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We introduce novel higher-order topological phases of matter in chiral-symmetric systems (class
AIII of the ten-fold classification), most of which would be misidentified as trivial by current theories.
These phases are protected by multipole chiral numbers, bulk integer topological invariants that in
2D and 3D are built from sublattice multipole moment operators, as defined herein. The integer
value of a multipole chiral number indicates how many degenerate zero-energy states localize at
each corner of a system. These higher-order phases of matter are generally boundary-obstructed
and robust in the presence of chiral symmetry-preserving disorder.

Higher-order topological band theory has expanded
the classification of topological phases of matter across
insulators [1–13], semimetals [13–18], and superconduc-
tors [19–31]. It generalizes the bulk-boundary corre-
spondence of topological phases, so that an nth-order
topological phase in d dimensions has protected features,
such as gapless states or fractional charges, only at its
(d− n)-dimensional boundaries. Currently, two comple-
mentary mechanisms are known to give rise to higher-
order topological phases (HOTPs): (1) corner-induced
filling anomalies due to certain Wannier center configura-
tions [2, 5, 9, 32, 33], and (2) the existence of boundary-
localized mass domains [2, 3, 6–8, 34, 35]. These two
mechanisms are responsible for the fractional quantiza-
tion of corner charge and the existence of single in-gap
states at corners, respectively.

In first-order topological systems, phases protecting
multiple states at each boundary also exist. This oc-
curs in chiral symmetric systems (class AIII in the ten-
fold classification [36–38]) in odd dimensions. In 1D, for
example, such phases are identified by a Z topological in-
variant known as the winding number [39, 40] that clas-
sifies the Hamiltonian’s homotopy class within the first
homotopy group π1[U(N)], and which corresponds to the
number of degenerate zero-energy states at each bound-
ary. In contrast, the Wannier center approach applied to
chiral 1D systems only yields a Z2 classification accord-
ing to whether the electric dipole moment (given by the
position of the Wannier centers) is quantized to 0 or e/2.
Hence, the Wannier center approach is, in this sense, of a
reduced scope relative to that of the winding number; it
labels all 1D chiral-symmetric systems with even winding
numbers as trivial.

The observation that 1D systems in class AIII have a
more complete Z classification than the one provided by
the Wannier center picture suggests that, analogously, a
more complete classification could exist for HOTPs in
class AIII. Consider, for example, stacking N topological
quadrupole insulators [1]. If they are coupled in a chiral
symmetric fashion, the overall system will have N zero-
energy states at each corner. However, no known topo-

logical invariants exist for such a classification. Moreover,
the existence of such larger classification is apparently at
odds with the tenfold classification of topological phases,
which predicts only trivial phases for chiral-symmetric
systems in 2D. This prediction is a consequence of the
fact that higher-dimensional generalizations of the 1D
winding number – which identify classes within the ho-
motopy group πd[U(N)] in d dimensional systems – are
trivial for even d [41]. The resolution to this apparent
contradiction is that the ten-fold classification applies to
first-order, bulk-obstructed topological phases, while the
phases we consider here are higher-order and boundary-
obstructed. Hence, a different approach is needed to clas-
sify chiral symmetric HOTPs beyond the obvious gener-
alization of the 1D winding number.

In this work, we demonstrate the existence of a Z
classification for HOTPs in class AIII and identify the
topological invariants in 2D and 3D that protect them.
We refer to these invariants as multipole chiral numbers
(MCNs) because they generalize the classification pro-
vided by the 1D winding number to higher dimensional
systems but, instead of being the traditional generaliza-
tion of winding numbers to higher dimensions [40], they
are built from sublattice multipole moment operators,
and capture higher-order, boundary-obstructed topol-
ogy [4, 42–46]. These invariants are calculated in the
bulk of the system, i.e., with periodic boundary condi-
tions, and their integer values coincide with the num-
ber of degenerate zero-energy states at each corner of
a system with open boundaries. Thus, MCNs provide
a novel higher-order bulk-boundary correspondence for
topological phases of matter. Moreover, as MCNs are
defined in real space, they can be used to characterize
disordered systems, and here we demonstrate that phases
protected by MCNs are robust in the presence of chiral
symmetry-preserving disorder. The existence of phases
with MCNs reveals a richer classification of HOTPs, pro-
vides a broader understanding of boundary-obstructed
topological phases beyond the Wannier center and mass
domain perspectives, and has implications for the fur-
ther classification of HOTPs in interacting systems [47].
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Moreover, these phases can be readily proven in several
synthetic material platforms [48–51], and recent advances
on the generation and control of long-range hoppings
could enable the realization of these novel phases in ultra-
cold atoms in optical lattices [52–55].

We thus focus our attention on chiral symmetric
Hamiltonians H, which satisfy ΠHΠ = −H, where Π
is the chiral operator. In the basis in which the chiral
operator is Π = τz, the Hamiltonian H takes the form

H =

(
0 h
h† 0

)
, (1)

which allows a partition of the lattice into two sublattices,
A and B, with opposite chiral charge. The eigenstates of
H can be written as |ψn〉 = 1√

2
(ψAn , ψ

B
n )T , where ψAn and

ψBn are normalized vectors that exist only in the A, B
subspaces, respectively. Moreover, chiral symmetry re-
quires that for every state |ψn〉 with energy εn there is a
chiral partner state Π |ψn〉 = 1√

2
(ψAn ,−ψBn )T with energy

−εn. Evaluating H2 |ψn〉 = ε2n |ψn〉 leads to the eigen-
value problems (hh†)ψAn = ε2nψ

A
n and (h†h)ψBn = ε2nψ

B
n ,

so that ψAn and ψBn can be easily obtained by diagonal-
izing hh† or h†h, respectively. This structure allows a
singular value decomposition (SVD) of h by writting

h = UAΣU†B , (2)

where US , for S = A,B, is a unitary matrix representing
the space spanned by {ψSn}, i.e., US = (ψS1 , ψ

S
2 . . . , ψ

S
NS

),
and Σ is a diagonal matrix containing the singular values.
Using this decomposition, it follows that hh† = UAΣ2U†A
and h†h = UBΣ2U†B , so that the squared energies {ε2n}
correspond to the squared singular values in Σ2.

The SVD decomposition (2) allows an explicit flatten-
ing of the Hamiltonian by defining the unitary matrix
q = UAU

†
B . The winding number of a Bloch Hamilto-

nian in 1D parametrized by the crystal momentum k is
then given by Nx = (1/2πi)

∫
BZ

Tr
[
q(k)†∂kq(k)

]
, and

is a topological invariant associated with the homotopy
classes in π1[U(n)] = Z.

In the absence of periodicity, k is not a good quan-
tum number and the winding number loses its meaning.
However, it is still possible to find real space topological
invariants of chiral symmetric 1D systems (equivalent to
the winding number when periodicity is restored) which
have allowed for the study of the effects of disorder [56–
58]. Specifically, the 1D winding number is equivalent to
the real space index Nx = (1/2πi)TrLog(P̄Ax P̄

B†
x ) ∈ Z,

where P̄Sx = U†SP
S
x US is the sublattice dipole operator

projected into the spaces US , for S = A,B [57, 59].
Here, PSx is defined using the dipole moment operator for
periodic systems [60], but restricted to a single sublat-
tice, PSx =

∑
R,α∈S |R,α〉Exp(−i2πR/L) 〈R,α|, where

the 1D crystal has L unit cells, |R,α〉 = c†R,α |0〉, and

c†R,α creates an electron at orbital α of unit cell R.

The MCNs for higher-order topological phases with
chiral symmetry are based on extensions of this formula-
tion of real space indices to 2D and 3D. Consider a lat-
tice in 2D (3D) with Li unit cells along direction i = x, y
(i = x, y, z). Each unit cell is labelled by R = (x, y)
[R = (x, y, z)] and has NT orbitals (or, more generally,
NT internal degrees or freedom). To build the topologi-
cal indices for chiral symmetric higher-order topological
phases in the basis {|R, α〉}, we define the following sub-
lattice multipole moment operators

QSxy =
∑

R,α∈S

|R, α〉Exp

(
−i

2πxy

LxLy

)
〈R, α| (3)

OSxyz =
∑

R,α∈S

|R, α〉Exp

(
−i

2πxyz

LxLyLz

)
〈R, α| , (4)

for 2D and 3D lattices, respectively. These operators re-
semble those associated with quadrupole and octupole
moments [61–63], but are only defined over each sublat-
tice S = A,B, instead of across the entire system.

We claim that the integer invariants for chiral symmet-
ric second-order topological phases in 2D and third-order
topological phases in 3D are, respectively,

Nxy =
1

2πi
TrLog

(
Q̄AxyQ̄

B†
xy

)
∈ Z (5)

Nxyz =
1

2πi
TrLog

(
ŌAxyzŌ

B†
xyz

)
∈ Z, (6)

where Q̄Sxy = U†SQ
S
xyUS and ŌSxyz = U†SO

S
xyzUS , for

S = A,B, are the sublattice multipole moment opera-
tors projected into the spaces US . To demonstrate that
Eqs. (5) and (6) are the invariants for chiral symmet-
ric higher-order topological phases, one must show that
these invariants are strictly quantized, that they predict
the number of topologically protected corner states at
each corner of the lattice, and that phases with different
MCNs are separated from one another by phase transi-
tions that close the energy gap.

To prove that the invariants (5) and (6) are strictly
quantized, notice that they take the form N =
(1/2πi)TrLog(U†AMAUAU

†
BM

†
BUB), where MS (for S =

A,B) is QSxy in 2D, or OSxyz in 3D. Since the matrices MS

and US are unitary, we have det(U†AMAUAU
†
BM

†
BUB) =

det(MAM
†
B) = 1, where the last step follows if the

two sublattices have (i) equal number of degrees of free-
dom in each unit cell and (ii) the same number of unit
cells. Under these conditions, tracing the logarithm of
U†AMAUAU

†
BM

†
BUB will necessarily give a phase that is

a multiple of 2πi, i.e., it will be of the form 2πiN , with
N ∈ Z. This integer N is the topological invariant. Ex-
ploiting this structure of the invariants, Eqs. (5) and (6)
can also be written in the form of a Bott index [64, 65],
see Supplementary Information [59].
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We now illustrate some of the topological phases with
nonzero values of Nxy and demonstrate that this invari-
ant corresponds to the number of corner-localized states
in each corner. Consider the quadrupole topological insu-
lator (QTI) [1] with additional long-range hopping terms.
The Bloch Hamiltonian for the QTI has the form of Eq.
(1) with the off-diagonal matrix

hQTI(k) =

(
−vx − w1,xe

−ikx vy + w1,ye
iky

vy + w1,ye
−iky vx + w1,xe

ikx

)
, (7)

in which vx/y and w1,x/y characterize the nearest neigh-
bor hoppings within a unit cell and between adjacent unit
cells, respectively (generally, we allow for different values
of these hoppings in the x and y directions). Adding to
this model, we also allow for straight long-range (SLR)
hoppings,

hSLR(k) =
M∑
m>1

(
−wm,xe−imkx wm,ye

imky

wm,ye
−imky wm,xe

imkx

)
, (8)

where M determines the maximum long-range hopping,
as well as diagonal long-range (DLR) hoppings,

hDLR(k) = 2wD

(
e−ikx cos(ky) −eiky cos(kx)
−e−iky cos(kx) −eikx cos(ky)

)
. (9)

Here, wm,x/y are the long-range hoppings among the mth
nearest-neighbor unit cells in the horizontal/vertical di-
rection, and wD are hoppings among nearest-neighbor
unit cells along the diagonal directions. All the terms pre-
serve chiral symmetry and the diagonal terms (9) break
separability, making it impossible to write the full Hamil-
tonian as H(k) = Hx(kx) + Hy(ky). In writing this
systems Hamiltonian, we thread a π flux through each
plaquette of the system, which is implemented via the
specific choice of gauge directly written in Eqs. (7-9) and
shown in Fig. 1a.

First, consider a chiral and C4 symmetric, long-range
QTI model with wD = 0. For wm/v < 1, this system pos-
sesses a bulk bandgap around zero energy and both the
quadrupole moment, qxy [1], and the quadrupole wind-
ing number, Nxy (Eq. 5), identify it as trivial (qxy = 0,
Nxy = 0), Fig. 1b. Starting from this phase and increas-
ing w1/v, a bulk bandgap-closing phase transition occurs,
after which both topological indices now show that this
system is in a nontrivial phase (qxy = 1/2, Nxy = 1).
With open boundaries, this phase possesses a single zero-
energy state localized to each of its corners, Fig. 1c. This
is the previously known QTI phase [1]. However, when
the long-range hopping w2/v is increased, a separate bulk
bandgap-closing phase transition occurs that separates
either the Nxy = 0 phase or the Nxy = 1 phase from an-
other nontrivial phase with Nxy = 4, but with qxy = 0.
Simulations of the open system reveal that each corner
of the lattice in this new phase possesses four degenerate
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FIG. 1. (a) Schematic depicting the tight-binding model used.
Not all non-nearest neighbor hoppings are shown for clarity.
All purple hoppings are multiplied by −1 such that each pla-
quette has a uniform flux of π. (b) Phase diagram of the
quadrupole winding number, Nxy, and the quadrupole mo-
ment, qxy, for a C4v symmetric system. Here, wm>2 = 0 and
wD = 0. Different phases are separated by gray lines of crit-
ical points where the bulk bandgap closes. (c,d) Density of
states (left) and local density of states at zero energy (right)
for the Nxy = 1 phase (c) and the Nxy = 4 phase (d). In
the right panels of (c) and (d), red and blue colors indicate
support over the A and B sublattices, respectively.

modes with ε = 0 and that all such states within a corner
exist only on a single sublattice of the system, see Fig. 1d
and Fig. S1 in the Supplementary Information.

Since all of the zero-energy states within a corner
occupy the same sublattice, they have the same chiral
charge, Π|ψcorner〉 = ±|ψcorner〉 and, thus, cannot pair to
hybridize away from zero energy as long as chiral sym-
metry is preserved.

Not only is the Nxy = 4 phase not captured by the
quadrupole index, but more generally, it lies beyond
the framework of induced band representations [66, 67].
Consequently, topological indices based on calculating
the representations of the bulk bands at high-symmetry



4

𝑤1/𝑣

𝑤
2/

𝑣

1 2 30
0

1

2

3

𝑁𝑥𝑦 = 1

𝑁𝑥𝑦 = 4

𝑁 𝑥𝑦
 =

 3

bo
th

 e
dg

e 
ba

nd
ga

ps
 c
lo
se

bu
lk
 b
an

dg
ap

 c
lo
se
s

0 -1

𝑤𝐷 = 0.5𝑣(a)

0

≥20

5

10

15

N
u
m

b
er of states

Bulk

states

Edge

states

0.5

0

-0.5

E
n
er

gy
, 

𝜖

𝑤1/𝑣 = 0.8

0 0.5 1 1.5 2
𝑤2/𝑣

(b)

FIG. 2. (a) Phase diagram of Nxy for a C4v symmetric,
separability-broken system with wD/v = 0.5 and wm>2 = 0.
Bulk-obstructed phase transitions are shown in gray, while
boundary-obstructed phase transitions are shown in lime. (b)
Density of states for this system for fixed w1/v = 0.8, indi-
cated as the red line in (a).

points of the Brillouin zone will fail to find this phase,
as the representations of the lowest two bands at all of
the high-symmetry points are identical in the Nxy = 4
phase, leading to trivial symmetry indicator invariants,
see Supplementary Information [59].

Phase transitions between phases with different MCNs
need not close the bulk bandgap but, at a minimum, must
close some lower-dimensional edge or surface bandgap.
HOTPs with this property are known as boundary-
obstructed topological phases [42]. This property re-
mains true even in the presence of C4 symmetry, which
renders the QTI phase bulk-obstructed. For example,
consider adding diagonal long-range hoppings to this
model, wD/v = 0.5 (Eq. 9), which preserve chiral and
C4 symmetries but break separability. As can be seen
in Fig. 2a, the Nxy = −1 and Nxy = 3 phases each
have a phase boundary in which the bulk bandgap closes,
and boundaries with other phases where only the edge
bandgap closes. Both of these types of boundaries can be
explicitly seen in the density of states across these phase
transitions, Fig. 2b. For all of the different phases iden-
tified in Fig. 2a, the number of states localized in each
corner of the system is equal to |Nxy| and the sublat-
tice over which the corner states are supported is given
by sgn(Nxy). Thus, for example, the Nxy = −1 phase
in Fig. 2a indicates that the system possesses one state
localized in each corner with support only on the op-
posite sublattice when compared with those in phases
with Nxy > 0, see Supplementary Information [59]. In
3D, chiral-symmetric higher-order phases are character-
ized by distinct integer values of Eq. 6, which indicate
the number of degenerate states localized at each corner
in the 3D structure.

Even though the phases shown in Fig. 1 and Fig. 2 pre-
serve crystalline symmetries, phases with nonzero MCNs
are robust in the presence of short-range correlated disor-
der that breaks crystalline symmetries. To demonstrate
this, we add disorder to the nearest-neighbor hopping
coefficients of this model. In particular, we consider a
uniform lattice with C4 symmetry, whose disorder then
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FIG. 3. Numerically calculated Nxy (a), edge bandgap (b),
and bulk bandgap (inset), as a function of disorder strength,
W/v, for 100 independent realizations for the disorder on a
40× 40 square lattice whose underlying ordered system is the
same as that shown in Fig. 1b. The shading of the points in
(a) is proportional to the number of disorder realizations that
yield that invariant. The solid line and shaded region show
the average of the plotted quantity and the region within one
standard deviation of the average, respectively.

breaks all spatial symmetries, as well as time-reversal

symmetry, by taking values vij → vij + (W/
√

2)(ξ
(re)
0,ij +

iξ
(im)
0,ij ) and w1,ij → w1,ij+(W/2

√
2)(ξ

(re)
1,ij +iξ

(im)
1,ij ), which

for sufficiently large disorder strength, W , causes a phase
transition into a trivial phase. Here, ξ ∈ [−1, 1] are uni-
formly distributed random numbers and vij and w1,ij are
the hopping strengths between neighboring lattice sites
i, j within the same unit cell and between adjacent unit
cells, respectively. As can be seen in Fig. 3, an Nxy = 4
phase remains strictly quantized until a transition drives
the system into a trivial phase with Nxy = 0 when the
disorder becomes sufficiently strong. This transition co-
incides with both bulk and edge bandgap closings (up to
finite size effects, see Supplementary Information [59]).

Recently, several studies have shown that chiral sym-
metry alone quantizes quadrupole and octupole moments
in insulators [68–70]. Our results show that protec-
tion solely due to chiral symmetry also applies to the
larger family of topological phases protected by MCNs.
This must be the case as systems with different MCNs
also possess different numbers of topological zero-energy
states at each corner; thus, to transition between them,
extended zero-energy channels must exist through which
some topological states delocalize and hybridize away
from zero energy. Such channels are provided by bulk
or boundary closings of the energy gap.

Higher-order topological phases have been found in
Bismuth [71] and Bi4Br4 [72]. More recently, the mech-
anisms for the protection and confinement of modes of
higher-order topology have found fertile ground in pho-
tonics, acoustics, and topoelectric circuits [48, 50, 73–
81], where they can be used to create robust cavities
[82, 83] and lasers [84, 85]. In fact, since chiral-symmetric
HOTPs with large MCNs require increasingly stronger
longer-range hoppings, these phases may be hard to at-
tain in solid-state systems, where the electron’s hoppings
attenuate with separation. However, these phases are
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readily accessible in microwave photonic resonator ar-
rays [48, 49], topoelectric circuits [50], or sonic crys-
tals [51], all of which can implement deformable lattice
sites and couplers, which enables separating the geomet-
ric configuration of the lattice from the strength of the
couplings of resonating states, thus easily achieving long-
range couplings [49, 51]. Another candidate platform is
ultra-cold atoms in optical lattices, where the realization
synthetic gauge fields [52–54] and modulation of hop-
ping terms [52] in 2D has been experimentally shown.
Adding long-range hoppings to this platform has been
long sought-after, and a recent a proposal has been put
forward [55] that could give this platform access to these
proposed phases.
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Demonstration of a quantized acoustic octupole topolog-
ical insulator (2019), arXiv:1911.06469 [cond-mat.mes-

hall].
[81] L. He, Z. Addison, E. J. Mele, and B. Zhen, Quadrupole

topological photonic crystals, Nature Communications
11, 3119 (2020).

[82] Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wak-
abayashi, Y. Arakawa, and S. Iwamoto, Photonic crystal
nanocavity based on a topological corner state, Optica 6,
786 (2019).

[83] M. Proctor, P. A. Huidobro, B. Bradlyn, M. B. de Paz,
M. G. Vergniory, D. Bercioux, and A. Garca-Etxarri, Ro-
bustness of topological corner modes in photonic crystals,
Phys. Rev. Research 2, 042038 (2020), publisher: Amer-
ican Physical Society.

[84] W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni,
Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, Low-
threshold topological nanolasers based on the second-
order corner state, Light Sci. Appl 9, 109 (2020).

[85] H.-R. Kim, M.-S. Hwang, D. Smirnova, K.-Y. Jeong,
Y. Kivshar, and H.-G. Park, Multipolar lasing modes
from topological corner states, Nat. Commun. 11,
10.1038/s41467-020-19609-9 (2020).

https://doi.org/10.1063/1.3274817
https://doi.org/10.1063/1.3274817
http://dx.doi.org/10.1038/nature23268
http://dx.doi.org/10.1038/nature23268
https://doi.org/10.1103/PhysRevB.97.035139
https://doi.org/10.1103/PhysRevB.97.035139
https://doi.org/10.1103/PhysRevResearch.2.012067
https://doi.org/10.1103/PhysRevResearch.2.012067
https://doi.org/10.1103/PhysRevLett.125.166801
https://doi.org/10.1103/PhysRevB.103.085408
https://doi.org/10.1103/PhysRevB.103.085408
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1038/s41563-020-00871-7
https://doi.org/10.1038/s41563-020-00871-7
https://doi.org/10.1038/s41566-018-0179-3
https://doi.org/10.1038/s41566-018-0179-3
https://doi.org/10.1103/PhysRevB.99.020304
https://doi.org/10.1103/PhysRevLett.122.244301
https://doi.org/10.1038/s41566-019-0452-0
https://arxiv.org/abs/1911.03980
https://arxiv.org/abs/1911.03980
https://doi.org/10.1103/PhysRevB.100.201406
https://doi.org/10.1103/PhysRevB.100.201406
https://arxiv.org/abs/1911.06068
https://arxiv.org/abs/1911.06068
https://arxiv.org/abs/1911.06469
https://arxiv.org/abs/1911.06469
https://doi.org/10.1038/s41467-020-16916-z
https://doi.org/10.1038/s41467-020-16916-z
https://doi.org/10.1364/OPTICA.6.000786
https://doi.org/10.1364/OPTICA.6.000786
https://doi.org/10.1103/PhysRevResearch.2.042038
https://doi.org/10.1038/s41377-020-00352-1
https://doi.org/10.1038/s41467-020-19609-9

	Chiral-symmetric higher-order topological phases of matter
	Abstract
	Acknowledgments
	References


