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We report the first measurement of the parity-violating elastic electron scattering asymmetry
on 27Al. The 27Al elastic asymmetry is APV = 2.16 ± 0.11 (stat) ± 0.16 (syst) ppm, and was
measured at 〈Q2〉 = 0.02357± 0.00010 GeV2, 〈θlab〉 = 7.61◦ ± 0.02◦, and 〈Elab〉 = 1.157 GeV with
the Qweak apparatus at Jefferson Lab. Predictions using a simple Born approximation as well as
more sophisticated distorted-wave calculations are in good agreement with this result. From this
asymmetry the 27Al neutron radius Rn = 2.89 ± 0.12 fm was determined using a many-models
correlation technique. The corresponding neutron skin thickness Rn − Rp = −0.04 ± 0.12 fm is
small, as expected for a light nucleus with a neutron excess of only 1. This result thus serves as a
successful benchmark for electroweak determinations of neutron radii on heavier nuclei. A tree-level
approach was used to extract the 27Al weak radius Rw = 3.00±0.15 fm, and the weak skin thickness
Rwk −Rch = −0.04± 0.15 fm. The weak form factor at this Q2 is Fwk = 0.39± 0.04.

As beam properties and experimental techniques have42

improved over the last two decades, so has the preci-43

sion of parity-violating (PV) asymmetry measurements44

in elastic electron scattering. These experiments initially45
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focused on carbon [1], then hydrogen and helium targets46

to study strange quark form factors [2]. The improv-47

ing precision of these experiments has led to standard48

model tests [3, 4], and even more recently neutron ra-49

dius determinations in heavy nuclei [5, 6] which impact50

our understanding of the structure and composition of51

neutron stars [7].52

The proton’s weak charge was determined in the Qweak53

experiment [4, 8] by measuring the PV asymmetry in ~ep54

elastic scattering with high precision at low Q2. By far55

the largest background in that experiment (≈ 24%) came56

from the aluminum alloy cell that contained the hydro-57

gen. To accurately account for that background, precise58

additional asymmetry measurements were made on alu-59

minum interspersed between data taking on hydrogen.60

Those same aluminum asymmetry results that served61

to account for background in the Qweak experiment62

have been further analyzed in this work to isolate the63

27Al asymmetry APV for elastic electron scattering at64

Q2 = 0.02357 GeV2. A successful comparison with the-65

ory [9] would provide additional confidence in the em-66

pirical background subtraction used in the Qweak exper-67

iment [4].68

However, the most important aspect of the first 27Al69

APV measurement presented here is the test case it pro-70

vides for the electroweak (EW) technique [10] used to71

determine the neutron radius Rn of a complex nucleus72

in ~eA scattering. In conjunction with the more easily-73

determined proton radius Rp, this also delivers the neu-74

tron skin Rn −Rp.75

For a light complex nucleus like 27Al with a neutron76

excess of only 1, we expect the neutron skin to be very77

thin. If this näıve expectation is confirmed by our mea-78

surement, it would serve as a benchmark for the appli-79

cation of the EW technique to heavier nuclei like 208Pb,80

where the resulting neutron skin can be related to neu-81

tron star physics [7]. The EW technique has recently82

been applied to 208Pb [5] and the resulting neutron skin83

was found to be in some tension with earlier non-EW84

results [11, 12] which favor a thinner skin. The bench-85

mark of the EW technique which our result can provide86

is especially important in light of this observed tension.87

Beyond providing the 27Al asymmetry APV, neutron88

radius Rn, and neutron skin thickness Rn − Rp, we also89

report the 27Al weak form factor Fwk at our Q2, the90

27Al weak radius Rwk and weak skin thickness Rwk −91

Rch, where Rch is the charge radius. Rwk should closely92

track the neutron radius because the weak charge comes93

primarily from the neutrons – the proton’s weak charge94

is much smaller [4].95

A PV asymmetry is a non-zero difference between dif-96

ferential cross sections σ±(θ) measured with a beam po-97

larized parallel (+) or anti-parallel (−) to its incident mo-98

mentum. In the Born approximation the elastic ~e−27Al99

asymmetry can be expressed [9] as100

APV =
σ+(θ)− σ−(θ)

σ+(θ) + σ−(θ)
≈ −GFQ

2QW

4παZ
√

2

FW(Q2)

FEM(Q2)
, (1)

where GF is the Fermi constant, α is the fine structure101

constant, −Q2 is the four-momentum transfer squared,102

QW = −12.92 ± 0.01 is the predicted [13] weak charge103

of 27Al including all radiative corrections, and Z is the104

atomic number of 27Al. FW(Q2) and FEM(Q2) are the105

weak and electromagnetic (EM) form factors for 27Al,106

normalized to unity at Q2 = 0.107

This measurement was conducted in Hall C of Jefferson108

Lab using the Qweak experimental apparatus [14] and the109

polarized electron beam of the CEBAF accelerator. The110

helicity of the polarized electron beam was selected at a111

rate of 960 Hz, allowing the beam to be produced in a112

sequence of “helicity quartets”, either (+−−+) or (−+113

+−), with the pattern chosen pseudorandomly at 240 Hz.114

In addition, every 8 hours an insertable half-wave plate115

(IHWP) was placed in or out of the source laser’s path116

to reverse the polarization direction. A ‘double Wien’117

spin rotator was also used to reverse the electron spin118

direction twice during the 27Al data-taking.119

A 60 µA longitudinally polarized 1.16 GeV electron120

beam was incident on a 3.68 mm thick by 2.54 cm square121

7075-T651 aluminum alloy target. This target was ma-122

chined from the same lot of material used for the LH2 tar-123

get window components of the weak charge measurement,124

so it could also be used to account for the background125

aluminum asymmetry that contaminated the measured126

hydrogen asymmetry [3, 4]. Other elements in this al-127

loy, as determined during a post-experiment assay, in-128

clude: Zn (5.87 wt%), Mg (2.63 wt%), Cu (1.81 wt%),129

and other (0.47 wt%).130

Electrons scattered from the target were first selected131

by a series of three collimators and were then focused by132

a toroidal magnetic field onto an azimuthally-symmetric133

array of eight synthetic-quartz Cherenkov detectors, each134

with a 2-cm-thick lead preradiator. The polar-angle (θ)135

acceptance was 5.8◦ to 11.6◦, the azimuthal-angle accep-136

tance was 49% of 2π, and the energy acceptance was137

large: ≈ 150 MeV. Cherenkov light generated in the138

quartz from the passing electrons was collected by pho-139

tomultiplier tubes (PMTs) attached to each end of each140

detector in the array. The current from the PMTs was141

integrated over each helicity state, normalized to the142

beam current and then averaged together to form the143

raw asymmetry Araw, as shown in Fig. 1 and Tab. I.144145146

Several small systematic corrections were applied to Araw147

to derive a measured asymmetry Amsr:148

Amsr = Araw+ABCM+Areg+ABB+AL+AT+Abias, (2)

where ABCM is a beam-current monitor (BCM) normal-149

ization uncertainty, Areg is a helicity-correlated beam-150

motion correction, ABB is a beam-line background cor-151

rection, AL is a non-linearity correction, AT is a residual152
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FIG. 1. Raw asymmetries (statistical errors only) plotted
against 8-hour IHWP IN or OUT “data subsets” (lower axis),
and monthly L or R Wien spin rotator orientation (upper
axis). The configuration consistent with Eq. 1 is given by
Wien Left and IHWP IN, i.e. INL, which is equivalent to
OUTR. The opposite sign asymmetry arises when either the
Wien or the IHWP is flipped, but not both. During Wien
A, there was an additional (g − 2) spin flip which arose from
running the JLab recirculating linac with 2 passes at half
the gradient instead of 1 pass with full gradient. The green
lines (bands) denote weighted averages (uncertainties) of the
positive and negative asymmetries.

TABLE I. Time-averaged raw asymmetries and their statis-
tical uncertainties. Araw is the weighted average of the sign-
corrected raw asymmetries NEG and POS. NULL is the arith-
metic average of NEG and POS. The χ2 per degree of freedom
and associated probabilities are given for each type of aver-
age.

Average Asymmetry(ppm) χ2/d.o.f. χ2 Prob.

NEG -1.407 ± 0.093 1.26 0.225
POS 1.480 ± 0.099 1.62 0.073

NULL 0.036 ± 0.068 – –
Araw 1.441 ± 0.068 1.39 0.082

transverse-asymmetry correction, and Abias is a rescat-153

tering bias correction. Each of these corrections is dis-154

cussed below.155

The raw asymmetry charge normalization adopted the156

same technique and BCMs as used in the weak charge157

measurement [4], leading to a correction of ABCM = 0.0±158

2.1 ppb, dominated by the BCM accuracy.159

Helicity-correlated variations in the beam position and160

energy also required a correction Areg = 0.4 ± 1.4 ppb.161

This was determined with a linear regression method [3,162

15], to correct the effects of natural beam-motion us-163

ing helicity-correlated differences measured with different164

beam-position monitors.165

Electrons in the beam halo interacted with beam-166

line components causing a false asymmetry. Auxiliary167

detectors placed close to the beam line were used to168

form a correlation with the main detectors to correct169

for this false asymmetry. The overall correction was170

ABB = −4.7± 6.6 ppb.171

Non-linearity effects in the main detector PMTs and172

BCMs used for asymmetry normalization were quantified173

in bench-top tests. The correction for this effect was174

AL = −2.0± 7.0 ppb [15, 16].175

Any residual transverse components to the beam po-176

larization will cause a parity-conserving azimuthal varia-177

tion in the asymmetry, which coupled with imperfections178

in the azimuthal symmetry of the detectors may lead179

to a false asymmetry. This was measured using trans-180

versely polarized beam [17] and scaled to the measured181

azimuthal variation in the present data, leading to a cor-182

rection AT = −3.4± 8.8 ppb [15].183

As described in earlier publications [4, 8], lead pre-184

radiators placed in front of the main detectors were185

needed to reduce low-energy backgrounds. However,186

scattered electrons with spins precessing from longitu-187

dinal to transverse in the spectrometer magnetic field188

acquired an analyzing power from Mott scattering in the189

lead, which led to a correction of Abias = 4.3± 3.0 ppb.190

Determination of a purely elastic asymmetry APV re-191

quired additional corrections for beam polarization, back-192

ground asymmetries, and a combination of radiative and193

acceptance corrections:194

APV = Rtot
Amsr/P −

∑
i fiAi

1−
∑

i fi
, (3)

where Rtot = 0.9855 ± 0.0087, determined primarily by195

simulation [4], accounts for the radiative and finite ac-196

ceptance effects, fi is the signal fraction of a particu-197

lar background asymmetry, and Ai is its corresponding198

asymmetry. These can be found in Tab. II.199

The beam polarization was monitored continuously us-200

ing a Compton polarimeter [18] and periodically with201

dedicated measurements using a Møller polarimeter [19].202

Both were found to agree [20] during the experiment and203

yielded a combined polarization of P = 88.80± 0.55%.204

Non-elastically scattered electrons entering the large205

acceptance of the apparatus contaminated the measured206

asymmetry with backgrounds which had to be estimated207

and subtracted in Eq. 3. Non-elastic processes consid-208

ered in this analysis include quasi-elastic, single-particle209

and collective excitations, and inelastic scattering with a210

∆ in the final state. Correction for each of these back-211

grounds required knowledge of the fraction of events that212

fell into the acceptance, fi, derived from the cross section213

of each process at the kinematics of the experiment, and214

Ai, the asymmetry for each process. Both of these were215

determined using models and/or experimental data from216

previous measurements. The relevant dilutions for each217

of these background processes were reported in [17].218

The quasi-elastic asymmetry AQE was estimated for219

27Al from a relativistic Fermi gas model [21], with a con-220

servative 50% relative uncertainty.221
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The inelastic asymmetry Ainel was determined by222

dropping the spectrometer magnetic field to about 75%223

of its nominal value to move the inelastic events onto the224

detectors. The corresponding polarization-corrected 27Al225

asymmetry226

A75 = f75el A
75
el + f75inelA

75
inel = 1.36± 0.97 ppm (4)

was briefly measured, with f75inel estimated from simula-227

tion to be (20 ± 5)% on top of the elastic tail, and A75
el228

scaled down from its value at full field by 1.181, the ra-229

tio of the corresponding Q2 at each field. A value for230

Ainel = −0.58 ± 5.83 ppm at full field was obtained by231

solving Eq. 4 for A75
inel and then scaling up by the Q2

232

ratio.233

Following the work of [9], the asymmetry for the gi-234

ant dipole resonance was estimated using the Born ap-235

proximation for an N = Z nucleus, with a negative sign236

AGDR = −2.2 ± 1.1 ppm appropriate for this isovector237

transition, and a conservative 50% relative uncertainty.238

Asymmetries Anucl ≈ 2.5 ppm for the 11 strongest239

excited states of 27Al up to 7.477 MeV were also ob-240

tained using the Born approximation for elastic scat-241

tering, with small corrections made for the acceptance-242

averaged Q2. States with large E2 transition rates or243

which were strongly populated by T = 0 probes were244

assumed to be isoscalar and assigned 50% uncertainties.245

The remaining states were assumed to be isovector. Since246

the sign of the asymmetry depends on whether those247

isovector states were proton or neutron excitations, a248

200% uncertainty was used to encompass both possibili-249

ties.250

For the asymmetriesAalloy associated with the contam-251

inant elements in the alloy used for the target, the Born252

approximation calculation was again used as described in253

[9] for each of the dominant six elements. These calcu-254

lations include Coulomb distortions, but assume spheri-255

cally symmetric proton and neutron distributions, so only256

include the leading multipole term. As before, 50% un-257

certainties were used.258

Background contributions from pions, neutrals, and259

the beamline were negligible, and are discussed in [15].260

After all corrections, the elastic 27Al asymmetry is261

APV = 2.16± 0.11(stat)± 0.16(syst) ppm (5)

at Q2 = 0.02357 ± 0.00010 GeV2, which corresponds to262

〈θLab〉 = 7.61◦ ± 0.02◦. This result, the first on 27Al,263

agrees well with previously published distorted wave264

Born calculations [9] as shown in Fig. 2.265

The neutron distribution radius Rn was determined266

using a many-models correlation method first employed267

by the PREX collaboration [22]. A selection of relativis-268

tic mean-field models [23–29] were chosen based on their269

ability to reasonably predict several nuclear structure ob-270

servables: nucleon binding energies, charge radii, and271

strengths of isoscalar and isovector giant resonances in272

TABLE II. Corrections applied to obtain the final asymmetry
APV and their corresponding contributions to the systematic
uncertainty. The total systematic uncertainty is the quadra-
ture sum of these uncorrelated uncertainties.

Quantity Value ∆APV/APV (%)
Amsr: 1.436± 0.014 ppm 1.0
P : 0.8880± 0.0055 0.7
Rtot: 0.9855± 0.0087 0.9
fQE: 21.2± 2.9 % 5.0
AQE: −0.34± 0.17 ppm 2.4
fnucl: 3.83± 0.23 % 0.1
Anucl: 2.58± 1.40 ppm 3.6
finel: 0.665± 0.099 % 0.2
Ainel: −0.58± 5.83 ppm 2.6
falloy: 5.41± 0.34 % 0.1
Aalloy: 1.90± 0.58 ppm 2.1
fpions: 0.06± 0.06 % 0.1
Apions: 0± 20 ppm 0.8
fneutral: 0± 0.45 % 0.1
Aneutral: 1.7± 0.2 ppm 0.0
fbeamline: 0.69± 0.06 % 0.1
fGDR: 0.045± 0.023 % 0.1
AGDR: −2.22± 1.11 ppm 0.0
Total Systematic 7.6
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FIG. 2. Parity-violating asymmetry vs. laboratory scatter-
ing angle. The measured value is shown with statistical (in-
ner error bar) and total (outer error bar) uncertainties. The
theoretical prediction [9] at our beam energy is shown for
spherically symmetric neutron and proton densities in Born
approximation (blue dots), for a distorted wave calculation
with spherical densities (dashed green line) and the full calcu-
lation with non-spherical proton density (red solid line). The
red shaded band indicates nuclear structure and Coulomb dis-
tortion uncertainties.

selected nuclei. The relationship between Rn and APV273

was found to be274

Rn = (−0.6007±0.0002)
APV

ppm
+(4.1817±0.0011) fm (6)

with correlation coefficient 0.997. Using this relation our275

final asymmetry yielded Rn = 2.89± 0.12 fm, see Fig. 3.276

To determine the neutron skin Rn−Rp, we use the pro-277
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FIG. 3. Models (symbols indicated in the legend) used to es-
tablish the correlation (Eq. 6, and solid black line) between
the 27Al APV and its neutron radius Rn. The dashed black
lines indicate where on the many-models correlation plot the
central value of our asymmetry determines Rn. The shaded
bands indicate the total uncertainty associated with our re-
sult.

ton distribution radius Rp following Ref. [30] for spherical278

nuclei,279

Rp =

(
R2

ch − 〈r2p〉 −
N

Z
〈r2n〉 −

3

4m2
N

− 〈r2so〉
)1/2

= 2.925± 0.007 fm,

(7)

where mN is the nucleon mass, and N denotes the num-280

ber of neutrons. Here and below we use an 27Al charge ra-281

dius Rch = 3.035±0.002 fm [31], and correct for the pro-282

ton charge radius 〈rp〉 = 0.8751±0.0061 fm [32], the neu-283

tron charge radius 〈r2n〉 = −0.1161±0.0022 fm2 [13], and284

a spin-orbit nuclear charge correction 〈r2so〉 = −0.017 fm2
285

following [30]. For consistency these parameters must be286

the same as those used to extract Rn using Eq. 6. The287

neutron skin is Rn − Rp = −0.04 ± 0.12 fm, confirming288

the naive expectation for a light nucleus such as 27Al289

where N ≈ Z that the neutron skin should be close to290

zero within our uncertainty. To illustrate the sensitivity291

of Rp to its input parameters, using other recent values292

for 〈rp〉 [13] and Rch [33] would only raise Rp by 1%,293

which is small compared to our 4.2% precision for Rn.294

In order to proceed to estimates of electroweak (EW)295

observables to which this experiment is sensitive (see296

Tab. III), we follow the Born approximation (tree-level)297

formulation presented in [34]. Although this leads only298

to approximate EW results, the 9.1% precision of our299

asymmetry is large enough to blunt the need for a more300

precise treatment. In addition, Fig. 2 shows that the301

Born approximation accurately predicts our asymmetry.302

Moreover, the relatively low Z of 27Al reduces the cor-303

rections from Coulomb distortions (∝ Z) relative to a304

heavier nucleus like Pb.305

Following Ref. [34], we introduce a term ∆ which306

accounts for hadronic and nuclear structure effects at307

Q2 > 0:308

∆ ≡ Fwk(Q2)

FEM(Q2)
− 1 =

APV

A0

Z

QW
− 1, (8)

where A0 = −GFQ
2/(4πα

√
2). Inserting our APV re-309

sult (Eq. 5) into either Eq. 1 or Eq. 8, and using an310

FEM = 0.384 ± 0.012 calculated following the prescrip-311

tion outlined in [35], we obtain a weak form factor312

Fwk(Q2 = 0.0236 GeV2) = 0.393±0.038. The FEM calcu-313

lation (corrected for small Coulomb distortions) is good314

to about 3% [35], which we verified by comparing with315

differential cross section data [36].316

With our APV result, ∆ = 0.025 ± 0.094. To lowest317

order in Q2, Rwskin ≡ Rwk − Rch = −3∆/(Q2Rch) [34],318

from which we obtain Rwskin = −0.04± 0.15 fm, consis-319

tent as expected with our small neutron skin result. Em-320

ploying the Rch introduced earlier, Rwk = 3.00±0.15 fm.321

The relative difference between the weak and charge radii322

λ ≡ (Rwk −Rch)/Rch = −1.3%± 5.0%.323

TABLE III. Derived 27Al Observables

Observable Value Uncertainty Units

Rn 2.89 0.12 fm
Rn −Rp -0.04 0.12 fm

Fwk(Q2 = 0.0236 GeV2) 0.393 0.038
∆ = ZAPV/(A0QW )− 1 0.025 0.094
Rwskin = −3∆/(Q2Rch) -0.04 0.15 fm
Rwk = Rwskin +Rch 3.00 0.15 fm
λ ≡ (Rwk −Rch)/Rch -1.3 5.0 %

In conclusion, the agreement between predictions [9]324

and this first measurement of the elastic asymmetry on325

27Al supports the background procedures used in the326

Qweak experiment [4] on hydrogen. The tree-level EW327

results obtained above for Rwk and Rwskin are consis-328

tent with broad expectations for a low-Z nucleus with329

N ≈ Z such as 27Al. Similarly, our 27Al neutron skin330

is close to zero, as expected, providing some validation331

and a benchmark for the application of the many-models332

approach and EW technique [10] to the measurement of333

heavier nuclei [5, 6, 22].334

This is especially interesting in light of the tension335

which exists [11, 37–39] between the recent EW neu-336

tron skin determination Rn − Rp = 0.283 ± 0.071 fm337

for 208Pb [5], and the 2012 average of several disparate338

but self-consistent non-EW determinations Rn − Rp =339

0.184± 0.027 fm [12]. The older non-EW determinations340

have come under additional scrutiny and even some crit-341

icism recently [40]. However, we note that they appear342

to be more consistent with the latest constraints on neu-343

tron star properties from LIGO and Virgo (especially for344

the tidal deformability) [41], from NICER [7], and as-345

trophysical models in general.346
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