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A many-mode laser with nonlinear modal interaction could serve as a model system to study many-
body physics. However, precise and continuous tuning of the interaction strength over a wide range is
challenging. Here, we present a unique method for controlling lasing mode structures by introducing
random phase fluctuation to a nearly degenerate cavity. We show numerically and experimentally
that as the characteristic scale of phase fluctuation decreases by two orders of magnitude, the
transverse modes become fragmented and the reduction of their spatial overlap suppresses modal
competition for gain, allowing more modes to lase. The tunability, flexibility and robustness of our
system provides a powerful platform for investigating many-body phenomena.

Many-body interaction has been a general topic in nu-6

merous fields of research, including condensed matter and7

particle physics, astronomy, chemistry, biology, neuro-8

science, and even social sciences. In optics, many-body9

interactions have been studied in a variety of active sys-10

tems with different types of nonlinearities, which display11

a range of phenomena such as synchronization, pattern12

formation, bistability and chaotic dynamics [1]. A well-13

known example is multimode lasers, where many lasing14

modes interact nonlinearly through the gain material.15

The complex interactions provide an optical realization of16

XY spin Hamiltonian and geometrical frustration [2–4].17

In a random laser, the nonlinear coupling of lasing modes18

in a disordered potential leads to the “glassy” behavior19

and a replica-symmetry breaking phase transition [5–7].20

A continuous tuning of modal interaction strength over21

a wide range is essential to investigate many-body inter-22

action, but it is difficult to realize experimentally. Previ-23

ously, spatial modulation of pump intensity (optical gain)24

was adapted for controlling nonlinear interaction of las-25

ing modes in random media [8–12]. While the lasing26

modes compete for optical gain, the degree of competi-27

tion depends on the spatial and spectral overlap of these28

modes [13–15]. Tuning the amount of disorder can vary29

the spatial distribution of random lasing modes, modify-30

ing their overlap [16, 17]. However, the lasing thresholds31

of these modes are also changed, in correspondence to32

the changes in their lifetimes or quality (Q) factors [18].33

As the number of lasing modes varies, their interaction34

through gain saturation is affected. Therefore, it would35

be desirable to tune the spatial overlap of the lasing36

modes without significant modification of their thresh-37

olds.38

In this Letter, we introduce transverse disorder to a39

self-imaging cavity thereby inducing fragmentation of las-40

ing modes. By varying the spatial scale of random phase41

modulation imposed by a spatial light modulator inside42

a degenerate cavity, we gradually tune the transverse size43
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of lasing modes over two orders of magnitude. As the las-44

ing modes adapt to the random phase variations and be-45

come localized in separate domains, their spatial overlap46

is reduced, and their nonlinear interaction via gain com-47

petition is suppressed. Unlike with random lasers, the48

Q factors of many modes are determined mainly by the49

longitudinal confinement which remains constant during50

the tuning of transverse disorder, allowing these modes51

to lase simultaneously. Experimentally, the number of52

lasing modes increases as the characteristic length scale53

of random phase fluctuation decreases, indicating that54

the reduction of nonlinear modal interaction dominates55

over Q factors spoiling.56

The increase in the number of lasing modes due to57

modal fragmentation by disorder bears a resemblance to58

the fragmentation of Bose-Einstein condensates (BEC)59

with repulsive interactions in a disordered potential [19].60

The energy cost of fragmentation, proportional to spa-61

tial overlap of fragmented BECs [20], is suppressed as62

the BECs become localized by the disordered potential,63

similarly to the cost of gain competition suppressed for64

the localized lasing modes. The mapping between energy65

cost in atomic systems and gain/loss in photonics [3] can66

therefore be used to study other many-body interacting67

systems, in particular the interplay between nonlinear in-68

teraction and disorder, using photonic simulators [21, 22].69

Figure 1(a) schematically shows our degenerate cavity70

laser (DCL) of length 1 m and transverse dimension 0.9571

cm. It is comprised of a reflective spatial light modu-72

lator (SLM), a Nd:YAG rod (length = 10.9 cm, diame-73

ter = 0.95 cm) optically pumped to provide gain, a pair74

of lenses (L1, L2) arranged in a 4f configuration, and an75

output coupler (OC). The telescope formed by L1 and76

L2 images the SLM surface onto the OC and then back77

to the SLM [23]. The self-imaging condition allows many78

transverse field distributions to be eigenmodes of the cav-79

ity. The typical DCL has a flat mirror in place of the80

SLM, and it has many transverse modes with nearly de-81

generate frequency and loss [24]. By inserting a SLM into82

the degenerate cavity, the transverse mode structure may83

be reconfigured easily and arbitrarily [25]. A computer-84

generated random phase profile φ(x, y) is displayed on85
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the SLM. The random phase spatial correlation function86

Cφ(∆x,∆y) = 〈φ(x, y)φ(x+ ∆x, y + ∆y)〉x,y (1)

is computed, where 〈...〉x,y denotes averaging over the87

spatial coordinates x and y. Its full width at half max-88

imum (FWHM) gives the correlation length ξ of phase89

fluctuation [23]. The SLM enables continuous tuning of90

ξ from 0.1 mm to 10 mm, providing more flexibility over91

a glass phase diffuser with a constant ξ [26].92

Figure 1(b) shows an example of a random phase pro-93

file displayed on the SLM with ξ = 1.5 mm, and Fig. 1(c)94

shows the corresponding phase gradient. The contours95

of large phase gradients reflect rapid phase variations,96

which lead to strong optical diffraction. Figure 1(d) is97

the measured lasing emission pattern at the OC plane,98

which corresponds to the random phase profile at the99

SLM. As evident, the emission intensity drops abruptly100

along the high-phase-gradient contours, indicating that101

the lasing modes avoid these regions with high diffrac-102

tion loss. Consequently, the lasing modes are segregated103

by the random phase profile.104
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FIG. 1. Introducing disorder to a degenerate cavity laser. (a)
Schematic of a degenerate cavity laser (DCL), comprised of
a spatial light modulator (SLM), two lenses (L1, L2), and
an output coupler (OC). The 4f configuration ensures a self-
imaging condition. (b) A computer-generated random phase
profile φξ(x, y), with correlation length ξ = 1.5 mm, is written
to the phase-only SLM. (c) Calculated phase gradient of the
profile in (b). (d) Experimentally measured emission intensity
distribution on the OC at the pumping level of 2.2 times the
lasing threshold for flat phase. The intensity nearly vanishes
along the high-phase-gradient contours shown in (c), which
effectively segment the emission pattern.

We apply a series of random phase profiles to the SLM,105

with the correlation length ξ varying from 10 mm to 0.1106

mm. Figure 2(a) shows the emission intensity distribu-107

tion at the OC plane for ξ = 10, 1, 0.1 mm at the pump108

power of 2.4 times the lasing threshold for flat phase. At109

ξ = 10 mm (equal to the transverse dimension of the110

cavity), the emission is homogeneous and has a flat top111

profile (left column). As ξ decreases, the emission pattern112

is segmented into multiple domains (middle column). A113

further reduction of ξ to 0.1 mm breaks the emission114

into many bright spots, each corresponding to a lasing115

mode (right column). The neighboring lasing modes are116

mutually incoherent, as they do not interfere with each117

other [23]. We note that the bottom panel of Fig. 2(a)118

shows very few bright spots in the near-field emission119

patterns that result from local defects, as detailed in the120

Supplementary [23].121

To characterize the feature size of emission pattern,122

we compute the spatial correlation function of the inten-123

sity distribution I(x, y) at the OC plane, CI(∆x,∆y) =124

〈I(x, y) I(x + ∆x, y + ∆y)〉x,y, and its FWHM gives the125

correlation length η [23]. Figure 2(b) is a plot of η ver-126

sus ξ. At small ξ, η increases almost linearly with ξ,127

and saturates when ξ becomes comparable to the cav-128

ity transverse dimensions. As ξ varies over two orders of129

magnitude, the total emission power changes by merely130

30% [23].131

Next, we estimate the number of transverse lasing132

modes as a function of the phase correlation length ξ.133

To this end, we place a static glass diffuser outside the134

DCL and record the speckle pattern produced by the135

laser emission passing through the diffuser. The in-136

tensity contrast C of a time-integrated speckle pattern137

gives the number of independent transverse lasing modes138

N = 1/C2 [27, 28].139

Fig. 2(c) shows how N evolves with ξ at a constant140

pump power. As the phase correlation length ξ decreases,141

the number of independent transverse lasing modes in-142

creases. This indicates that introducing disorder to a143

degenerate cavity facilitates many-mode lasing [23]. As144

the characteristic length scale of disorder decreases, the145

fragmentation of lasing modes reduces their spatial over-146

lap and suppresses their competition for gain. The de-147

crease of nonlinear modal interaction is dominant over148

the increase of diffraction loss with disorder, allowing149

more modes to lase simultaneously at the same pump-150

ing level.151

To understand the effects of random phase fluctuations152

on transverse modes, we conduct a numerical simulation153

of a DCL with varying degree of disorder. The laser con-154

figuration and dimensions are identical to the experimen-155

tal realization, with the exception that the simulated cav-156

ity has a one-dimensional (1D) transverse cross-section to157

reduce computing time [23]. We first investigate how the158

transverse modes in a passive cavity are modified by a159

random phase fluctuation. Experimentally the DCL suf-160

fers from optical aberrations, misalignment and thermal161

lensing effect, thus a slight deviation from perfect degen-162

erate condition is incorporated to the numerical simula-163

tion [23]. We calculate the transverse spatial profile and164

quality factor of cavity resonances. Then we study the165

lasing modes using the steady-state ab-initio lasing the-166

ory (SALT) [29]. While introducing random phase fluc-167

tuations in the cavity’s transverse direction also modifies168

the longitudinal mode profiles and affects their spatial169

overlap in the gain medium, our numerical simulation170
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FIG. 2. Fragmented emission of DCL with random phase fluc-
tuations. (a) Random phase profiles displayed on the SLM
(top row), and corresponding emission intensity patterns at
the DCL output coupler (bottom row). The pump power
is fixed at twice of the lasing threshold for flat-phase SLM.
Left column: a flat phase over the cross-section of the cavity
(ξ = 10 mm) leads to homogeneous, flat-top emission pat-
tern. Middle column: a random phase profile with ξ = 1 mm
segments the lasing modes into multiple domains. Right col-
umn: a random phase profile with ξ = 0.1 mm breaks the
emission into many bright spots that are spatially localized.
(b) Spatial correlation length of lasing intensity η increases
with SLM phase correlation length ξ. The feature size of
emission pattern follows the phase fluctuation length, until
it saturates when ξ approaches the cavity transverse dimen-
sion. (c) Number of independent transverse lasing modes N
increases as ξ decreases, indicating random phase fluctuation
facilitates many-mode lasing.

reveals that changes in the transverse overlap dominate171

the mode interactions over the longitudinal overlap [23].172

Hence, we ignore longitudinal mode profiles when calcu-173

lating modal cross-saturation coefficients. The nonlinear174

modal interaction via gain saturation is characterized by175

the cross-saturation coefficient,176

χmn ∼=
∣∣∣∣∫ ψ2

m(x)|ψn(x)|2 dx
∣∣∣∣ , (2)

for m-th and n-th transverse modes, where ψm(x) and177

ψn(x) denote their transverse field profiles [30].178

With a flat phase on the SLM in Fig. 3(a), the trans-179

verse modes are spatially extended over the cavity cross-180

section. The distribution of their quality factors exhibits181

a narrow peak at the highest Q value, indicating that182

the majority of transverse modes have similarly low las-183

ing thresholds and tend to lase together. However, the184

large spatial overlap of these modes results in their strong185

competition for optical gain [23]. The cross-saturation186

coefficients feature a wide distribution centered about187

0.5. We compute the number of lasing modes with gain188

saturation turned on and off. At the pumping level of189

P = 2P0, where P0 is the threshold of the first lasing190

mode, the number of lasing modes decreases from 257191

without modal interaction to 43 with modal interaction.192

This notable reduction reflects the important role played193

by nonlinear modal interaction.194

In Fig. 3(b), the SLM displays a random phase pro-195

file of correlation length ξ = 1 mm, and the transverse196

modes shrink in size. They tend to cluster in regions with197

relatively smooth phase profile, avoiding the positions of198

abrupt phase change. The Q distribution still features a199

narrow peak at the highest value, but the peak height200

is smaller, and more modes have lower Q and higher201

lasing threshold. In contrast, the distribution of cross-202

saturation coefficients is peaked at the smallest value,203

and has a long tail extended to large χ. The average204

cross-saturation coefficient is 5 times lower than that in205

Fig. 3(a), as a result of smaller spatial overlap between206

the transverse modes. At the pumping level of 2P0, the207

number of lasing modes without interaction drops slightly208

to 217, while with interaction the number of lasing modes209

rises significantly to 104. This behavior indicates that the210

reduction of gain competition by the random phase fluc-211

tuation has a much stronger effect than the reduction of212

the Q factors.213

When the phase correlation length is reduced to214

ξ = 0.1 mm in Fig. 3(c), the transverse modes become215

tightly confined with little overlap. This leads to a sig-216

nificant suppression of modal interaction, where the dis-217

tribution of cross-saturation coefficients features a higher218

peak at the smallest value and a much shorter tail than219

that in Fig. 3(b). The Q distribution is further extended220

to lower values, due to increased diffraction loss of highly221

localized modes. Consequently, both the number of las-222

ing modes with and without interaction are reduced, the223

former to 70 and the latter to 98 at the same pumping224

level of 2P0.225

Next we quantify the relation between the transverse226

mode dimension ρ and the phase correlation length ξ.227

The size of m-th transverse mode is estimated from228

the participation ratio of its transverse intensity profile229

|ψm(x)|2 as [31]:230

ρm =
[
∫
|ψm(x)|2 dx]2∫
|ψm(x)|4 dx

. (3)

Figure 3(d) shows the average size of transverse modes231

ρ̄ = 〈ρm〉m as the phase correlation length ξ varies over232

two orders of magnitude. The linear scaling of ρ̄ with233

ξ indicates that the transverse modes adapt to the ran-234

dom phase fluctuation and become localized accordingly235
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FIG. 3. Suppression of modal interaction and Q spoiling
by disorder (simulation). The left column in (a)-(c) shows
the calculated 1D intensity profile of transverse modes in a
slightly misaligned DCL. The center and right columns are
distributions of quality factors and cross-saturation coeffi-
cients χ. The random phase fluctuation length ξ = 10 mm
(a), 1 mm (b), and 0.1 mm (c). (d) Average mode size η
scales linearly with ξ. The solid line is a linear fit of slope
= 0.52. (e) Number of transverse lasing modes as a function
of ξ, with (blue circles) and without (purple triangles) gain
saturation, at a constant pumping level of twice the lasing
threshold with ξ = 10 mm.

in qualitative agreement with the results in Fig. 2 [23].236

Finally, we compare the number of transverse lasing237

modes with and without nonlinear interaction. If gain238

saturation is neglected (without interaction), the number239

of lasing modes depends only on their loss (Q factor). As240

ξ gradually decreases from 10 mm, the transverse modes241

start shrinking, and the diffraction loss becomes stronger.242

The reduction in Q factors leads to higher lasing thresh-243

olds. As the pumping level is fixed to 2P0, the number244

of lasing modes drops gradually. Once the transverse245

mode size is below the diffraction limit set by the numer-246

ical aperture of the cavity, a sharp increase of diffraction247

loss results in a sudden decrease in the number of las-248

ing modes, as seen in Fig. 3(e). When gain saturation249

is included (with interaction), the trend is reversed: the250

number of lasing modes grows as ξ is reduced from 10 mm251

to 1 mm. This is attributed to the reduced modal compe-252

tition for gain, as the transverse modes are fragmented by253

random phase fluctuation. Once ξ is shorter than 1mm,254

the dramatic increase of diffraction loss becomes dom-255

inant over the decrease of nonlinear modal interaction,256

and the number of lasing modes decreases accordingly257

[Fig. 3(e)]. However, the decrease in number of lasing258

modes with interaction is smaller than without interac-259

tion, indicating that the suppression of gain competition260

remains effective in allowing more transverse modes to261

lase. Experimentally the drop of the number of lasing262

modes at very small ξ is not observed, as a further de-263

crease of ξ below 0.1 mm would make the lasing modes264

so small that their intense emission might damage the265

SLM. A quantitative comparison between experimental266

data and numerical results is not possible, as the dimen-267

sions of the cavity cross-section differs and cavity imper-268

fections cannot be accurately measured and adopted in269

the numerical simulation.270

In conclusion, we demonstrate an efficient method of271

tuning nonlinear interaction of lasing modes over a wide272

range. By introducing random phase fluctuation into a273

degenerate cavity laser (DCL), the transverse modes are274

fragmented spatially to avoid the lossy regions of abrupt275

phase variation. The characteristic scale of phase fluctua-276

tion is varied over two orders of magnitude, and the trans-277

verse mode size follows. The reduction of their spatial278

overlap suppresses modal competition for gain, resulting279

in an increase of the number of lasing modes, despite of Q280

spoiling. Contrary to typical laser cavities with fixed ge-281

ometry, the spatial light modulator placed inside a DCL282

allows controlling the spatial structures and nonlinear in-283

teractions of thousands of lasing modes on-demand. Our284

flexible and robust approach provides a versatile experi-285

mental platform to study and better understand many-286

body systems where disorder-induced localization dra-287

matically affects modes overlap and consequently nonlin-288

ear mode interactions. For example, in many-body local-289

ization, disorder reduces the overlap between the modes290

thus preventing the system from thermalizing and retain-291

ing the memory of the initial state even at infinite time292

[32]. In spin glasses for instance [33], the distribution293

of overlap between modes, known as the Parisi overlap294

function [34] serves as an order parameter that charac-295

terizes replica symmetry breaking. Also, in cold atoms,296

the interplay between disorder and interaction can lead297

to fragmentation of Bose Einstein condensates [19, 20],298

to disorder-induced order [35], to anomalous heating be-299

yond the Kubo linear response formulation [36], and to300

numerous other intriguing phenomena [37].301
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