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We use a novel scanning electron Mach-Zehnder interferometer constructed in a conventional transmission
electron microscope to perform inelastic interferometric imaging with free electrons. An electron wave function
is prepared in two paths that pass on opposite sides of a gold nanoparticle, where plasmons are excited before
the paths are recombined to produce electron interference. We show that the measured spectra are consistent
with theoretical predictions, specifically that the interference signal formed by inelastically scattered electrons
is π out of phase with respect to that formed by elastically scattered electrons. This technique is sensitive to
the phase of localized optical modes because the interference signal amounts to a substantial fraction of the
transmitted electrons. We thus argue that inelastic interferometric imaging with our scanning electron Mach-
Zehnder interferometer provides a new platform for controlling the transverse momentum of free electrons and
studying coherent electron-matter interactions at the nanoscale.

Introduction.— Free electrons in transmission electron mi-
croscopes (TEMs) are ideal for probing individual nanoplas-
monic systems [1]. They couple to electromagnetic fields and
form spectrally-resolved high-resolution images via electron
energy-loss spectroscopy (EELS), which is sensitive to the in-
tensity of the probed optical fields, but insensitive to the phase
of those fields [1]. In general, scattered free electrons are vi-
able quantum probes for characterizing nanoplasmonic sys-
tems [2], but access to mode phase requires manipulation of
the electron wave function. Here, we explore the relationship
between the phase of both free electrons and the plasmons
they generate by introducing a new interferometric technique
uniquely capable of exploring transverse spatial correlations
between free electrons and condensed-matter excitations.

Several experiments in TEMs have exploited this phase co-
herence associated with inelastic electron-matter interactions.
Inelastic holography relies on an electrostatic biprism to inter-
fere different parts of an electron wave after interacting with
the sample, and has been used to measure the coherence prop-
erties of bulk and surface plasmon excitations [3, 4], as well
as the loss of coherence due to the electromagnetic interaction
with thermally populated material excitations [5]. However,
a partial degree of electron source coherence and the produc-
tion of multiple final states after electron-sample interaction
complicate the analysis and interpretation of measured sig-
nals [6–8]. Likewise, shaping the electron wavefront to match
the spatial distribution of the probed plasmonic near field fol-
lowed by post-selection of the scattered electrons has been
demonstrated as a method to filter localized plasmon reso-
nances (LPRs) of dipolar or quadrupolar character in a metal-
lic nanorod [9]. This method was also proposed to measure
the transfer of orbital angular momentum [10]. Although,
post-selecting wavefronts is inefficient and requires precise
alignments in the mode matching and selection apertures, pro-
hibiting concurrent high-quality imaging. Several theoretical
[11–13] and experimental [14] works have addressed sorting
post-interaction of free electrons into different measurement
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bases, but actual realizations have a limited scope so far. Al-
ternatively, the combination of pulsed lasers and synchronized
electrons has been used to resolve nanoscale optical fields
[15–18], but this approach requires highly specialized TEMs
and ultrafast optical systems.

In this Letter, we use a two-grating electron Mach-Zehnder
interferometer (2GeMZI) that produces two, spatially sepa-
rated interaction probes (the ±1 diffraction orders of the first
grating) to image the interference of coherent superpositions
of electrons inelastically scattered by the induced LPR excita-
tions of an individual gold nanoparticle (NP). After interaction
with the sample, the probes pass through a second grating, re-
combining the separate paths for co-propagation to a detector
allowing for complete interference in the interferometer out-
put (see more details in Ref. [19]). The latter is collected by
an EELS system to spectrally resolve the plasmon-scattered
electrons from the zero-loss peak (ZLP) [Fig. 1]. The interfer-
ence of the inelastic signal as a function of the interferometer
phase demonstrates that electrons in a coherent superposition
of paths can interact inelastically with the sample and remain
coherent after transmission through the interferometer. The
robust 2GeMZI described in this Letter has the ability to scan
spatially separated paths, tune the relative probe phase, and
create discrete, co-propagating outputs, opening the door to
a diverse range of electron-wave-based experiments that were
not possible before.

Dipolar Interactions in the 2GeMZI.— The 2GeMZI sepa-
rates the electron wave function into two parts, as depicted in
Fig. 1. The incident electron state |ψi〉, is prepared such that
there are two focal spots at the sample plane that are physi-
cally created using the first grating (G1). The final state of
the electron |ψ f 〉 is post-selected after interacting with the
sample by means of a second grating (G2) combined with
the entrance aperture of the electron energy analyzer. Near
the sample plane, we can write the real-space representation
of the incident electron wave function as ψi(r) = 〈r|ψi〉 =[
χi(r− r1)+ eiφi χi(r− r2)

]
/
√

2, where χi is a normalized
function describing each of the two nonoverlapping spots
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FIG. 1. Illustration of experiment. An electron is split by a grating
(G1) with pitch Λ = 2π/|k0|, preparing it in the superposition state
|ψi〉. The separated paths are focused and steered by magnetic lenses
to interact with the dipolar plasmon of a gold nanoparticle (interac-
tion Hamiltonian HI) producing the final state |ψ f 〉. The paths are
recombined using a second grating (G2 with the same pitch Λ) that
is continuously translatable by x0. The position x0 of G2 tunes the
relative path phase in the interferometer output as ∆φint = 2k0 · x0.
The output of the interferometer is dispersed in a spectrometer to re-
solve the elastic ZLP (green) and a dipole plasmon-scattered peak
(orange).

(centered at positions r1 and r2, respectively) and φi is a rela-
tive phase shift produced by stray potentials or any other dif-
ferences between the two electron paths, such as the alignment
of G1 relative to the optical axis (see below). Ignoring off-axis
diffracted beams after G2, the state |ψ f 〉 takes the same func-
tional form as the time reversal of |ψi〉 (i.e., it can be regarded
as the mirror image of |ψi〉 through the sample plane, but with
the electron traveling backwards). Consequently, we can write
ψ f (r) = 〈r|ψ f 〉 =

[
χ f (r− r1)+ eiφ f χ f (r− r2)

]
/
√

2. Addi-
tionally, for a lateral displacement x0 of G1 (or G2) along a
direction across the grooves, we have that φi (or φ f ) is mod-
ified by a term ∆φint = 2k0 · x0, where |k0| = 2π/Λ is the
wavenumber of the gratings with pitch Λ. This term arises
directly from the phase difference between the two first-order
diffraction orders introduced by a translation of G2.

In the absence of a sample, the arguments above allow us
to write the measured electron intensity output of the interfer-
ometer (i.e., the ZLP) as

IZLP ∝ |〈ψ f |ψi〉|2 ∝ cos2(∆φ/2), (1)

where the total relative path phase ∆φ = ∆φint + ∆φext re-
ceives contributions from the interferometer alignment ∆φint
and the noted path-related phases ∆φext = φ f − φi. In con-
trast, when a sample is inserted, the inelastic signal becomes
∝ ∑e |〈ψ f |〈e|HI |g〉|ψi〉|2, where HI is the electron-sample in-
teraction Hamiltonian, |g〉 represents the initial sample ground
state, we sum incoherently over all final excited sample states
|e〉, and each term in the sum may involve a different final
electron energy. However, the electron wave function can still
be approximated by ψ f (r) for each |e〉 (i.e., the energy loss
does not significantly affect electron propagation, other than

in the spectral separation performed at the analyzer [20]). For
a dipolar sample excitation of transition dipole p placed at a
position rc = (r1 + r2)/2 (the sample is centered between the
two electron spots) and oriented along the interspot direction
r2− r1, we have HI(r) ∝ p · (r− rc). So, for a small spot size
compared to rc, the inelastic signal becomes

Idipole ∝ sin2(∆φ/2). (2)

In general, for an excitation characterized by an angular mo-
mentum number m, we have HI(r) ∝ eimϕ , where ϕ is the az-
imuthal angle relative to rc. Following the same procedure as
above, the inelastic signal is ∝ cos2[(∆φ +m∆ϕ)/2], where
∆ϕ = ϕ2−ϕ1 is the relative azimuthal angle between the two
electron positions with respect to rc. By directly applying this
analysis to each multipole of a spherical particle, and if the
two spots are each at a radial distance R from the sphere’s
center, the inelastic plasmon 2GeMZI signal is

Isphere(∆φ) ∝
e2

h̄ωc

∞

∑
l=1

l

∑
m=−l

CE
lmIm{tE

l (ω)}K2
m

(
ωR
vγ

)
× cos2[(∆φ +m∆ϕ)/2],

(3)

where CE
lm are electric coupling coefficients, tE

l are Mie scat-
tering matrix elements, Km are modified Bessel functions of
the second kind, v is the electron velocity, γ is the relativistic
Lorentz factor, and h̄ω is the energy loss. In this expansion,
we only retain electric modes (E) that dominate the response
of the considered NP, and in particular the l = 1 terms stand
for the dipolar excitations, with |m| = 1 corresponding to the
sample-plane-oriented dipole and m = 0 denoting the along-
the-beam dipole (see SI [21]). Furthermore, we find it useful
to define the interference part of the inelastic signal

Iinterference = Isphere(∆φint = 0)− Isphere(∆φint = π) (4)

(see below).
We probe spherical NPs of ≈ 60 nm diameter and 80 nm

path separation in the 2GeMZI [Fig. 2(a,b)]. With these pa-
rameters, the l = 1 dipole mode in Eq. (3) is dominant, while
higher-order terms can be safely neglected (see SI [21]). Ad-
ditionally, we have recently shown that multi-probe imaging
with the 2GeMZI induces sample charging that can cause sig-
nificant relative phase shifts between the interferometer paths
[19]. This external phase shift can be effectively modeled for
the probes at transverse positions R1 and R2 passing through
an electrostatic potential produced by the sample charging as
∆φext = σ [Vz(R2)−Vz(R1)], where σ = e/h̄v is the first-order
interaction parameter and Vz(R) =

∫
dzV (r) is the projected

potential [22] (see SI [21]).

Description of the Experiment.— The 2GeMZI was con-
structed in an image-corrected 80-300 keV FEI Titan TEM by
placingthe input grating G1 in the condenser aperture holder

above the specimen plane and G2 in the selected area aper-
ture holder below the specimen plane (see Ref. [19]). The
TEM was operated at 80 keV, such that the STEM probe con-
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FIG. 2. Demonstration of inelastic interferometry. (a) Dark-field STEM image of a 60 nm gold nanoparticle (NP) on the edge of a carbon
substrate. (b) Sketch of the two-grating electron Mach Zehnder interferometer (2GeMZI), consisting of a STEM with two gratings used as
beam splitters. The first grating (G1) prepares electrons in a superposition of two separate paths, each of them interacting with the NP sample,
with some probability of losing energy to a plasmon resonance (orange). (c,d) The electron paths are recombined using the second grating
(G2), which can be positioned for (c) destructive (blue borders) and (d) constructive (green borders) interference, conversely modifying the
elastic and inelastic signals. Two NPs are observed in the image because of the two-spot beam configuration, with the central frame selecting
the interference region (i.e., each beam passing by one side of the NP). (e,f) For both alignment schemes, we integrate over the plasmon
(yellow-shaded) and ZLP (red-shaded) regions of the energy-loss spectra (f) at every scan location to create the spectral images shown in (e).
The raw spectra in (f) correspond to the dotted positions in (e). (g,h) We simulate the experiment with an external potential Vz(R) (g) and show
that the calculated results (h) are qualitatively consistent with the experimental spectral images (e). (i) Interference term of the loss probability,
obtained as the difference of the plasmon-integrated spectral images from the two different interferometer alignments in (e) and (h) [Eq. (4)].

vergence angle was tunable from 1 to 10 mrad. Both binary
diffraction gratings, G1 and G2, were milled into a 30 nm
thick free-standing Si3N4 membrane with 300 nm pitch and
optimized to maximize intensity in the ±1 diffraction orders
while yielding a minimum in the zeroth order. Approximately
30% of the transmitted intensity was placed in each of the ±1
orders, and <6% in any other order. A subsequent condenser
aperture [19] limited the beam to a 3 mrad convergence an-
gle. Then, a post-specimen lens was used to project a focused
image of G1 onto G2. In addition, the post-G2 projection
lenses were used to produce a real-space image of the interfer-
ometer output into the entrance aperture of the EELS system,
yielding a ZLP of 0.8 eV full-width-at-half-maximum. In this
configuration, the scan and descan coils were used to raster
the probes over a 200×200 nm2 region in the specimen plane
while maintaining the alignment of G1, G2, and the EELS
aperture. The±1 diffraction-order probes were 5 nm wide and
separated by 80 nm. Nevertheless, our demonstrated 2GeMZI
can be applied to a wide range of sample sizes and beam-spot
separations by suitably adjusting lens magnifications or grat-

ing placement and pitch.

Gold was chosen as a NP material for its resistance to form
oxides, long-term stability, availability, and ease of sample
preparation, although its LPRs overlap with interband tran-
sitions, in contrast to silver [23]. A monodisperse solution
of gold NPs (60 nm diameter) was dropcast on a lacey car-
bon grid, dried in air, and placed in the TEM. A single NP
was isolated on an edge of the carbon such that the two elec-
tron paths could pass on either side of the NP through vacuum
[Fig. 2(a,b)], yielding ∆ϕ ≈ π [Fig. 2(c,d)]. Then, spectral
images were recorded for both destructive and constructive
interferometer outputs [Fig. 2(e)] (see SI [21]). Integration
over the energy ranges (-1,1) eV for the ZLP and (1.5,4) eV
for the plasmon peaks, as shown in Fig. 2(f), produced energy
filtered spectral images [Fig. 2(e)].

Results and Discussion.— Figure 2(a) shows that the car-
bon support has a much larger surface area than the NP and
there is a small azimuthal tilt angle offset between the carbon
edge and the horizontal diffraction direction of the scanning
probes. Consequently, we model the contribution of the car-
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bon edge to be 30 times stronger than that from the NP in
the approximate external potential, and further account for a
5◦ angular misalignment between the probes and the carbon
edge [Fig. 2(g)]. We use this simulated potential to gener-
ate spectral images via Eq. (3) that are in excellent qualitative
agreement with the experimental results [Fig. 2(h)]. By taking
the difference of the plasmon-integrated spectral images with
the destructive and constructive interferometer alignments, we
can find the spatially resolved interference term in the energy-
loss spectrum [Eq. (4)], which shows the same structure as
the simulated result [Fig. 2(i)].

FIG. 3. Measured and modelled ZLP and plasmon intensities as a
function of total relative probe phase.

As a more quantitative visualization, we assign a relative
probe phase to each pixel in Fig. 2(e) by normalizing the
ZLP intensity and inverting Eq. (1). The normalized inte-
grated ZLP and plasmon intensities of each pixel are plot-
ted as a function of the assigned relative probe phase in Fig.
3. We show the mean values binned by every π/12 relative
phase interval along with the theoretically predicted values for
∆ϕ = π . To account for the uncertainty in the ZLP intensity
maxima and minima corresponding to ∆φ = 0 and ∆φ = π , we
introduce a π/12 systematic error in the standard deviation of
the binned values added in quadrature. The error given for the
mean integrated plasmon intensities is the standard deviation
for each binned region and the phase error is assumed to be
the same as the mean ZLP data. Deviation of the measured
ZLP intensity from the theoretical prediction is well under-
stood by the small, but nonzero contributions of the higher-
order probes from G1 causing a loss of fringe visibility. This
does not have a substantial effect on the visibility of the plas-
mon interference because the higher-order probes are further
away from the NP than the main ±1 probes and the plasmon
loss probability is exponentially suppressed for large impact

parameters [24]. Additional measurements were performed
on a separate gold NP, also demonstrating the converse dipole
interference relation (see in SI [21]).

Similar conditional interference relations exist between the
ZLP and higher-order multipolar modes, dependent on the ge-
ometry and symmetry of their spatial distributions and the
probe positions, although they are not spectrally resolvable
in spherical gold NPs. However, multiple plasmon peaks are
resolved in anisotropic NPs [25], NP assemblies [26], or NPs
made of less lossy materials [27], where such relations could
be explored using a 2GeMZI with improved spectral resolu-
tion. Integration of a cathodoluminescence collection system
with a 2GeMZI could provide information about the correla-
tion between the phase-coherent superpositions of scattered
electrons and photons emitted from radiative dipole plasmon
decay [28, 29]. This 2GeMZI could also serve to measure the
transfer of orbital angular momentum [11, 12, 14]. Finally, we
note that inelastic free-electron interference in the 2GeMZI is
not exclusive to plasmon scattering and can be used to probe
polaritons and condensed-matter excitations in general [30].

Conclusion.— We have demonstrated phase-sensitive inter-
ference between coherent superpositions of inelastically scat-
tered free electrons within a two-probe 2GeMZI from plas-
monic excitations of a single gold NP. The excitation of a
plasmon introduces an expected relative π phase difference
between the two interferometer paths of the inelastically scat-
tered electrons, which is well-described by a dipolar interac-
tion. Isolating this interferometer output provides a potential
way to detect dipolar excitations at energies below the resolu-
tion of the microscope. Beyond individual modes, the present
method should be capable of retrieving the relative complex
amplitude of the nonlocal electromagnetic Green tensor asso-
ciated with the optical response of the sample. Additionally,
the high throughput, flexibility, scanning capabilities, and ease
of operation in a conventional scanning TEM of this technique
provides an exciting platform for probing quantum mechanics
at the nanoscale, and allows for control over the transverse
momentum of the free electron wave function. Further devel-
opment of the present technique could lead to tests of quantum
complementarity for free electrons [31], explorations of deco-
herence theory [32], and manipulation of free electrons with
unprecedented versatility [2].
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