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The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables
a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum
circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited
entanglement. We experimentally demonstrate a significant benefit of this approach to quantum sim-
ulation: the entanglement structure of an infinite system—specifically the half-chain entanglement
spectrum–is conveniently encoded within a small register of “bond qubits” and can be extracted
with relative ease. Using Honeywell’s model H0 quantum computer equipped with selective mid-
circuit measurement and reset, we quantitatively determine the near-critical entanglement entropy
of a correlated spin chain directly in the thermodynamic limit and show that its phase transition
becomes quickly resolved upon expanding the bond-qubit register.

Of the many applications considered for near-term
quantum computers, the simulation of strongly corre-
lated quantum systems stands out for being useful, hard
classically, and tolerant of at least some imperfections
(nature is, after all, a noisy place). Yet even in simu-
lating quantum systems, a problem so well tailored to
quantum computing that it is often credited with initi-
ating the field, solving classically hard problems of real
utility remains stubbornly out of reach. Part of the dif-
ficulty is that—unlike the outputs of random unitaries
[1, 2]—states of physical quantum systems are highly
structured. The best classical algorithms exploit this
structure, thereby raising the bar for quantum advantage,
which may well require quantum algorithms that can sim-
ilarly exploit this structure. Notable recent progress has
been made along these lines, with quantum algorithms
designed around various classical tensor-network meth-
ods [3–11]. Here we demonstrate for the first time a re-
markable feature of these algorithms: In addition to in-
heriting considerable resource savings from their classical
precursors, they also provide a remarkably direct encod-
ing of the entanglement structure in states they repre-
sent. The latter point is especially enticing, as many-
body entanglement entropy offers valuable information-
theoretic insights into the structure of complex quan-
tum matter that cannot be captured by local correla-
tions [13, 14]; understanding its structure sheds light on
the quantum foundations of thermodynamic entropy [15],
thermalization and quantum chaos [16], and even per-
haps the geometry of space-time itself [17]. Moreover,
universal scaling features of entanglement [18], such as
central charge and its higher dimensional analogs, have
entanglement-based interpretations and serve as finger-
prints of critical phenomena.

A key technical challenge in running many such algo-
rithms is the necessity to perform selective mid-circuit
measurement and reset/reuse (MCMR) of qubits dur-
ing a quantum circuit. Long recognized as a crucial
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FIG. 1. Using Honeywell’s H0 quantum computer described
in Ref. [12] and shown in (a), we execute a state-preparation
algorithm for arbitrary matrix-product states (MPS) (b). (c)
The algorithm consists of repeatedly entangling a single sys-
tem qubit (grey) with a register of logχ “bond” qubits (pur-
ple) in order to encode a bond-dimension χ MPS (here we
show the case of χ = 2, which requires a single bond qubit).
The spatial extent of the MPS is encoded in the temporal
extent of the algorithm, with properties of the nth site corre-
sponding to the measurement record of the system qubit prior
to reset at the nth iteration.

ingredient for scalable quantum computation, this abil-
ity and other closely-related capabilities have been re-
alized in several quantum computing platforms [19–21].
Trapped ions in particular afford several convenient and
high-fidelity approaches, including dynamic spatial isola-
tion [19, 22, 23], shelving [24], and dual-species quantum
logic gates [25–27]. Until very recently [12, 28, 29], how-
ever, MCMR had not been implemented on commercial
quantum computing hardware.

In this paper, we use a trapped-ion quantum computer
equipped with MCMR [Fig. 1(a)] to implement an effi-
cient quantum algorithm for extracting the near-critical
entanglement entropy of correlated spin chains. We apply
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this algorithm to the transverse-field Ising model (TFIM)
[30], and are able to clearly and quantitatively observe
the divergence of bipartite entanglement entropy upon
approaching the quantum phase transition separating its
ordered and disordered phases.

In its simplest incarnation, the algorithm we employ
involves one “system qubit”, one “bond qubit”, and re-
peated applications of the process shown in Fig. 1(b): (1)
Reset the system qubit, (2) Apply a unitary entangling
operation between the system qubit and bond-qubit, and
(3) Measure the system qubit. More generally, an nb-
qubit bond register propagates spatial correlations of an
arbitrary bond-dimension χ = 2nb matrix product state
(MPS) through time, and each successive (in time) mea-
surement of the system qubit extracts local information
about the next adjacent site in the spatial extent of the
MPS [Fig. 1(c)], from which we reconstruct an exper-
imental estimate of its energy. Moreover, the reduced
density matrix of the bond-qubit after the jth iteration
encodes the reduced density matrix of the half-chain con-
taining sites up to and including j. The number of bond
qubits nb determines the accessible MPS bond-dimension
χ, which grows exponentially as χ = 2nb , enabling an
extremely rapid convergence of results in the number
of available bond qubits. Our data show that even for
nb = 2 the divergence of entanglement entropy at the
phase transition is quite sharply resolvable.

Quantum MPS—Matrix product states are an ansatz
designed to efficiently capture the properties of 1D sys-
tems with limited entanglement [31], and have been em-
ployed extensively in classical simulations of 1D and
quasi-2D quantum systems [32]. An MPS of a half-
infinite system with translationally invariant tensors [33]
can be written

|Ψ〉 =
∑

σ1,α1,...

Lα1(V α1α2
σ1

V α2α3
σ2

· · · ) |σ1, σ2, . . .〉 . (1)

Here, σj indexes a set of basis states on site j, the V αβσj

are tensors with bond indices α, β ∈ {1, 2, ..., χ} (with
χ being the bond-dimension of the MPS), and L is a
vector determining the left-boundary conditions. We re-
strict our attention to qubits as the physical degrees of
freedom, in which case the physical indices take values
σj = 0, 1 [34]. The MPS can be drawn schematically as
in Fig. 2(a), where each tensor is a box with a leg for
each index, and joined legs imply tensor contraction of
the associated indices. Any MPS can be generated as a
quantum circuit by embedding the tensors [35] in uni-
tary matrices U as V αβσ = (〈σ| ⊗ 〈β|)U(|0〉 ⊗ |α〉) [see
Fig. 2(c)], in which case the generating circuit involves
a bond register interacting sequentially with the system
qubits one by one,

|Ψ〉 = · · ·U2,bU1,b(· · · ⊗ |0〉2 ⊗ |0〉1)⊗ |L〉b , (2)

as shown in Fig. 2b. As pointed out in Refs. [4–6], the
sequential structure of the circuit in Fig. 2c enables any
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FIG. 2. Quantum MPS: A matrix product state (a) can be
represented as a circuit (b) by embedding the tensors inside
unitary gates as in (c). By executing any desired measure-
ments as soon as possible, the system qubit representing site
n can be reset and reused as the system qubit on site n + 1,
leading to an equivalent circuit with just a single system qubit
(d). Entanglement entropy of the MPS across a bipartition
(dashed vertical line in the figures) becomes entanglement
entropy of the bond qubits immediately after crossing that
partition (e), as future gates cannot affect the state prior to
the partition.

qubit to be sampled at the circuit output prior to next
qubit being gated, and therefore the entire circuit out-
put can sampled by repeatedly measuring, resetting, and
reusing a single system qubit, as in Fig. 2d.

Any MPS is equivalent to a quantum channel defined
on the bond indices, which get reinterpreted as label-
ing states in a fictitious bond Hilbert space [36]. In the
method just described for generating an MPS with one
system qubit, the bond Hilbert space is explicitly realized
by the bond-qubit register, and the process of initializing
the system qubit, gating it with the bond qubit regis-
ter, and then ignoring it (tracing it out) is precisely the
unitary embedding (Stinespring dilation) of this bond-
space quantum channel. A convenient consequence of
this equivalence is that the bipartite entanglement spec-
trum induced by cutting an infinite chain into two halves
A and B, i.e., the eigenvalues of ρA = TrB(|Ψ〉〈Ψ|),
can be extracted from the steady state of this quantum
channel [37]. The relationship between the entanglement
spectrum of an MPS and the steady state of its associated
channel is readily apparent in the unitary embedding em-
ployed here. The infinite MPS case is well approximated
by the half-infinite MPS we generate if we place the cut
sufficiently far from the left boundary and then trace out
the right (or left) half, as in Fig. 2a. Figure 2d shows the
state preparation scheme used here with the equivalent
cut. Because the left half of the chain is fully formed
immediately after the bond qubits reach the point in the
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circuit corresponding to the bipartition (dashed line), its
entanglement entropy can only result from entanglement
between it and the bond qubits, and can be extracted
at that point without ever building the right half of the
state. By the symmetry of entanglement spectra across
the cut, the spectra of ρA is then identical to that of the
bond-qubit register at this point, as shown in Fig. 2e.

Demonstration.—As an example of the MPS prepara-
tion technique and entanglement entropy extraction, we
use Honeywell’s model H0 QCCD trapped-ion quantum
computer [12] to construct MPS approximations to the
ground-state of the transverse-field Ising model (TFIM),
with Hamiltonian

H = −
∑
j

(ZjZj+1 + λXj). (3)

For transverse-field strengths λ > 1 the TFIM ground
state is disordered with respect to the Z2 symmetry of
the Hamiltonian, while for λ < 1 the ground state sponta-
neously breaks that symmetry, and these phases are sep-
arated by a continuous quantum phase transition. When
approaching the transition from either side, the entangle-
ment entropy diverges logarithmically [38], reflecting the
divergent correlation length at the transition and serving
as a sensitive probe of the phase transition [39].

The quantum computer operates with up to 6 qubits
and two gate zones (see Ref. [12] for a detailed descrip-
tion of the quantum computer architecture and opera-
tions). Each qubit is encoded in the states |1(0)〉 ≡
|F = 1(0),mF = 0〉 of the S1/2 ground-state hyperfine

manifold of a 171Yb+ ion, with F and mF quantum
numbers of the total internal angular momentum and its
projection along a ≈ 5 G applied magnetic field, respec-
tively. Qubit ions are co-trapped with an equal number of
138Ba+ ions, which are used to sympathetically cool the
motion of the qubits during a quantum circuit without
impacting their logical state. All laser-based operations
(gates, measurement, and reset) are carried out in the
two gate zones shaded blue and orange in Fig. 1a. The
ions are stored in either Ba-Yb or Ba-Yb-Yb-Ba crys-
tals, with single-qubit gates (average fidelity ≈ 99.97%)
performed on the former and two-qubit gates (average
fidelity ≈ 99.2%) on the latter. Arbitrary connectivity
of two-qubit gates is achieved by physically rearranging
the qubits between the various crystals into suitable pairs
prior to gating the pairs within each crystal.

For the present demonstration, it is crucial that the
system qubit can be selectively measured and reset in the
middle of a circuit without impacting the bond qubits,
which encode the MPS and its entanglement structure.
Both reset and measurement involve applying resonant
light either on a cycling transition (measurement) or to
optically pump |1〉 → |0〉 (reset) [40], and even a sin-
gle resonant photon scattered by a bond qubit causes
an error on that qubit. To avoid such crosstalk, qubits
that are measured or reset in the middle of a circuit are

temporarily isolated [19, 22, 23] from all other qubits
by at least 110µm during the reset process, whereas the
reset beams have an effective 1/e2 radius of ≈ 25µm.
MCMR crosstalk is further suppressed by using indepen-
dent electrode control to push unmeasured qubits off the
trap axis, inducing micromotion due to the RF trapping
potential. This motion effectively causes the measure-
ment/reset laser to appear phase modulated in the frame
of the unmeasured qubits, displacing a large fraction
of the already low laser intensity into off-resonant side-
bands. Detailed analysis of the measurement and reset
cross talk in this system can be found in Ref. [41], but for
our purposes it suffices to know that the average infidelity
induced on spectator qubits due to reset(measurement)
crosstalk is <∼ 4× 10−4(2× 10−3).

In order to demonstrate the state preparation method
and the extraction of entanglement entropy, we classi-
cally optimize MPS approximations to the TFIM ground
state over a range of λ and decompose their unitary em-
beddings into our native gate set. In principle, scaling
these techniques to bond dimensions outside the reach of
classical MPS optimization should be possible by utiliz-
ing parameterized circuits and feeding energy estimates
from the quantum computer into a classical optimization
routine [6, 42]. We first perform a scan across the phase
transition for a χ = 2 MPS, which requires only a sin-
gle bond qubit. Since the quantum computer has two
gate zones we generally run 2 parallel copies of the state
preparation scheme. While our goal is to extract en-
tanglement entropy from the bond-qubit register, prepa-
ration of the bond qubit steady state by MPS channel
iteration automatically provides an opportunity to sam-
ple local correlation functions along the way (after suffi-
cient channel iterations to converge to bulk values, but
prior to destructive measurement of the bond-qubit reg-
ister). Utilizing identical circuits to those run for entan-
glement entropy measurements at bond-dimension χ = 2,
we make sequential measurements of the system qubit in
subsequent bases X,Z,Z, as shown in Fig. 3a. For j − 1
iterations of the circuit block shown in the black-dashed
box in Fig. 3a, this procedure provides sufficient data
to estimate both 〈Xj〉 and 〈Zj+1Zj+2〉, which (by dis-
crete translational invariance) allows us to reconstruct
〈H〉 for large enough j. In practice, we always choose j
sufficiently large that boundary-induced errors are well
below anticipated shot noise [43]. The results of these
energy estimates for 5000 total shots per value of λ are
shown in Fig. 3(b), and are in good agreement with the
exact ground-state energy of the infinite TFIM.

We extract the TFIM bipartite entanglement entropy
by running the same circuits, except instead of making
measurements on the system qubit [45] we simply extract
the bond-register density matrix ρb by state tomography
after the jth iteration. Results for the entanglement en-
tropy SvN = −Tr(ρb log2 ρb) are shown as open purple
circles in Fig. 3c, and agree well with numerical calcula-
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FIG. 3. (a,b) Circuits for extracting bipartite entanglement
entropy of a χ = 2 (a) or χ = 4 (b) MPS. (c) Measured entan-
glement entropy for the TFIM. Open purple circles are data
taken with nb = 1, and the purple dashed line shows the en-
tanglement entropy of the lowest-energy MPS at χ = 2nb = 2.
Results using nb = 2 are shown as filled green circles, and
the solid green line corresponds to the lowest-energy χ = 4
MPS. The black-dotted line is the exact entanglement en-
tropy computed following Ref. [44]. All error bars represent
±σ confidence intervals obtained by bootstrapping. (a) Cir-
cuits to extract energy estimates from a bond-dimension 2
MPS. (b) Solid line is the exact ground-state energy of the
infinite-size TFIM. Experimental data (purple, 1σ error bars)
agrees reasonably well from deep inside the ordered phase into
the disordered phase. The gray shaded region is a 1σ con-
fidence interval from a numerical simulation with the same
shot-count as the experiment.

tions of the bipartite entanglement entropy for the χ = 2
MPS approximation to the ground state. At any finite
bond dimension the peak entropy will also be finite, but
the χ = 2 peak is also significantly shifted toward the dis-
ordered side. This behavior is expected and reflects the
tendency for any ansatz that limits entanglement (e.g.,
mean-field theory) to overestimate a system’s inclination
to order. To better resolve the entropy divergence at the
critical point, we took more data just on the disordered
side of the transition using one additional bond qubit,
giving a χ = 4 MPS (circuits shown in Fig. 3d, data

shown as filled green circles in Fig. 3c), and we see that
the growth of entanglement near the true critical point
becomes rapidly resolvable upon increasing the size of
the bond qubit register. For comparison, a similarly ac-
curate estimate of the entanglement entropy at the point
nearest to the phase transition (λ = 1.01), if achieved
by directly preparing the ground state of a large enough
system to sufficiently suppress boundary effects, would
require 40 qubits.

Note that all of the data in Fig. 3 utilize zero-noise ex-
trapolation [46] to mitigate errors on the two-qubit gates
[43]. For the χ = 4 data, we also employ a symmetry-
based selection criterion to reduce the number of mea-
surement settings required for tomography of the bond-
qubit register. While boundary effects can be suppressed
arbitrarily by iterating the MPS channel a larger num-
ber of times, this comes at the cost of total run time. To
minimize run time for the χ = 4 circuits, we let the initial
state of the bond-qubit register |Lλ〉 = Wλ |0〉 ⊗ |0〉 be a
function of λ, and classically optimized the unitary Wλ

to minimize the required burn in [43]. Note that this op-
timization always leaves the bond-qubit in a pure state,
so any measured entropy is due entirely to the applica-
tion of the MPS channel itself. While the optimization
of Wλ was performed classically, we emphasize that it is
not strictly necessary and was only performed to reduce
run times (by about a factor of 3 at λ = 1.01 and less
further from the transition). Moreover, this optimization
could in principle be performed directly on the quantum
computer at large bond-dimension using a variational ap-
proach [9]. While the χ = 4 results could in principle be
continued across the phase transition into the ordered
phase, the optimal circuits in the ordered phase are con-
siderably more complex than in the disordered phase,
leading to longer circuit run times and likely invalidating
the application of our noise mitigation techniques.

Outlook—Going forward it would be interesting to
combine quantum tensor network algorithms with qubit-
efficient schemes to measure Rényi entropies [47] in order
to access larger bond-dimension MPS. Ultimately it is
desirable to extend the present techniques to tree-like or
2D tensor networks, and to quantum analogues of MPS
time-evolution algorithms [6]; in both cases, large entan-
glement entropies often impede classical tensor-network-
based simulations in practice, and quantum implementa-
tions with more than 30 qubits may provide a significant
advantage [9, 11, 48, 49].
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