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Nonlinear Thouless pumps for bosons exhibit quantized pumping via soliton motion, despite
the lack of a meaningful notion of filled bands. However, the theoretical underpinning of this
quantization, as well as its relationship to the Chern number, has thus far been lacking. Here we
show that for low power solitons, transport is dictated by the Chern number of the band from
which the soliton bifurcates. We do this by expanding the discrete nonlinear Schrödinger equation
(equivalently, the Gross-Pitaevskii equation) in the basis of Wannier states, showing that the solitons
position is dictated by that of the Wannier state throughout the pump cycle. Furthermore, we
describe soliton pumping in two dimensions.

The concept of Thouless pumping [1–4] has played a
major role in shaping the understanding of the robust-
ness of the integer quantum Hall effect and its salient
feature: Sharply quantized plateaus in the Hall conduc-
tance despite the presence of disorder. After it was first
observed experimentally [5], a full theoretical description
was much sought after. Laughlin put forward a magnetic-
flux threading argument, in which charge is pumped from
one edge of a two-dimensional system to the other due
to gauge invariance [6]. Thouless gave an alternative
theoretical explanation via dimensional reduction (as it
was termed later) and showed that the quantized conduc-
tance in two dimensions maps onto quantized pumping in
a 1+1-dimensional system, which is periodically modu-
lated in time [1, 2]. In such ‘Thouless pumps’, quantized
pumping of charge can be understood in terms of Wan-
nier functions that are displaced by an amount dictated
by a topological invariant of the system [4, 7]: the Chern
number of the corresponding band [1, 2, 8, 9].

More recently, it came to be understood that topo-
logical states such as those associated with the quantum
Hall effect are not restricted to fermions, but are rather
a general wave phenomenon [10, 11]. Besides the hall-
mark electronic systems [5, 12], topological phenomena
have been predicted and observed in a variety of experi-
mental platforms based on fermions and bosons, such as
ultracold atoms [13–15], mechanical systems [16, 17] and
photonics [18–20]. Moreover, linear Thouless pumps have
been observed in such systems (see e.g., Refs. [21–27] to
cite a few). An important area of contemporary research
is the interplay between topology and inter-particle in-
teraction; this has been highly challenging due to the
lack of a broad theoretical framework for topological in-
variants and associated physical observables in such sys-
tems. Interacting bosons in the mean-field limit (whether
photons, atoms, or otherwise) are usually described by
a nonlinear Schrödinger equation – also called Gross-
Pitaevskii equation – where the nonlinear term is related
to the strength of the inter-particle interactions. Per-
haps the most fascinating solution of nonlinear equations
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are solitons [28–32]. These are wavepackets localized in
space and eigenstates of their self-induced potential. In
other words, the nonlinearity acts to balance the diffrac-
tion and nonlinearity, such that a soliton’s shape is con-
stant in time or space. The interplay between nonlinear-
ity/solitons and topology has recently led to discoveries
of new phenomena such as Floquet topological bulk soli-
tons [33, 34], soliton-like edge propagation [35–37] and
nonlinearly-induced edge states [38]. Recently, the au-
thors observed quantized nonlinear Thouless pumping
via soliton motion despite non-uniform band occupation
[39]. The quantization followed from the fact that the
Hamiltonian was time-periodic and thus came back to
itself after a period, implying that the soliton wavefunc-
tion must – in the low-power regime – return to itself
(apart from a translation by an integer number of unit
cells). In that work, it was observed experimentally and
numerically that solitons bifurcating from a given band
are transported in accordance with the Chern number of
that band. However, a comprehensive theoretical under-
standing of this effect has not yet been presented.

Here we show that the trajectory of low-power solitons
in nonlinear Thouless pumps is dictated by the Chern
number of the band from which they bifurcate. Because
for adiabatic modulation a stable soliton remains a soli-
ton of the instantaneous Hamiltonian, it is sufficient to
show the existence of a stable soliton for all times, and
that its position is linked to the position of the Wan-
nier states. Specifically, we solve for the instantaneous
solitons in the basis of Wannier functions, in which the
equations take the form of a simple 1D lattice with Kerr
nonlinearity. We illustrate the resulting quantization in
a Rice-Mele model. For each band we find a stable in-
stantaneous soliton centered upon a Wannier function for
all times during the pump cycle. Additionally, we find
an unstable soliton centered between two Wannier func-
tions. Finally, we show quantized nonlinear pumping in
a 2+2-dimensional pump.

Our focus lies on systems with a slowly varying,
time-periodic Hamiltonian describing a (linear) Thou-
less pump. The pump is entirely general at this stage;
later we illustrate the results in a Rice-Mele model. The
time-dynamics are described by the discrete nonlinear
Schrödinger equation with a focusing Kerr nonlinearity
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[40, 41] (although the results generalize straightforwardly
to localized – bright – solitons in the discrete defocusing
case):

iψ̇n(t) =
∑
m

Hnm(t)ψm(t)− g|ψn(t)|2ψn(t) (1)

Here, ψn(t) is the amplitude of the wavefunction at site
n and time t, Hnm(t) is a time-periodic tight-binding
Hamiltonian, g > 0 is the strength of the focusing non-
linearity and ψ̇n represents the time derivative of ψn.
For our analysis it does not make a difference if Hnm de-
scribes hoppings between sites or orbitals on a given site.
Thus, we refer to both as sites. The indices n, m run over
all sites with periodic boundary conditions. Eq. (1) de-
scribes a range of systems, including the propagation of
intense light through nonlinear media [41], the dynamics
of Bose-Einstein condensates [42] and exciton-polariton
condensates [43–45]. It conserves the norm of the wave-
function (P =

∑
n |ψn|2) and without loss of generality,

we use normalized wavefunctions (P = 1) and vary g.
The degree of nonlinearity is then given by g with re-
spect to the hopping parameters in Hnm. We refer to
solitons as having ‘low power’ if they are calculated with
small g.

In the linear case (g = 0) quantized Thouless pump-
ing necessarily requires adiabatic time modulation and
uniform band occupation. For fermionic systems (like
electrons in the solid state), this corresponds to a Fermi
level within a band gap. For bosonic systems, a sim-
ple way to obtain uniform band filling is via the initial
excitation of a single Wannier function. Over time, the
wavefunction will evolve but retain a uniform band oc-
cupation throughout the pump cycle as dictated by the
adiabatic theorem. Quantized pumping itself can be un-

FIG. 1. Wannier states and soliton wavefunctions. (a) Instan-
taneous maximally localized Wannier wavefunction for one
pump cycle calculated for the lower band in a Rice-Mele model
with Chern number C = +1. (b) Similar to (a), but calcu-
lated for the upper band with a Chern number of C = −1.
(c,d) Similar to (a,b) but showing the instantaneous soliton
wavefunction. The degree of nonlinearity is g/J = 2 and
g/J = 3 (see Eq. 7) for (c) and (d), respectively.

derstood as flow of the instantaneous Wannier functions
as displayed in Figs. 1a,b, whose winding around the unit
cell as a function of the pump parameter is equivalent to
the Chern number of the occupied band.

In the nonlinear case (g 6= 0) the time evolution of sta-
ble solitons (i.e., nonlinear eigenstates) has similarities to
the adiabatic time evolution of eigenstates in linear sys-
tems [46, 47]: For sufficiently slow driving, excitations
of other states are negligible and the wavefunction con-
tinues to occupy the instantaneous soliton for all times
during the pump cycle. It is therefore possible to cal-
culate the adiabatic time-evolution for solitons in two
ways: (1) Numerically solving Eq. (1) as a function of
time; or (2) solving for the instantaneous nonlinear eigen-
states at different time slices in the pump cycle. Im-
portantly, the instantaneous states must be stable, as
otherwise small perturbations around the linearized so-
lution exponentially increase (see Supplemental Material
for more information on linear stability analysis). We il-
lustrate the second method in Figs. 1c,d, which show the
wavefunction of instantaneous solitons (we also compare
the two methods for increasing adiabaticity in the Sup-
plemental Material). Strikingly, the trajectories of the
instantaneous solitons are noticeably similar to those of
the instantaneous Wannier functions of the bands from
which the solitons bifurcate. As the available solitons
at the beginning and at the end of each pump cycle are
identical in each unit cell, quantized motion of solitons
is expected, even for non-uniform band occupation. Be-
low, we prove that the number of unit cells which the
solitons are pumped corresponds to the Chern number of
the band from which they bifurcate.

We now present the missing link to show that the po-
sition of the instantaneous soliton is indeed intimately
related to that of the Wannier functions. Showing that
the solitons pump by the same number of unit cells as the
Wannier functions will prove that the solitons are trans-
ported by C unit cells, where C is the Chern number.
As we are only concerned with finding the instantaneous
solitons for a static Hamiltonian at a given point in the
pump cycle, we use ψn(t)→ e−iλtψn, where λ is the non-
linear eigenvalue, such that Eq. (1) takes the following
form:

λψn =
∑
m

Hnmψm − g|ψn|2ψn (2)

We first rewrite Eq. (2) in the basis of Wannier func-
tions as in Ref. [48] by expanding the wavefunction in
the Wannier basis:

ψn =
∑
R,α

cR,αwR,α,n (3)

with expansion coefficients cR,α and Wannier functions
wR,α,n, labelled by the lattice vector R and a band in-
dex α. By plugging Eq. (3) into Eq. (2) and after
some mathematical manipulation we arrive at the fol-
lowing equation (for a more detailed derivation, see the
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Supplemental Material):

λcR,α =
∑
R′

εR′+R,αcR′,α−

gWα,α′,α′′,α′′′

R,R′,R′′,R′′′c
∗
R,αcR′′,α′′cR′′′,α′′′ (4)

Here, εR,α, is the Fourier coefficient of the energy of band
α, and W is an overlap integral between four Wannier
functions:

Wα,α′,α′′,α′′′

R,R′,R′′,R′′′ =
∑
n

w∗R,α,nw
∗
R′,α′,nwR′′,α′′,nwR′′′,α′′′,n

(5)
Up to now, no assumptions have been made and Eq.

(4) and Eq. (2) are equally valid to find static soli-
tons, apart from the fact that they are written in dif-
ferent bases: ψn describes the amplitude on individual
real space sites, while cR,α describes the amplitude of
Wannier functions. We refer to the two descriptions as
‘real space’ and ‘Wannier space’, respectively. To pro-
ceed, we make the following reasonable simplifications:
(1) We focus on static solitons at low power, whose occu-
pation for isolated (non-degenerate) energy bands tends
to be in one band only, due to the large energy differ-
ence separating the bands. Therefore, we can neglect any
nonlinear inter-band coupling terms in Eq. (4) and only
focus on individual bands. (2) We restrict ourselves to
systems that allow exponentially localized Wannier func-
tions, such that the dominant term in the overlap integral
is given by the Wannier functions localized in the same
unit cell, which applies to a Thouless pump at any given
time slice.

Then, the static discrete nonlinear Schrödinger equa-
tion takes the following fully simplified form in the Wan-
nier basis:

λcR,α =
∑
R′

εR′−R,αcR′,α − gWα,α,α,α
R,R,R,R|cR,α|

2cR,α (6)

This equation has an intuitive interpretation: It describes
hopping in a lattice with a Kerr nonlinearity, where the
hopping strengths are given by the Fourier coefficients of
the (linear) energy bands. In contrast to Eq. (2), the
sites in this lattice do not represent sites in real space,
but rather Wannier functions. Furthermore, and impor-
tantly, the unit cell in the Wannier space only consists
of a single site. This allows us to use the knowledge
about solitons in simple 1D lattices (see for example Refs.
[31, 40, 41, 49]) where we already know that two types
of static solitons exist: One stable on-site soliton and
one unstable inter-site soliton (see Fig. 2a). In Wannier
space the on-site soliton is always centered on a single
Wannier function. After transforming back from Wan-
nier into real space, the obtained real space soliton is
localized near the Wannier center. (Its center of mass
is not necessarily identical to the center of mass of the
Wannier function due to interference effects between mul-
tiple occupied Wannier functions.) As this is valid for all
times t during a pump cycle, and the on-site soliton is

expected to be stable for all times, we have shown that
the motion of the soliton is dictated by the motion of
the Wannier centers. As the displacement of a Wannier
center over a full cycle in a Thouless pump is equal to
the Chern number of their respective band [4, 7], the dis-
placement of low-power pumped solitons is given by the
Chern number of the band from which they bifurcate.

To numerically illustrate our findings by example, we
use a Rice-Mele model [50] with a focusing nonlinearity
(g > 0): The linear Hamiltonian of this model describes
a Thouless pump with two sites per unit cell:

HRM
nm (t) = −[J + (−1)m+1δ cos(Ωt)]δn−1,m

−[J + (−1)mδ cos(Ωt)]δn+1,m

−∆(−1)m sin(Ωt)δn,m

(7)

Here, Ω is the modulation frequency. The parameter J
describes the average hopping strength between nearest-
neighbor sites, which is modulated with strength δ, in-
troducing a difference between intra- and inter-unit cell
hoppings. The parameter ∆ gives the strength of mod-
ulation of the staggered on-site potential. For specific
numerical examples throughout this work, we use J = 1,

FIG. 2. Comparison between soliton calculation in real space
via Eq. (2) and Wannier space via Eq. (6). (a) Left panel:
Band structure for a simple 1D lattice with hopping J > 0.
Bifurcation of solitons (for focusing nonlinearity) occurs from
the minimum of the band. Right panels: The two types of
possible solitons: on-site and inter-site soliton. (b,c) Expan-
sion coefficients, ψn and cR,α, of the instantaneous on-site
soliton in real space (b) and Wannier space (c) for Ωt = 2π/8
and the lower band in a Rice-Mele model (see Eq. (7)) with
g/J = 1. The soliton calculated in real space via Eq. (2) is
shown in red. The soliton calculated in Wannier space via
Eq. (6) is shown in black. α is the band index. (d,e) Similar
to (b,c) but for the inter-site soliton.
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δ = 0.5 and ∆ = 1 with 200 sites and periodic boundary
conditions. Further information on this Hamiltonian can
be found in the Supplemental Material.

We illustrate the intimate link between the position of
the soliton and the Wannier function in the Rice-Mele
model for Ωt = 2π/8, where no spatial symmetries pin
the soliton to a fixed position. We calculate the instanta-
neous solitons in two ways and then compare their shape
in real and Wannier space: (1) The exact soliton (Figs.
2b-e; shown in red) is calculated via Eq. (2) in real space
and then transformed via change of basis into Wannier
space. (2) We use Eq. (6) and calculate the soliton (Figs.
2b-e; shown in black) in Wannier space, which is then
transformed into real space. For low degree of nonlinear-
ity excellent agreement is observed, both for the on-site
as well as for the inter-site soliton (see Figs. 2b-e). With
increasing nonlinearity, the projection of the exact soliton
calculated via Eq. (2) shows more and more occupation
of Wannier states of higher bands, suggesting that the
approximations made in Eq. (6) become less accurate
(see also Supplemental Material). Solitons that bifurcate
from the higher band are shown in the Supplemental Ma-
terial.

In order to show the pumping process, we calculate the
position (modulo a unit cell) of the soliton for one com-
plete pumping cycle. Fig. 3 shows the position of the
stable on-site soliton (solid lines) and the position of the
unstable inter-site soliton (dashed lines) for different de-
grees of nonlinearity (g/J) calculated via Eq. (2). While
the unstable inter-site solitons (dashed lines) are math-
ematical solutions, propagation simulations via Eq. (1)
show that the soliton breaks apart almost immediately
due to its instability. In contrast the on-site soliton is
stable and follows the position of the Wannier function
(black). We point out that even at low power, due to
interference terms between the occupied Wannier func-
tions, the center of mass of the soliton does not have to
be centered exactly upon the center of mass of the Wan-

FIG. 3. Soliton and Wannier flow. Position of the center
of mass of the instantaneous solitons that bifurcate from the
lower band with Chern number C = +1 for one pump cy-
cle and projected into one unit-cell. Stable on-site (unstable
inter-site) soliton is shown with solid (dashed) lines. Different
degrees of nonlinearity are shown in color. Black line shows
the center of mass position of the Wannier function.

FIG. 4. Two-dimensional quantized nonlinear pumping. (a)
Schematic of the unit cell with 9 sites and three different hop-
pings, which are modulated in time. (b) Band structure for
the system shown in (a). (c) Instantaneous soliton localized
at the corner of the unit cell for Ωt/2π = 0. (d) Same as (c)
but showing the movement of the soliton for evolving pump
parameter. The parameters for the AAH-model are chosen
as: K = 1 and K̃ = 0.7. In (c,d) the degree of nonlinearity is
g/K = 5.

nier function, but is localized close to it. For stronger
nonlinearity, the approximations of Eq. (6) become less
accurate and larger deviations occur, due to the increas-
ing occupation of Wannier functions of higher bands (see
also Supplemental Material). Nevertheless, for increasing
power, soliton motion remains quantized to the Chern
number: the solitons at the beginning and end of each
pumping cycle continue to be identical (apart from a
translation by an integer number of unit cells). How-
ever, at some finite power a nonlinear bifurcation may
act to split the trajectory or make the soliton unstable.
This would change, or destroy, quantization.

Finally, we show that quantized nonlinear pumping
can be extended to higher dimensions, by using a two-
dimensional model consisting of the sum of two Thou-
less pumps in orthogonal spatial directions. Here, we
use the off-diagonal version of the Aubry-André-Harper
(AAH) model [51–53]. A schematic of the model is de-
picted in Fig. 4a where only the hoppings are modulated:
Kj = −K − K̃ cos(4πj/3 + Ωt) with j ∈ {1, 2, 3}. This
model has been used to simulate the 4D quantum Hall
effect and its topological properties are described by the
second Chern number, which is the product of first Chern
numbers for the two orthogonal directions [26]. The band
structure for the pumping cycle is shown in Fig. 4b. We
focus on a soliton that bifurcates from the lowest band.
We point out that while the linear model is separable in
the x and y directions, the nonlinear model is not. Fig 4c,
shows the soliton at the beginning of the pumping cycle
Ωt = 0, pinned to the corner of the unit cell, due to sym-
metries. During the pump cycle (see Fig. 4d) the soliton
is pumped by +1 unit cell in the x-direction and +1 unit
cell in the y-direction, corresponding to the Chern num-
bers of the pumps in those directions, respectively.

In summary, we have shown that solitons in weakly in-
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teracting bosonic systems are pumped by the Chern num-
ber of the band from which they bifurcate, despite non-
uniform band occupation. This proves that quantized
nonlinear Thouless pumping is protected by the Chern
number, which can thus be considered to be a physically
meaningful topological invariant for describing nonlinear
systems. We expect the soliton motion to remain quan-
tized for increasing power until a nonlinear bifurcation
splits the path of the soliton or makes it unstable. Fur-
thermore, we described the Thouless pumping of unsta-
ble inter-site solitons and showed that quantized non-
linear pumping can also be observed in two-dimensional
systems. Our results pave the way to a broader under-
standing of the interface between interacting/nonlinear
systems and topology.

During the preparation of this manuscript, the authors

became aware of related, as yet unpublished work by N.
Mostaan and N. Goldman.
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