33] for relevant experimental
studies.

We also make some remarks on the second step. While
P [ψτ ] can be calculated solely from the standard unrav-
eled dynamics, we have to prepare the inserted projec-
tive measurements in order to calculate the quantities
for fine trajectories P [ψτ , πτ ], iQC[ψτ , πτ ] and σ[ψτ , πτ ].
Since the number of realizable fine trajectories with
P [ψτ , πτ ] 6= 0 calculated in (c) is finite even in the limit
of ∆t → 0 [75], the exact calculation of F [ψτ ] can be
performed with reasonable numerical cost.

Numerical demonstration of the generalized FT.— To
further support our findings, we have numerically calcu-
lated the fine unraveled dynamics of the two-level system
to verify the generalized FT. We employ the setting that
the population of excited state |1〉 is reduced by continu-
ous measurement and feedback. The system Hamiltonian
is fixed as Ht = ωσz, the coherent driving is applied as
ht = εσx cosω0t, the heat-bath dissipation is represented
by L± =

√
γ±σ±, and the continuous measurement op-

erator is defined as M1 =
√
γm(|1〉 〈1| + δ |0〉 〈0| + δσx),

where σi denotes the Pauli matrix. We note that if δ is
negligible (δ � 1), we can almost certainly decide that
the system is in |1〉 after the detection of M1. Thus we
apply unitary gate σx right after the detection, in order
to reduce the excited state population. If the detection
occurs at tn, the feedback protocol is realized by apply-
ing the pulse in tn+1, which changes the external driv-
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FIG. 4. Numerical verification of the generalized FT. The
average values of e−σ and e−σ−iQC for the sampled fine tra-
jectories are plotted. The system parameters are taken as
ω = 0.3, ε = 0.04, ω0 = 0.1π, β = 1, γ± = 0.015ω{coth (βω

2
)∓

1}, γm = γ+ + γ− and δ = 0.2. Each data point denotes the
average over 1.0× 105 trajectories.

ing Hamiltonian as ht = εσx cosω0t + vδ(t − tn+1) with
e−iv ≡ σx. By computing σ and iQC for individual tra-
jectories, we have verified that the generalized FT holds.
This is illustrated in Fig. 4, where we can see that 〈e−σ〉
increases with τ , implying the violation of the conven-
tional FT (i.e., 〈e−σ〉 6= 1).

Summary and outlook.— In this Letter, we have de-
rived the generalized SL (6) and FT (10) in the systems
under quantum jumps with continuous measurement and
feedback. The newly introduced information gain, the
QC-transfer entropy, would play an important role in
quantifying quantum information transfer by sequential
quantum measurements. We have also verified the gen-
eralized FT by numerical simulation and proposed a fea-
sible experiment-numerics hybrid verification method.

We show some future perspectives related to our work.
First, it is important to verify the generalized FT (10)
in real experimental systems by using the experiment-
numerics hybrid verification method. Another interesting
future task is to improve the tightness of the bound in the
generalized SL (6) by introducing other information mea-
sures, as have been done in the classical regime [14, 15]. It
is also intriguing to generalize the FT under the continu-
ous measurement described by the Gaussian process [78],
which is relevant to various experiments [33, 79–81]. The
Gaussian process measurement is not directly covered by
our quantum-jump detection setup, while we expect that
it is obtained as an appropriate limit of quantum jump
processes [40, 58].
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