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The current response to an electromagnetic field in a Weyl or Dirac semimetal becomes nonlocal
due to the chiral anomaly activated by an applied static magnetic field. The nonlocality develops
under the conditions of the normal skin effect and is related to the valley charge imbalance gen-
erated by the joint effect of the electric field of the impinging wave and the static magnetic field.
We elucidate the signatures of this nonlocality in the transmission of electromagnetic waves. The
signatures include enhancement of the transmission amplitude and its specific dependence on the
wave’s frequency and the static magnetic field strength.

Introduction.— A salient feature of Weyl and Dirac
materials is the possibility to realize the chiral anomaly
due to their relativisticlike electronic spectra in the vicin-
ity of the band-touching nodal points. As was pointed
out in Ref. [1], this is an analog of the Adler-Bell-Jackiw
axial anomaly in relativistic physics [2, 3]. The chi-
ral Adler-Bell-Jackiw anomaly has been first observed
in Weyl superfluid 3He-A [4]. In the solid-state physics
setting, the anomaly may lead to a negative magnetore-
sistance in the direction parallel to the applied magnetic
field. The interest in the manifestations of the chiral
anomaly in the electron transport flared up after the
discovery of Weyl semimetals [5–7]. The kinetic theory
of the negative magnetoresistance in direct current (dc)
transport was fleshed out [8] and its dependence on the
electron spectra and relaxation times was elucidated. A
negative magnetoresistance was indeed observed in Dirac
(e.g., Na3Bi, Cd3As2, and ZrTe5) and Weyl (e.g., tran-
sition metal monopnictides TaAs, NbAs, TaP, and NbP)
semimetals (see Refs. [9–13] for reviews on anomalous
transport properties). However, it was soon realized that
the observation of the negative magnetoresistivity alone
is not sufficient to claim the realization of the chiral
anomaly. Among the effects that can mimic the anomaly
are the current jetting [14, 15] due to an inhomogeneous
distribution of the electric current in materials with high
mobility and the electron scattering on long-range ionic
impurities [16].

It was suggested in Ref. [17] to use frequency as an
additional control “knob” to investigate the effects of the
chiral anomaly while circumventing the current jetting:
in the presence of a magnetic field, the anomaly results in
a Drude-like contribution to the conductivity. The width
of the corresponding low-frequency peak in the linear
alternating current (ac) response to a spatially-uniform
electric field is determined by the inter-node relaxation
rate. The latter rate is usually small compared to the
intra-node relaxation rate, so the anomalous conductiv-
ity peak is fairly narrow. The tendency towards the peak
narrowing was seen in the contact-less measurements of
the transmission amplitude of an electromagnetic field
through a Cd3As2 film [18].

The electric field of the wave penetrating a material,
however, is nonuniform due to the skin effect. This raises
a question regarding the influence of chiral anomaly on
the transmission of an electromagnetic wave across a film
made of a Weyl or Dirac conductor.

We demonstrate in this Letter that an application of a
magnetic field parallel to the surface of a Weyl or Dirac
conductor activate the chiral anomaly and may result in
a nonlocal current response to an impinging electromag-
netic wave. We emphasize that this nonlocal response
develops under the conditions corresponding to the nor-
mal skin effect. The latter is thought to be adequate
for materials with the electron mean free path shorter
than the electromagnetic field penetration depth [19]. A
new element brought by the topological electronic band
structure is the valley charge imbalance. It is activated
via the chiral anomaly by the joint effect of the electric
field of the impinging wave, active within the skin layer,
and a static magnetic field. The valley charge imbalance
preserves the local charge neutrality and therefore is not
suppressed by screening. This property allows the im-
balance to diffuse beyond the skin depth, deeper into the
sample. The accompanying chiral magnetic effect [20, 21]
current represents the nonlocal response to the electric
field of the impinging wave and facilitates its anomalous
penetration similar to a dc nonlocal transport [22–24].

The three main regimes of the current response includ-
ing dc, ac local, and ac non-local regimes are schemati-
cally illustrated in Fig. 1. In this work, unlike the existing
studies (e.g., Ref. [18]) of the chiral anomaly performed
in the local regimes, see the blue dotted line in Fig. 1, we
focus on the ac nonlocal regime with a spatial dispersion
of the conductivity, see the red dotted line in Fig. 1.

Model and key equations.— To study the transmission
of electromagnetic waves, we consider a film of a Dirac
or time-reversal symmetric Weyl semimetal [25] with the
thickness L along the z-direction. We assume the normal
incidence of the incoming (z ≤ 0) wave with an electric
field Ein(t, z) = Eine

i(kz−ωt), where ω is the angular fre-
quency and k = ω/c is the wave vector. A portion of
the incoming field Er(t, z) is reflected from the surface
and a portion Eout(t, z) is transmitted across the film.
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FIG. 1. The schematic representation of the current re-
sponse regimes discussed in this work. Here q0(ω) = 1/δ(ω) =√
2πσ0ω/c is inverse of the skin depth, σ0 is the static Drude

conductivity, ω is the angular frequency of the impinging
wave, q(ω) =

√

ω/(2D) is inverse of the diffusion length,

D is the diffusion coefficient, ξ = q0(ω)/q(ω) =
√
4πσ0D/c

is the frequency-independent parameter quantifying the non-
locality of the response, and 1/τ5 is the effective inter-node
scattering rate. In addition, we assume a short intra-node
scattering time τ , i.e., ωτ ≪ 1. The transmission of elec-
tromagnetic waves is described via the standard expressions
for the normal skin effect [19] with a modified by the chiral
anomaly conductivity, σ(ω) = σ0 + σanom(B0, ω), in the dc
and ac local (ξ < 1) regimes; see Eq. (10) for the transmitted
electric field. In the ac nonlocal regime (ξ > 1), it is possi-
ble to achieve an enhancement of the electromagnetic wave
penetration depth; see Eqs. (8) and (9).

The in-medium field E(t, z) satisfies the standard system
of Maxwell’s equations. To close it, one needs to evalu-
ate the current density as a response to the electric field.
This (generally nonlocal) linear response is controlled by
the electron kinetics. In building the kinetic theory of a
Weyl or Dirac semimetal, we assume that the characteris-
tic intra-node relaxation times are much shorter than the
inter-node ones in accordance with experiments, see, e.g.,
Refs. [18, 26]. In addition, the intra-node scattering rates
are assumed to be much larger than the frequency of the
electromagnetic field. To activate the chiral anomaly, we
include a static uniform magnetic field B0, which is ap-
plied parallel to the surface and is classically weak [27].
Under this condition, B0 does not affect the diffusive
electron dynamics, while introducing an anomalous term
into the partial current density jα(t, z) produced by elec-
trons of node α [28],

jα(t, z) = σαE(t, z)−Dα∇Nα(t, z)− vΩ,αNα(t, z). (1)

Here Nα(t, z) is the perturbed partial (or valley) elec-
tron charge density at node α and vΩ,α is the anomalous
velocity associated with the flux χα of the Berry curva-
ture; Dα and σα = e2ναDα are the respective diffusion
constant and partial electric conductivity, respectively.
In terms of χα and the Fermi level density of states να
of electrons around node α, the anomalous velocity is

vΩ,α = χαeB0/
(

4π2
~
2cνα

)

. While the first two terms in
Eq. (1) correspond to the conventional intra-node diffu-
sion current, the last term describes the chiral magnetic
effect current [20, 21] after summing over all nodes.
The kinetic equation in the diffusive approximation is

∂tNα(t, z) +∇ · jα(t, z) = −
NW
∑

β

Tα,βNβ(t, z)

−e2ναvΩ,α ·E(t, z); (2)

see Supplemental Material (SM) [29] and, e.g., Refs. [10,
22, 30] for details. The terms on the left-hand side
of Eq. (2) correspond to the conventional continuity
equation in each of the nodes. On the right-hand
side, we introduced the shorthand notation Tα,β =

δα,β
∑NW

γ 1/τα,γ − 1/τβ,α in the term responsible for the
inter-node scattering in the relaxation time approxima-
tion. Here NW is a number of Weyl nodes and 1/τα,β
are the scattering rates between nodes α and β. Fi-
nally, the last term in Eq. (2) corresponds to the chiral
anomaly. It is important to note that the total electric
charge

∑NW

α Nα(t, z) is conserved by the collision inte-
gral and the chiral anomaly. In addition, the transverse
field, ∇ ·E(z) = 0, in Eq. (2) does not violate the electric
charge neutrality.
Since the time dependence of fields, currents, and den-

sities is given by the same prefactor e−iωt, we combine
Eqs. (1) and (2) as

NW
∑

β

[

Tα,β

Dα
− 2iq2α(ω)δα,β − δα,β∂

2
z

]

Nβ(z)

= −e2να
Dα

vΩ,α ·E(z), (3)

where qα(ω) =
√

ω/(2Dα) is the inverse of the diffusion
length. Finally, neglecting the displacement current for
ω ≪ σ0 with σ0 =

∑NW

α σα being the static conductivity,
Maxwell’s equations for the transverse components of the
electric field together with the equation for current (1)
are brought to the following form:

[

∂2
z + 2iq20(ω)

]

E(z) =
4πiω

c2

NW
∑

α

vΩ,αNα(z), (4)

where q0(ω) =
√
2πσ0ω/c is the inverse of the skin depth.

In order to form a complete system for the transverse
electric field E(z) and the valley charge densities Nα(z),
Eqs. (3) and (4) should be amended with boundary con-
ditions. We use the standard boundary conditions for
electromagnetic fields, i.e., we require the continuity of
the tangential component of the electric fields and their
derivatives [31] at z = 0, L. As for the densities, we
consider two types of phenomenological boundary condi-
tions:

(i) Nα(z = 0, L) = 0 and (ii) ∂zNα(z = 0, L) = 0. (5)
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These two conditions correspond, respectively, to the lim-
its of fast and no inter-node relaxation at the boundary.

Transmission of electromagnetic waves.— A finite
anomalous velocity vΩ,α emerging at B0 6= 0 couples the
electric field E(z) of the wave to the diffusion of partial
densities Nα(z). The spectrum of the diffusion length
scales can be found by solving the eigenvalue problem for
the coupled set of the diffusion equations; see Eq. (3) for
a diffusion equation at node α. In general, the spectrum
of the diffusion lengths depends on the inter-node relax-
ation rates. However, in the limit of ω high compared to
the characteristic value 1/τ5 of the inter-node scattering
rates, the diffusion equations decouple from each other
and the diffusion lengths are quantified by 1/qα(ω). We
note that the ratio ξα = q0(ω)/qα(ω) =

√
4πσ0Dα/c is

defined solely by the material properties, and is inde-
pendent of ω. The anomalous penetration of the field
is driven by the largest among ξα. Aiming at a strong
anomalous effect, we assume ξα ≫ 1 for all α and con-
sider films of thickness far exceeding the normal-skin pen-
etration depth, L ≫ 1/q0(ω).

It is convenient to separate the electric field into
two components, E(z) = E‖(z) + E⊥(z), parallel and
normal to B0, respectively. The anomaly affects only
the former one, while |E⊥(z)| ∝ e−Lq0(ω) is indepen-
dent of B0. When evaluating E‖(z), we focus on the
most practical case of weak coupling between E‖(z)
and Nα(z). This allows us to solve Eqs. (3) and (4)

iteratively in vΩ,α by starting with E
(0)
‖ (z) = (1 −

i)(ω/c) e−zq0(ω)eizq0(ω)E‖in/q0(ω) at L − z ≫ 1/q0(ω)
within the film; the corresponding outgoing field follows

from the boundary conditions and reads E
(0)
‖out(z = L) =

2(1 − i)(ω/c) e−Lq0(ω)eiLq0(ω)E‖in/q0(ω). Being substi-

tuted into the right-hand side of Eq. (3), E
(0)
‖ (z) creates

a source exciting valley charge density imbalance. The

resulting solution N
(1)
α (z) ∝ vΩ,α reads [29]

N (1)
α (z) = −i

e2ναvΩ,α

2q20(ω)Dα

sin [(1 + i)(L− z)qα(ω)]

sin [(1 + i)qα(ω)L]
E

(0)
‖ (0)

(6)
for the Dirichlet boundary conditions (5). In solving
Eq. (3), we assumed a highly-nonlocal regime, ξα ≫ 1,
and considered z ≫ 1/q0(ω).

Lastly, we use Eq. (6) on the right-hand side of Eq. (4)

to find the anomalous correction E
(2)
‖ (z) ∝ v2Ω,α to the

electric field. The solution to Eq. (4) is simplified by a
slow spatial variation of the partial densities, 1/qα(ω) =
ξα/q0(ω) ≫ 1/q0(ω), allowing us to write

E
(2)
‖ (z) =

1

σ0

NW
∑

α

vΩ,α

[

N (1)
α (z)− 1 + i

2q0(ω)

×e−(L−z)q0(ω)ei(L−z)q0(ω)∂zN
(1)
α (z = L)

]

. (7)

This form is valid for any of the two boundary conditions
for Nα(z). The outgoing field follows from the continuity
of the tangential components of the electric field, i.e.,

E
(2)
‖out(z = L) = E

(2)
‖ (z = L).

We consider two characteristic cases of a film thick,
L ≫ 1/qα(ω), or thin, L ≪ 1/qα(ω), compared to the
diffusion lengths. In the former case, the partial charge
density decays exponentially with z. Using Eq. (7), we
find the following transmitted electric field:

E‖out(t, z = L) =2

√

ω

πσ0

[

e−L/δ(ω) cos

(

L

δ(ω)
− π

4
− ωt

)

−
NW
∑

α

gα
ξ3α

B2
0

B2
α(ω)

e−L/[ξαδ(ω)]cos

(

L

ξαδ(ω)
+

π

4
− ωt

)

]

E‖in,

(8)

where gα = 1 for N
(1)
α (z = 0, L) = 0 and gα = ξ2α

for ∂zN
(1)
α (z = 0, L) = 0, respectively. For clarity, in

Eq. (8), we restored the real part for the fields, used
the conventional definition for the normal skin depth,
δ(ω) = c/

√
2πσ0ω, and introduced the characteristic

magnetic field Bα(ω) = 4πΦ0~

√

ωνα
∑NW

β νβDβ, which

depends on the electronic properties of the material and
frequency. In writing Bα(ω), we used the explicit ex-

pression for vΩ,α and σ0 = e2
∑NW

α ναDα for the Drude
conductivity; Φ0 = π~c/e is the magnetic flux quantum.
While the terms in Eq. (8) representing the conventional
and anomalous components of the transmitted field both
decay exponentially with the film thickness, the respec-
tive penetration depths are vastly different at ξα ≫ 1.
In the case of a thin film, L ≪ 1/qα(ω), the partial

charge, which is created in the skin layer, spreads over
the entire thickness of the film L due to diffusion. Sub-
stituting the proper limit of Eq. (6) that defines N

(1)
α (z)

into Eq. (7), we find

E‖out(t, z = L) =2

√

ω

πσ0

[

e−L/δ(ω) cos

(

L

δ(ω)
− π

4
− ωt

)

− 1

2
√
2

δ(ω)

L

NW
∑

α

gα
ξ2α

B2
0

B2
α(ω)

sin (ωt)

]

E‖in. (9)

As expected, the anomalous correction to the outgoing
electric field (the second term) acquires a ∝ 1/L scal-
ing with the film thickness. In the case of the Dirich-
let boundary conditions (gα = 1), there is an additional
small prefactor 1/ξ2α that originates from the suppres-

sion of N
(1)
α (z) near the boundaries. Such suppression is

absent for the Neumann boundary conditions (gα = ξ2α)
where a uniform partial charge density is allowed [29].
To contrast the results for the local and nonlocal

regimes, we present also the transmitted field at ξα ≪ 1.
It can be obtained by introducing the anomalous correc-
tion to the electric conductivity in the standard expres-
sion for the normal skin effect, see SM [29] for details. In
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the leading order in B0, we have

E‖out(t, z = L) = 2

√

ω

πσ0
e−L/δ(ω)

[

cos

(

L

δ(ω)
− π

4
− ωt

)

− 1√
2

L

δ(ω)

NW
∑

α

B2
0

B2
α(ω)

cos

(

L

δ(ω)
− ωt

)

]

E‖in, (10)

where, as in the case of the nonlocal response, we ne-
glected the inter-node scattering. As one can see by com-
paring Eqs. (8), (9), and (10), the scaling of the anoma-
lous parts of the transmitted fields with frequency is qual-
itatively different and might be used to distinguish non-
local and local response regimes even if material parame-
ters are not known a priori. Furthermore, it is straightfor-
ward to check [29] that the amplitude of the transmitted
field in the local regime always decreases with the mag-
netic field. On the other hand, interference between the
anomalous and the regular normal-skin terms in Eq. (8)
or (9) may lead to an enhancement of the transmitted
field at B0 6= 0.

Estimates for a model with symmetric Weyl nodes.—

To provide estimates of the proposed effects, we con-
sider a simplified model with NW Weyl nodes forming
well-separated from each other symmetric pairs of the
nodes of opposite topological charges. We assume the
electron dispersion around each of the nodes to be lin-
ear, with the same parameters να → ν and Dα → D.
This allows us to introduce the node-independent elec-
tron mean free path ℓ = vF τ with the intra-node re-
laxation time τ , and replace ξα → ξ. With these sim-
plifications, we reformulate the condition of the normal
skin effect, ℓ ≪ δ(ω), as ξ

√
ωτ ≪ 1. Therefore, our

approximations are valid for the following double con-
straint on ξ: 1 ≪ ξ ≪ 1/

√
ωτ . The lower constraint on

frequency ω comes from the inter-node relaxation rate.
In our model, the corresponding rate, 1/τ5, comes from
relaxation within (α,−α) pairs. At the lower limit for fre-
quency, ω ∼ 1/τ5, the range for ξ is limited from above
by

√

τ5/τ ; see also SM [29].

The magnitude of the anomalous correction to the
transmitted field is controlled by the ratio B0/Bα(ω)
in Eqs. (8), (9), and (10). In the simplified model,
there is no α-dependence, and we are able to transform
Bα(ω) → B⋆(ω) = (4/

√
3)Buq

√
NWωτ . Here Buq is the

magnetic field at which the ultra-quantum limit (i.e., only
the lowest Landau level is populated) is reached. At the
lowest frequencies, ω ∼ 1/τ5, the characteristic field is
B⋆ ∼ Buq

√

NW τ/τ5.

To flesh out the estimates, we use some of the pa-
rameters of the Weyl semimetal TaAs [32] derived from
Refs. [33, 34]: NW = 24, the Fermi velocity vF ≈
3 × 107 cm/s, the Fermi level (measured from a node)
µ ≈ 20 meV, and the ratio τ5/τ ≈ 158. We estimate
Buq ≈ 3.5 T, the upper limit ξ ∼ 13 for the range of ξ,

and the lower limit B⋆ ∼ 1.4 T for B⋆ ∼ Buq

√

NW τ/τ5.
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FIG. 2. The dependence of the relative field amplitude
∣

∣E‖out

∣

∣ / |Eout(B0 = 0)| − 1 on frequency for a few values of
the magnetic field. We used Eq. (9) to plot the results in the
nonlocal (ξ = 5) regime. Black vertical dashed lines are the
boundaries of the parameter region where the nonlocal regime
under the conditions of the normal skin effect is realized. Fur-
ther, B⋆ = Buq

√

NW τ/τ5, Buq = cµ2/(2e~v2F ), L = 50 µm,
we fixed Neumann boundary conditions, and used other pa-
rameters given in the text.

The above estimates depend on the ratio τ5/τ , but not
separately on any of these times. To get ξ & 1, however,
one needs τ & 10 ps; this is about 25 times higher than
the value τ ≈ 0.38 ps reported in Refs. [33, 34]. One may
expect the quoted above ratio τ5/τ to persist for cleaner
samples if both τ and τ5 are limited by scattering off the
same defects. Lastly, at τ ∼ 10 ps, fields B0 . 0.02 T
satisfy the classically-weak-field condition.
We illustrate the dependence of the relative field ampli-

tude
∣

∣E‖out

∣

∣ / |Eout(B0 = 0)| − 1 on frequency in Fig. 2
for the nonlocal regime. Since cyclotron motion does
not affect the conductivity along the direction of a non-
quantizing magnetic field (B0 ≪ Buq) for spherical Fermi
surfaces [35], we extend the field domain in Eqs. (8),
(9), and (10) to B0 . B⋆. The main qualitative differ-
ence between the nonlocal and local regimes is that the
chiral anomaly enhances the transmission amplitude in
some interval of ω for the former one, while it suppresses
the amplitude at any ω in the local regime. Scaling of
the transmission amplitude with the film thickness L at
ξ ≪ 1 is controlled by a single parameter, L/δ(ω), see
Eq. (10). In the nonlocal regime, the L-dependence is de-
fined by the normal-skin and diffusion lengths, δ(ω) and
ξδ(ω), respectively. In certain intervals of L, the anoma-
lous correction competes with the normal-skin term in
E‖out, see Eqs. (8) and (9), resulting in the negative val-

ues of
∣

∣E‖out

∣

∣ / |Eout(B0 = 0)| − 1. However, with the
raise of frequency, the anomalous term could win over
the normal-skin one, as is illustrated by Fig. 2.
Discussion and Summary.— We showed that the chi-

ral anomaly may lead to a nonlocal current response of
a Weyl or Dirac semimetal even under the conditions of
the normal skin effect. The length scale for the nonlo-
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cality is determined by the diffusion length of the valley
charge imbalance, which does not violate the local electric
charge neutrality. This nonlocality is manifested in the
penetration and transmission of electromagnetic waves if
the diffusion length exceeds the normal skin depth. Such
a regime may be possible in sufficiently clean materials.

The chiral anomaly is activated by a static magnetic
field B0 applied parallel to the surface of the material.
The anomaly affects the transmission of an electromag-
netic wave with the electric field E‖ parallel toB0. In this
case, the penetration of the field is sensitive to the com-
petition between the normal and anomalous mechanisms
of the electromagnetic field propagation in the material.
The penetration of the component of the electric field E⊥

orthogonal to B0 is unaffected by the anomaly.

We developed a detailed prediction for the field trans-
mission across the film; see Eqs. (8) and (9) for films
thick and thin compared to the diffusion length, respec-
tively, as well as Eq. (10) for the local response regime.
In view of a weaker decay of the anomalous components,
it might be possible to achieve an enhancement of the
electromagnetic wave penetration depth in the nonlocal
regime, see Fig. 2. Furthermore, the anomalous part of
the transmitted field in the local and nonlocal regimes of
the current response is characterized by a different scal-
ing with frequency, cf. Eqs. (8) and (9) with Eq. (10).
These features may allow one to identify the nonlocality,
even if the electron transport parameters of a sample are
not known in advance.
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