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We introduce a model of interacting bosons exhibiting an infinite collection of fractal symmetries
– termed “Pascal’s triangle symmetries” – which provides a natural U(1) generalization of a spin-
(1/2) system with Sierpinski triangle fractal symmetries introduced in Ref. [1]. The Pascal’s triangle
symmetry gives rise to exact degeneracies, as well as a manifold of low-energy states which are absent
in the Sierpinski triangle model. Breaking the U(1) symmetry of this model to Zp, with prime integer
p, yields a lattice model with a unique fractal symmetry which is generated by an operator supported
on a fractal subsystem with Hausdorff dimension dH = ln(p(p+1)/2)/ ln p. The Hausdorff dimension
of the fractal can be probed through correlation functions at finite temperature. The phase diagram
of these models at zero temperature in the presence of quantum fluctuations, as well as the potential
physical construction of the U(1) model are discussed.

Introduction: In recent years, generalizations of the
notion of symmetry have significantly broadened our un-
derstanding of states of matter. Highly-entangled states
of quantum matter, such as Z2 topological order [2–5]
and the (3 + 1)d algebraic spin liquid with photon exci-
tations [6–8], were previously thought to be beyond the
notion of spontaneous symmetry breaking (SSB) of ordi-
nary global symmetries. But it has been recently realized
that these phases admit a unified description in terms of
the SSB of generalized higher-form symmetries [9–17].
Subsystem symmetries have further enriched our under-
standing along this line. Long-range-entangled quantum
phases with fractionalized excitations that have inher-
ently restricted mobility – termed fracton orders – exhibit
emergent subsystem symmetries [18–23]. These symme-
tries can be further categorized [19]: a type-I subsystem
symmetry has generators and conserved charges defined
on regular submanifolds such as lines and planes [18–
20], while type-II subsystem symmetries have conserved
charges defined on a fractal-shaped subsystem [21, 24–
27], often with non-integer spatial dimensions.

The simplest model with a fractal subsystem symme-
try is the Sierpinski-triangle model, which was first intro-
duced for the purpose of studying glassy dynamics [1]:

HST =
∑
5

−Kσz1σz2σz3 . (1)

Here σzi is an Ising spin defined on each site of a trian-
gular lattice, and the sum is only over the downward-
facing triangular plaquettes of the lattice. This model
has the following features: (1) The model has an exotic
fractal symmetry, which becomes most explicit when the
system is defined on a L × L lattice with L = 2k − 1:
the Hamiltonian is invariant under flipping spins along
pairs of extensively-large fractal subsystems, each of
which forms a Sierpinski triangle, as reviewed in the
Supplemental Material; (2) at finite temperature, the
three point correlation function 〈σz0,0σzr,0σz0,r〉 of spins ar-
ranged on the corners of an equilateral triangle is nonzero
only when r = 2k, and scales as ∼ exp(−αrdH ) with

FIG. 1: The U(1) parent model (2) has a family of frac-
tal symmetries, generated by a staggered rotation of the bo-
son phase θi → θi + 2π

p
mi over a triangular region of side

length which is a power of any prime number p. For each p,
the fractal symmetry becomes exact for system size L2 with
L = pk − 1. When acting on a classical ground-state of the
parent model, this transformation generates excitations at the
corners of the triangular region. The action of this rotation
can be visualized as Pascal’s triangle modulo p, which is a
fractal with Hausdorff dimension dH(p) = ln(p(p+ 1)/2)/ln p.

dH = ln 3/ ln 2, which is the Hausdorff dimension of the
Sierpinski-triangle [24, 28, 29]; (3) with the addition of a
transverse field

∑
i−hσxi , there is a quantum phase tran-

sition at zero temperature [30, 31] when h = K, which
separates the “fractal-ordered” phase that spontaneously
breaks the fractal symmetry (K > h), and a disordered
phase (h > K).

In this Letter, we introduce generalizations of both the
classical and quantum Sierpinski-triangle models, which
lead to the identification of a novel kind of fractal sym-
metry. These models are obtained from a U(1) parent
model with “Pascal’s triangle” (also called Yang Hui tri-
angle in China) symmetries, a family of symmetry trans-
formations along a fractal region which are exact in a
system with periodic boundary conditions, and for par-
ticular system sizes. Even when these symmetries are not
exact, the presence of an “approximate” Pascal’s triangle
symmetry gives rise to low-energy states which are absent
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in the Sierpinski triangle model [1]. We study the phase
diagram of this parent model in the presence of quantum
fluctuations, and at non-zero temperature. Descendants
of this model are obtained by reducing the U(1) degree of
freedom of the parent model to Zp, with prime integer p.
The Zp models have their own fractal symmetry that are
deduced from the Pascal’s triangle symmetry, and their
degenerate excitations have an emergent fractal structure
with Hausdorff dimension dH = ln(p(p+ 1)/2)/ ln p.

The U(1) parent model: The Hamiltonian of the U(1)
generalization of the Sierpinski-triangle model reads

HU(1) =
∑
5

−t cos (θ1 + θ2 + θ3) . (2)

It is straightforward to see that Eq. 2 has two conven-
tional U(1) global symmetries:

U(1)1 : θj∈A → θj∈A + α, θj∈B → θj∈B − α,

U(1)2 : θj∈A → θj∈A + β, θj∈C → θj∈C − β. (3)

A,B,C are the three sublattices of the triangular lattice.
The ground states of Eq. 2 spontaneously break the two
U(1) symmetries. Starting with one of the ground states,
say θ = 0 uniformly on the entire lattice, a class of ground
states can be generated by rotating θ globally according
to Eq. 3. Any ground state obtained this way still has
a uniform order of θ on each of the three sublattices,
hence the ground states generated through Eq. 3 have a
conventional “

√
3 ×
√

3” order, which is the order often
observed on the triangular lattice antiferromagnet.

Besides the two ordinary U(1) global symmetries, this
model Eq. 2 actually contains an infinite series of Zp dis-
tinct fractal symmetries, one for each prime number p,
p ≥ 2. The series of Zp fractal symmetries exhibited by
the U(1) parent model are in the shape of a Pascal’s tri-
angle modulo p. For example when p = 2, this Pascal’s
triangle symmetry reduces down to the familiar Z2 frac-
tal symmetry of the Sierpinski-triangle model; for p = 3
the Pascal’s triangle modulo 3 reduces to another fractal
shape (Fig. 1).

The exact series of fractal transformations of Eq. 2 can
be written down as a staggered rotation of the θi’s in the
shape of a Pascal’s triangle modulo p, which has a side-
length of pk−1, where k is any integer greater than zero.
The precise form of the transformation is

θi −→ θi +
2π

p
(−1)ix+iy

(
ix + iy
iy

)
. (4)

at the points (ix, iy) for which 0 ≤ iy ≤ ix and ix + iy ∈
[0, pk − 1]. As shown in the Supplemental Material
(SM), transformations of this form can be used to gen-
erate exact symmetries when the system is placed on an
L×L lattice with periodic boundary conditions and with
L = pk − 1.

Any Zp fractal transformation of the U(1) parent
model generates fully immobile defects which are analo-
gous to fractons. From the uniform θi = 0 ground-state,
transforming the U(1) degrees of freedom according to
Eq. 4 in the shape of a local Pascal’s triangle of size
pk − 1 creates three defects of energy t(1 − cos(2π/p)),
one at each downward-facing triangular plaquette located
at the corners of the Pascal’s triangle, as shown in the
SM, and as indicated schematically in Fig. 1. If we treat
these defects as point-like excitations localized on their
downward facing plaquettes, individual defects cannot be
moved by any rotation of θi’s without creating more ex-
citations and are hence completely immobile.

At finite temperature, the U(1) parent model is com-
pletely disordered similarly to the Sierpinski-triangle
model [1]. This can be most easily seen from a duality
mapping of the U(1) degrees of freedom on the vertices
to new U(1) degrees of freedom on downward facing pla-
quettes (θ1 + θ2 + θ3)5 → φ5, where φ5 is defined on
the dual site located at the center of each downward fac-
ing triangular plaquette (Fig. 2), and φ is still compact
(periodically defined). The dual of Eq. 2 is

Hd
U(1) =

∑
5

−t cos(φ5). (5)

Since each φ is decoupled from one another, the parti-
tion function factorizes into a product of local partition
functions for each individual φ which does not support
any phase transition.

The three-body interactions of the Sierpinski-triangle
model, as well as the U(1) parent model look artificial.
Ref. [32] proposed to realize the Sierpinski-triangle model
with the Rydberg atoms with only two-body Van der
Waals interactions. In the SM we present a more natural
construction of the U(1) parent model through a set-up
with only two-body interactions.
The Zp models: From the U(1) parent model Eq. 2,

models with a single fractal symmetry that are natu-
ral extensions of the Sierpinski-triangle model can be
constructed. This is done by breaking the U(1) de-
grees of freedom down to Zp clock degrees of freedom
σi = eiθi , θi ∈ 2π

p Zp:

HZp
=
∑
5

− t
2
σ1σ2σ3 + h.c. (6)

The model Eq. 6 extends many properties of the
Sierpinski-triangle model to a series of Zp “Pascal’s trian-
gle models” which reduces to Eq. 1 when p = 2. We note
that these Zp models for prime integer p were mentioned
in [24], though the symmetries which distinguish them
from the Sierpinski case were not explored. Generally,
since the Zp fractal symmetry of the Pascal’s triangle
models are descended from the U(1) parent model, the
fractal symmetry transformation in these models is re-
alized by Eq. 4 with the appropriate choice of p. These
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models also display the fracton-like defects associated to
fractal excitations in the shape of a Pascal’s triangle mod-
ulo p as well as spontaneously breaking the Zp fractal
symmetry, yielding a ground-state degeneracy of pL−1

when L = pk − 1 (see SM for derivation).

Spontaneous breaking of the Zp fractal symmetries
in the Pascal’s triangle models can be diagnosed by a
three-point correlation function. Making use of the du-
ality of these models, we can define plaquette degrees of
freedom τ5 = (σ1σ2σ3)5 for which the dual Hamilto-
nian is Hd

Zp
=
∑
5−

t
2τ5 + h.c. In the thermodynamic

limit, each σ-variable can be represented as an infinite
staggered product of dual τ -variables in the shape of
a Pascal’s triangle modulo p. The three-point function
C3(r) = 〈σ0,0σr,0σ0,r〉, after being rewritten in terms of
the dual variables only has compact support when r = pk

and hence must vanish else wise. The three-point func-
tion factors into a product of single-site expectation val-
ues 〈τ〉, . . . , 〈τp−1〉. From the form of the Hamiltonian,
a general expression for the three-point function for ar-
bitrary p prime can be derived (see SM for details)

C3(r = pk) =

p−1
2∏

m=1

〈τm〉Nm,p−m(k), (7)

Nm,p−m(k) is the number of times m and p−m appear in
a Pascal’s triangle modulo p with length pk − 1. Such an
expression is complex, but a complete set of recurrence
relations is constructed in the SM for Nm,p−m(k) lending
Eq. 7 to efficient numerical evaluation. For small p this
can be done analytically, e.g. for p = 3, the three-point
function is

C3(r = 3k) = 〈τ〉r
dH

=

(
eβt − e−βt/2

eβt + 2e−βt/2

)rdH
= e−αr

dH
, (8)

where dH = ln 6
ln 3 is the Hausdorff dimension of a Pascal’s

triangle modulo 3.

As demonstrated by Eqs. 7, the decay of the three-
point function can be complicated for general p prime.
However, a modified version of the Zp Pascal’s triangle
models in Eq. 6 can be proposed for which the three-
point function at finite temperature always decays as a
simple fractal area-law. If we consider an equal-weight
summation of plaquette terms

Hp =
∑
5

p−1
2∑

m=0

− t
2

(σ1σ2σ3)m + h.c. (9)

This model retains the Zp fractal symmetry of Eq. 6 as
it only includes products of the original plaquette terms.
As such, the duality (σ1σ2σ3)5 → τ5 still exists and the

FIG. 2: The models we consider in this work involve sum
of all the downward facing triangles (shaded in green); The
dual of the U(1) model (Eq. 5, Eq. 15) is defined on the dual
triangular lattice, whose sites are the center of each downward
facing triangles of the original lattice.

dual of Hp is

Hdp =
∑
5

p−1
2∑

m=0

− t
2
τm5 + h.c. (10)

The manner in which the three-point correlation for Hp

is calculated remains the same as for what it was in Eq. 6
with the exception that 〈τm〉 no longer depends on power,
m. As a result, C3(r = pk) decays as a fractal area-law
no matter what value p takes:

C3(r = pk) = 〈τ〉r
dH

= e−αr
dH
. (11)

The Zp Pascal’s triangle model with prime integer p
can be further extended to ZN models with composite
integer N . These new composite ZN models have more
than one fractal symmetry. In fact, there is a distinct
Zp fractal symmetry for each unique prime divisor of N ,
e.g. the ZN=6 model has a Z2 Sierpinski-triangle fractal
symmetry and a Z3 Pascal’s triangle modulo 3 fractal
symmetry. The behavior of the three-point correlations
of the ZN models is further discussed in the SM.
The Quantum Phase diagram: So far we have only

discussed the classical version of the models. To turn
quantum fluctuations on in Eq. 2, one can modify the
model as

HQ−U(1) =
∑
5

−t cos (θ1 + θ2 + θ3) +
∑
j

U

2
n2
j , (12)

where nj is the boson number operator defined on each
site of the triangular lattice, which are conjugate to the
boson phase [ni, θj ] = iδij .

As shown previously, a class of ground states of the
classical U(1) model Eq. 2 have the conventional

√
3×
√

3
order, which spontaneously breaks the Pascal’s trian-
gle symmetry, and the two U(1) symmetries in Eq. 3.
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We now investigate whether this classical order is sta-
ble against quantum fluctuation, i.e. whether it is stable
against the U term in Eq. 12. We argue that all sym-
metries of the Hamiltonian (12) are restored by quantum
fluctuations.

In an ordered phase that spontaneously breaks the
U(1) global symmetry, one can ignore the fact that the
phase angle θ is a compact boson (i.e. θ ∼ θ + 2π), and
hence expand the cosine function of Eq. 12 to the lowest
nontrivial order. This procedure leads to an approximate
Gaussian Hamiltonian:

Hg
Q−U(1) =

∑
i,j

tθiθj +
∑
j

3tθ2
j +

U

2
n2
j . (13)

The band structure of θ based on this Gaussian Hamilto-
nian has minima at ±K = ±(4π/3, 0), which is consistent
with the

√
3×
√

3 order of the classical Hamiltonian. The
spectrum of the Gaussian Hamiltonian is gapless.

The Gaussian expansion of the Hamiltonian ignored
the compactness of θ. In a quantum model constructed
with θ, θ being a compact boson is equivalent to the
constraint that its quantum conjugate variable n take
discrete values. To check the stability of a semiclassical
state of θ under quantum fluctuation, one needs to in-
vestigate whether the compactness of θ, or equivalently
the discrete nature of n would destabilize the semiclassi-
cal state described by the Gaussian Hamiltonian Eq. 13.
For example, the (2 + 1)d quantum dimer model on the
square lattice can be mapped to a compact U(1) gauge
theory [33, 34], a Gaussian expansion would lead to gap-
less photons. But the compactness of the gauge field is
always relevant in a semiclassical photon state unless the
system is at a fine-tuned multicritical point (the so-called
RK point [33]), hence the Gaussian state is generally un-
stable against quantum fluctuations. This effect is also
referred to as confinement of a lattice gauge theory. The
standard method of the analysis relies on the dual for-
malism of Eq. 12 and Eq. 13. The dual model is defined
on the dual triangular lattice (Fig. 2), by introducing the
following variables:∑

j∈5

θj = φj̄ , nj =
∑

j̄∈4 around j

−Ψj̄ . (14)

where j̄ labels the sites of the dual triangular lattice.
φj̄ and Ψj̄ are canonically conjugate variables. Ψj̄ takes
discrete values, and φj̄ is compact. The dual Hamiltonian
reads

Hd
Q−U(1) =

∑
j̄

−t cos(φj̄) +
∑
4̄

U

2
(Ψ1̄ + Ψ2̄ + Ψ3̄)2.(15)

Instead of directly dealing with the discrete variable Ψ,
we may view Ψj̄ as taking continuous values, and φj̄ as
its non-compact conjugate variable. The discrete nature

of Ψ can be enforced through an external potential in the
dual Hamiltonian. The dual Hamiltonian becomes

Hd
Q−U(1) ∼

∑
4̄

U

2
(Ψ1̄ + Ψ2̄ + Ψ3̄)2 −

∑
j̄

t cos(φj̄)

− α cos(2πΨj̄). (16)

The next step is to temporarily ignore the α-terms, and
expand −t cos(φj) to the lowest nontrivial order. After
this procedure, the dual Hamiltonian takes a Gaussian
form, and it is the dual of the Gaussian Hamiltonian
Eq. 13. The goal of this analysis is to check the role of
the α-terms at this Gaussian state. This dual Gaussian
Hamiltonian can be solved, leading to a band structure of
Ψ. The minima of the band struture of Ψ are located at
the two corners of the Brillouin zone, ±K = (±4π/3, 0).
We then expand Ψr at ±K:

Ψ(r) ∼ eiK·rψ(r) + e−iK·rψ∗(r). (17)

The Lagrangian of the dual theory expanded at ±K be-
comes

LdQ−U(1) = (∂τ ~ψ)2 + ρ2(∇~ψ)2 −
∑
a

α cos(~ea · ~ψ), (18)

where ~ψ = (Re(ψ), Im(ψ)); a = A,B,C label the
three sublattics of the dual triangular lattice, and eA =
2π(1, 0), eB = 2π(−1/2,

√
3/2), eC = 2π(−1/2,−

√
3/2).

The last three terms in Eq. 18 arise from rewriting the
last term of Eq. 16 by expanding Ψ at ±K. After this ex-
pansion, the last term of Eq. 16 becomes −α cos(~ea · ~ψ(r))
for r belonging to sublattice a (a = A,B,C) of the dual
triangular lattice. Hence at long scale a nonvanishing
term would survive. The α term in Eq. 18 will be rele-
vant for the Gaussian theory with nonzero ρ2, which im-
plies that the compactness of θ, or the discrete nature of
n in Eq. 12 destabilizes the semiclassical Gaussian state,
and the spectrum of Eq. 12 should be gapped even with
small U .

The dual description of the U(1) model studied here
captures the spectrum of the gapless modes arising
from spontaneously breaking the global U(1) symmetries,
though it does not reproduce the spectrum at U = 0 that
arise due to the Pascal triangle symmetries. Neverthe-
less, the nature of the ground-state of the system when
the pinning potential flows to strong coupling can still
be inferred. A strong α would pin Ψ to integer values,
which implies that a relevant α would drive the system
into an eigenstate of n in Eq. 12, and the U term will lead
to a unique and gapped ground state without any spon-
taneous symmetry breaking. Hence we postulate that
quantum fluctuations of Eq. 12 restores all the symme-
tries of model Eq. 2, and continuously connects to the
large−U limit of Eq. 12. The analysis here would be
more involved if n takes half integer values in Eq. 12.
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One possible quantum generalization of Eq. 6 is

HQ−Zp
=
∑
5

−tσz1σz2σz3 −
∑
j

hσxj + h.c. (19)

for which the clock operators σz and σx obey (σz)p =
(σx)p = 1 and σzσx = e2πi/pσxσz (one can also take
σz = exp(iθ) and σx = exp(i2πn/p), and restrict θ to
take values in 2π

p Zp). Unlike the quantum U(1) model,
Eq. 19 is exactly self-dual with the introduction of the
dual plaquette variables

τxj̄ = σz1σ
z
2σ

z
3 , τz1̄ τ

z
2̄ τ

z
3̄ = σxj (20)

for which the dual Hamiltonian takes the same form as
Eq. 19 with t and h switched. Since the spectrum of the
Zp models at h = 0 is gapped, and it takes infinite order
of perturbations of h to mix two different ground states
in the thermodynamics limit, the classical fractal-order
of the Zp Pascal’s triangle models is not destroyed upon
the introduction of quantum fluctuations. Furthermore,
the exact self-duality implies that there should be one or
more quantum phase transitions that separate the fractal
ordered phase (t� h) and the disordered phase (h� t).

Discussion: Although we demonstrated that the semi-
classical order of Eq. 12 is unstable against quantum fluc-
tuation, some deformation of Eq. 12 can support a sta-
ble semiclassical order. In the SM we will show that if
we sum over three-boson interactions for both upward-
facing and downward-facing triangles, the semiclassical√

3×
√

3 order becomes stable against quantum fluctua-
tions. Also, the system may be tuned to a multicritical
point where ρ2 in Eq. 18 vanishes, and the low energy
dynamics is controlled by ρ4(∇2 ~ψ)2. The system can
remain gapless for a finite range of ρ4, though it takes
tuning multiple parameters to reach this state [35–37].

The nature of the quantum phase transition(s) in the
quantum Zp model is a challenging subject. So far there
is no well established paradigm for understanding quan-
tum phase transitions involving spontaneous breaking of
a fractal symmetry. Any approach to study the quantum
phase transition of the Zp models (such as the quantum
Z2 Sierpinski-triangle model) through the U(1) general-
ization would need to address the enlarged Pascal’s tri-
angle symmetry pointed out in the current work.
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