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A large ongoing research effort focuses on obtaining a quantum advantage in the solution of com-
binatorial optimization problems on near-term quantum devices. A particularly promising platform
implementing quantum optimization algorithms are arrays of trapped neutral atoms, laser-coupled
to highly excited Rydberg states. However, encoding combinatorial optimization problems in atomic
arrays is challenging due to limited inter-qubit connectivity of the native finite-range interactions.
Here we present a four-body Rydberg parity gate, enabling a direct and straightforward implementa-
tion of the parity architecture, a scalable architecture for encoding arbitrarily connected interaction
graphs. Our gate relies on adiabatic laser pulses and is fully programmable by adjusting two hold-
times during operation. We numerically demonstrate implementations of the quantum approximate
optimization algorithm (QAOA) for small-scale test problems. Variational optimization steps can
be implemented with a constant number of system manipulations, paving the way for experimental
investigations of QAOA beyond the reach of numerical simulations.

Introduction– Currently available quantum devices are
capable of generating controlled dynamics challenging
numerical simulations on even the most powerful classical
supercomputers [1–3]. These quantum devices will have
up to a few hundred qubits available, without error cor-
rection, and have been termed Noisy Intermediate Scale
Quantum (NISQ) devices. A key challenge for the field
of quantum technology at this very moment is to find
ways of putting the computational power of near-term
quantum devices to good use [4, 5]. In this era of NISQ
devices, the development of specialized algorithms, tar-
geting specific problems that provide a structural match
with the strengths of a particular quantum platform, is
thus highly desirable. A strategy of co-design of algo-
rithms and experimental platforms aims at developing
scientifically and industrially relevant applications in the
near term, before the need for error correction arises.

Here we focus on designing specialized quantum hard-
ware for solving combinatorial optimization problems,
using neutral atoms trapped in tweezer arrays, laser-
coupled to highly excited Rydberg states [6–15]. The
Rydberg states provide strong and tunable interactions,
that can be switched on and off by coherently coupling
ground and Rydberg states. Combined with single parti-
cle operations, the interactions form appealing building
blocks for QAOA [16, 17]. There, the goal is to find ap-
proximate solutions to combinatorial optimization prob-
lems, cast in the form of energy minimization of a general
N -spin problem Hamiltonian

ĤP =
∑
i

Jiσ̂
(i)
z +

∑
i<j

Jij σ̂
(i)
z σ̂(j)

z

+
∑
i<j<k

Jijkσ̂
(i)
z σ̂(j)

z σ̂(k)
z + . . . ,

(1)

where σ̂{x,y,z} denote the Pauli spin operators and

{Ji, Jij , Jijk, . . . } are local fields and long-ranged higher-
order interactions. QAOA attempts to find low energy
solutions, by driving a system of quantum spins alter-

nately with a driver Hamiltonian ĤX =
∑
i σ̂

(i)
x and the

problem Hamiltonian ĤP .

Despite the recent universality and quantum advan-
tage results [18–20], various aspects of QAOA’s perfor-
mance are still under theoretical investigation [21]. On
the one hand the existence of barren plateaus [22] and
reachability deficits [23–25] suggest strong limitations for
QAOA while, on the other hand, parameter concentra-
tion effects [26–30] may boost the algorithm’s efficiency.
Ultimately, due to QAOA’s heuristic nature, its practical
performance in a regime beyond the capability of classi-
cal computers is difficult to predict and requires to be
experimentally tested.

Recent advances in Rydberg experiments, such as co-
herent control of atomic states and deterministic atom
positioning of hundreds of atoms, make the Rydberg plat-
form a particularly promising target for such investiga-
tions. Direct experimental implementations of QAOA
with Rydberg atoms are, however, limited by the binary
nature of the Rydberg interaction and their polynomially
decaying interaction strengths, which only admit scal-
able experimental implementations of ĤP for very spe-
cific problems [8, 31].

Instead of attempting to directly engineer the spin
model version of ĤP , we adopt the parity architec-
ture [32, 33], a scalable and problem independent quan-
tum hardware blueprint for generic combinatorial opti-
mization problems. Running QAOA then only requires
problem dependent single-qubit gates and problem inde-
pendent multi-qubit phase-gates acting on three or four
qubits at the corners of 2 × 2 plaquettes as (cf. Fig. 1)

U (γ) = eiγ
∏

k σ̂
(k)
z , where the latter do not naturally
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FIG. 1. Rydberg parity QAOA protocol. Arbitrarily connected
optimization problems can be parity encoded in a regular ge-
ometry of neutral atoms trapped in e.g. optical tweezers. Af-
ter initializing the Rydberg quantum processor in an equal
superposition state, generating variational wave functions by
applying QAOA unitaries only requires local control of laser
fields generating quasi-local four- (square boxes) and single-
qubit gates (discs).

exist on the Rydberg platform.

In the following we show how such a gate can be
directly engineered between ground state atoms utiliz-
ing time-optimal adiabatic laser-coupling to Rydberg
states, i.e. without relying on (distinct species) auxiliary
qubits [34] or decomposition into two-body gates [35].
We provide a simple two-pause strategy to program ar-
bitrary phases γ subsequent to a onetime optimization of
laser-ramps within parameter-limits given by particular
experiments. The entire QAOA can then be implemented
on present-day experiments as an optimization of the du-
ration of laser pulses. Below we explain the details and
performance of our scheme, and give a numerical demon-
stration of the QAOA protocol on the Rydberg platform.

Rydberg parity QAOA– The parity hardware archi-
tecture provides a blueprint for a problem indepen-
dent and scalable quantum processor that is tailored
to tackle generic combinatorial optimization problems
(see Supplemental Material (SM) [36] for a detailed in-
troduction). In short, parity-qubits encode the rela-
tive orientation, i.e. the parity, of spins representing

the optimization problem, with Jij σ̂
(i)
z σ̂

(j)
z → Jµσ̂

(µ)
z ,

Jijkσ̂
(i)
z σ̂

(j)
z σ̂

(k)
z → Jν σ̂

(ν)
z etc., replacing long-range inter-

actions {Jij , Jijk, . . . } by local-fields {Jµ, Jν , . . . }. Since
the parity transformation increases the number of qubits
to the number K of interactions present in the optimiza-
tion problem, the original N -qubit code-space needs to
be stabilized by quasi-local three- or four-qubit stabiliz-

ers of the form H ∝
∏l
µ=1 σ̂

(µ)
z (i.e. l = 3, 4), that act

as energetic constraints on 2× 2 plaquettes [33, 37].
Implementations of QAOA for parity encoded opti-

mization problems rely on alternately driving the quan-

tum spin system, prepared in the |+〉⊗K state, with
a driving Hamiltonian and the problem Hamiltonian.
While the single qubit driving Hamiltonian ĤX =∑K
ν σ̂

(ν)
x remains as before, the problem Hamiltonian ĤP

is now decomposed into a single qubit problem encod-

ing ĤZ =
∑K
ν Jν σ̂

(ν)
z , and a quasi local constraint term

ĤC =
∑

H , where the sum runs over all 2 × 2 pla-
quettes denoted by . Alternately applying each of the
Hamiltonian operators p times, QAOA thus generates
states

|ψ(α,β,γ)〉 =

p∏
j=1

e−iαjĤXe−iβjĤZe−iγjĤC |+〉⊗K , (2)

where variational parameters αj , βj , and γj (j =
1, 2, . . . , p) determine the duration of driving with

ĤX , ĤZ , ĤC , respectively. Low-energy solutions to the
original optimization problem are then determined in a
quantum-classical feedback loop, where a classical com-
puter optimizes the parameters (α,β,γ), based on en-
ergy estimation obtained by repeated single qubit mea-
surements in the z-direction.

The quantum spin system we have in mind consists of
a regular array of trapped neutral atoms, e.g. Rubidium
(87Rb) atoms trapped in optical tweezers (cf. Fig. 1).
Each atom realizes a qubit by encoding the qubit basis
{ |↓〉, |↑〉} in a pair of atomic ground states (e.g. two hy-
perfine states). We assume the ability to locally address
atoms with targeted laser light, e.g. by using spatial light
modulators (SLMs) [13, 38–40]. The single particle op-

erations ĤZ can then be implemented through AC Stark
shifts from laser coupling to low-lying excited states. The
driver Hamiltonian ĤX can be implemented through Ra-
man transitions. In the following, we discuss the Ryd-
berg implementation of the key nontrivial component,

the many-body phase gate e−iγĤC .
Four-qubit parity gate implementation– The main chal-

lenge for experimental realizations of the parity-QAOA
algorithm is a direct and straightforward implementation
of the four-qubit gate U (γ) = e−iγH . The operator H
energetically separates plaquette states |zeven〉 with an
even number of particles in the |↓〉 state, from plaquette
states |zodd〉 with an odd number of particles in the state
|↓〉. The desired gate operation U (γ) thus corresponds
to a four-qubit phase gate, mapping the plaquette states
as follows:

U (γ) |zodd〉 = eiγ |zodd〉 ,
U (γ) |zeven〉 = e−iγ |zeven〉 .

(3)

We propose to implement U (γ) with an adiabatic pro-
tocol, such that each computational state acquires a con-
trollable dynamical phase |z〉 → eiΦz |z〉, designed to
match Eq. (3) for arbitrary angles γ.
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FIG. 2. Four-body Rydberg gate protocol. The laser-parameter dependent plaquette energy-spectrum exhibits distinct behavior
w.r.t. the number of laser-excitable spins (indicated by , , . . . ). Solid (dashed) lines show the energy-spectrum as function
of the laser detuning ∆↓,↑ for a fixed Rabi-frequency of Ω↓,↑ = V/2 (Ω↓,↑ = 0). Applying an adiabatic, time dependent laser
pulse (Ω↓(t),∆↓(t)) addressing qubit state |↓〉 imprints an excitation-sector dependent dynamical phase φn on the corresponding
computational basis states (upper row). For constant Rydberg interaction strengths between plaquette atoms, subsequently
applying the same adiabatic laser pulse on qubit states |↑〉 leads to the desired phase separation of even and odd parity
configurations (bottom line).

We will show that this operation can be implemented
with two adiabatic laser pulses, with time-dependent in-
tensity and detuning, where a first pulse couples only the
|↓〉 states to a Rydberg level |r〉, and the second pulse
couples only the |↑〉 states to the same Rydberg state |r〉
(cf. Fig. 2). The first pulse gives all plaquettes with n
particles in |↓〉 a phase φn, whereas the second pulse gives
all plaquettes with 4−n particles in the |↑〉 state a phase
φ4−n. Due to the Rydberg-Rydberg interaction between
atoms in state |r〉, the phases can be programmed to sat-
isfy φ1 + φ3 = γ, and φ0 + φ4 = 2φ2 = −γ.

We assume that the 2×2 plaquettes can be individually
addressed with a Rydberg excitation laser with a time-
dependent Rabi frequency Ω(t), and detuning ∆(t). The
first pulse couples only the |↓〉 to the Rydberg state, and
in this case the relevant Hamiltonian is of the form

Ĥ2×2 =
∑
i

[
−∆(t) |ri〉 〈ri|+

Ω(t)

2
|ri〉 〈↓i|+ H.c.

]
+
∑
i<j

Vij |rirj〉〈rirj |,
(4)

where the sums run over the indices i, j on the plaquette,
and Vij is the van der Waals interaction energy between
atoms i and j. Since the desired gate operation is per-
mutation symmetric, it is beneficial to have Vij = V . We
therefore assume that each plaquette of atoms forms a
tetrahedral configuration, which can be realized in a scal-
able manner by displacing every second lattice diagonal
out of a square lattice (see SM [36]). We note however,

that this is not a strict requirement (see SM [36]).

For designing our phase gate, we will exploit proper-
ties of the many-body eigenspectrum of Eq. (4), obtained

by exact diagonalization of Ĥ2×2, showing the relevant
eigenstates in Fig. 2. Since (during the first pulse) we are
only coupling the |↓〉 states, the particles in |↑〉 remain
in a noninteracting ground state, and do not participate
in the dynamics. In particular, they can not be excited
to the Rydberg state, and the number of relevant eigen-
states of Eq. (4) is therefore dependent on the number of
particles originally in state |↓〉 at the start of the pulse,
as illustrated in Fig. 2, top row. Dashed lines indicate
product eigenstates in the limit Ω = 0, whereas solid,
colored, lines are the eigenstates for a specific Ω > 0. If
there are initially no particles in |↓〉 [panel (a)], there is
just one eigenstate, i.e. |↑↑↑↑〉. If there is one particle
in the plaquette in state |↓〉, an additional eigenstate ap-
pears, with one particle in |r〉. For Ω = 0 (dashed line),
this state has an energy −∆. For Ω > 0 this state forms
an anticrossing with the original product ground state.
Similarly, for n = 2, 3, 4 particles in |↓〉 [panels (c), (d),
(e)], more coupled eigenstates with n particles in |r〉 ap-
pear with slopes −n∆. Moreover, these states have an
energy offset at ∆ = 0 due to the interactions, equal to
n(n − 1)V/2. It should be noted that the widths of the
anticrossings in the spectrum also increase with n.

We now design pulses {Ω(t),∆(t)}, adiabatically con-
necting the initial product state of ground state atoms
to one of the many-body eigenstates. The initial value of
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(a) (b)
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FIG. 3. (a) Two pause pulse example. Laser parameters
that are used for pulse optimization are indicated as dots (see
main text). (b) Gate error of the parity gate for experimen-
tal conditions as: V = 2π × 40 MHz, Ωmax = 2π × 30 MHz,
∆start,end/V ∈ [−3.0, 0.0], ∆A,B/V ∈ [−3.0, 1.0], averaged
over 104 randomly chosen phase-combinations (see SM [36]).
Highlighted points correspond to the pulse shown in panel (a),
with pause-times tA,B adjusted to γ = π/4, corresponding to
the maximally entangling gate operation.

the detuning at t = 0 and Ω(0) = 0 determines to which
of the eigenstates we connect when increasing Ω > 0.
For example, ∆(0) < 0 connects us to the lowest eigen-
state, and 0 < ∆(0) < V/2 connects to the first excited
state [small arrows in Fig. 2(c)]. For illustrative pur-
poses, we operate on the first excited many-body state.
After adiabatically increasing Ω > 0 and subsequently
sweeping the detuning back and forth (arrows in Fig. 2),
the plaquettes pick up a dynamical phase (the time in-
tegral of the particular eigenenergy-trajectory, indicated
as shaded areas in Fig. 2), which is dependent on the
number n, due to the many-body spectrum depending
on n. We can achieve the desired effect that the odd and
even plaquettes pick up equal and opposite phases ±γ
by repeating the pulse in exactly the same fashion, but
this time coupling the |↑〉 ground states to the Rydberg
state (panels (f) - (j) in Fig. 2). By simultaneously illu-
minating plaquettes that are separated by a line of non-
illuminated atoms (see highlighted plaquettes in Fig. 1)
to avoid crosstalk between plaquettes, the whole many-

body phase gate e−iγĤC can be realized in 9 illumination
rounds independent of system size.

Two pause protocol– We now discuss how arbitrary
plaquette phases γ can be implemented using a two-
pause protocol, only requiring onetime optimization and
calibration of laser pulse-shapes. Our protocol relies
on adiabatic trajectories (0,∆start) → (ΩA,∆A) →
(ΩB ,∆B) → (0,∆end), where the corresponding laser-
pulse is held (“paused”) at (ΩA,B ,∆A,B) for durations
tA,B [cf. Fig. 3(a)]. The key observation is that for an ar-
bitrary gate phase γ in Eq. (3), there exists an analytic
solution of hold times tA,B , realizing the desired phase
(see SM [36]). The precise solutions, and hence the total
gate duration, depend on the values of Ω = (ΩA,ΩB)
and ∆ = (∆start,∆A,∆B ,∆end), and the adiabatic path
connecting them.

We determine the waypoints (Ω,∆) of the adiabatic
path by numerically optimizing the total gate duration
for all values of γ ∈ [0, 2π], for the worst case scenario,

(a) (b)

FIG. 4. (a) Example QAOA simulation for 20 qubits. Shown
are the lowest observed- and average residual energy after
each parameter update. (b) Distribution of average residual
energies of 50 independent optimization runs (200 parameter
updates) for a single optimization problem with varying error
rates of the four-body parity gate. Final energy values were
re-estimated via 5000 circuit executions and measurements.
The black bars visualize the 25th to 75th percentiles and the
white circles denote the median of the distribution.

and given experimental constraints such as achievable in-
teraction strengths V and maximum Rabi frequencies Ω.
The paths Ω(t),∆(t), connecting the waypoints (Ω,∆),
are calculated using a novel numerical approach based
on quantum adiabatic brachistochrones (QAB) [41–43]
(see SM [36], which includes Refs. [44–48]). Once this
one-time optimization is done, executing QAOA consists
of only varying the hold times tA,B , irrespective of the
precise problem.

Gate performance– We now assess the performance
of our parity gate protocol for a realistic experimen-
tal scenario. We assume an interaction strength V =
2π × 40MHz, e.g. achievable for 68S states of 87Rb, and
particles spaced at 5µm. In the SM [36] we provide a
detailed discussion of potential considerations, including
three- and four-body effects. We note that for interaction
strengths of this magnitude and µs gate operation times,
trapping with about 1− 2mK deep traps of the Rydberg
states would be required [49, 50], to minimize or prevent
excitations of higher motional states in the tweezer traps
and their associated fluctuations in interaction strengths,
which would adversely affect gate fidelities. The lifetime
of the 68S states at 300 K is about 150µs [51].

For parameters in this regime, Fig. 3(b) analyzes the
average gate-error εgate = 1 − F , where F denotes the
mean of the average gate fidelity over 104 gate realiza-
tions, i.e. γ-values. We optimized the laser-parameters
in the coherent, i.e. noiseless, regime for various levels of
adiabaticity using a 100-steps basin-hopping algorithm
[52]. There, the gate error [see light blue line in Fig. 3(b)]
solely originates from diabatic errors and thus can be ar-
bitrarily reduced by making the gate more adiabatic, i.e.
slower. However, the finite lifetime of Rydberg states
restricts the maximal gate-duration and thus limits the
achievable gate-performance. Including dissipation (see
SM [36], which includes Refs. [53–55]) shows that the best
possible gate-performance is a trade-off between diabatic
and dissipative error mechanisms [see Fig. 3(b)].

QAOA simulations–We numerically demonstrate the
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feasibility of our parity-QAOA implementation on small
test-scale problems of K = 20 qubits (see Fig. 4), ar-
ranged in a 4× 5 grid, with local fields Jj randomly cho-
sen to be either −1 or 1. This corresponds to a small
example optimization problem of a bipartite graph in-
volving 9 logical qubits. Our main objective is to inves-
tigate the robustness of our QAOA scheme under vary-
ing (depolarizing) noise levels of the four-qubit parity
gate (see SM [36], which includes Refs. [56, 57]). We
numerically simulated the QAOA circuit Eq. (2) with
circuit depth p = 3 for various error rates of the four-
body gate, while keeping single-qubit error rates con-
stant at 0.05%. Figure 4(a) shows the residual energy
Eres = (〈E〉 − Emin)/(Emax − Emin), as function of
the number of parameter updates for a sample experi-
ment with a four-qubit error rate of 0.1%. Furthermore,
Fig. 4(b) shows that the performance is robust against
error rates up to a few percent, which can be achieved
with sub-µs Rydberg gate protocols [cf. Fig. 3(b)].
Conclusion and Outlook– While present day Rydberg

experiments have seen enormous progress in quantum
state control and particle numbers, their focus has been
so far predominantly on quantum simulation. Our pro-
posed Rydberg parity gate will enable these experiments
to explore solving arbitrary combinatorial optimization
problems, providing a new direction towards quantum
computing tasks, without requiring substantial hardware
changes. We want to emphasize, that our scheme directly

relates laser-pulse hold-times to the variational QAOA
parameters and thus is a prime example of hardware-
algorithm co-design.

The inherent scalability of the parity architecture is
naturally complemented by the scalability of the Ryd-
berg platform. We expect intermediate scale Rydberg
experiments with up to hundreds of atoms to be able
to investigate parity-QAOA in regimes where it cannot
be investigated by classical simulations anymore. Going
beyond these system sizes, the Rydberg lifetimes will be-
come an issue, and will require either larger interaction
strengths for faster gate operations, or modified imple-
mentations suited for circular Rydberg states with much
longer lifetimes [58–60].
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