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Recent work applying the notion of pseudospectrum to gravitational physics showed that the
quasinormal mode spectrum of black holes is unstable, with the possible exception of the longest-lived
(fundamental) mode. The fundamental mode dominates the expected signal in gravitational wave
astronomy, and there is no reason why it should have privileged status. We compute the quasinormal
mode spectrum of two model problems where the Schwarzschild potential is perturbed by a small
“bump” consisting of either a Péschl-Teller potential or a Gaussian, and we show that the fundamental
mode is destabilized under generic perturbations. We present phase diagrams and study a simple
double-barrier toy problem to clarify the conditions under which the spectral instability occurs.

Introduction. The advent of gravitational-wave (GW)
astronomy [1, 2] and of very long baseline interferome-
try [3, 4] opened exciting new windows to the invisible
Universe. Black holes (BHs) play a unique role in the
endeavor to test our understanding of general relativity
(GR) and in the search for new physics [5-11].

According to the singularity theorems [12, 13], classical
GR must fail in BH interiors. Quantum mechanics in
BH spacetimes also leads to puzzling consequences, such
as the information paradox [14-16]. It is tempting to
conjecture that a theory of quantum gravity will resolve
these issues, but the scale and nature of quantum gravity
corrections to BH spacetimes is unknown. Uniqueness
results in vacuum GR imply that BHs are the simplest
macroscopic objects in the Universe [17], and BHs don’t
“polarize” in binary systems [18-23]. The simplicity of
BHs (whether isolated or in binaries) implies that they are
ideal laboratories to probe the limitations of GR, as long
as environmental effects or astrophysical uncertainties can
be ignored. In this paper we ask an important question:
is it really possible to ignore environmental effects?

One of the tools to test the Kerr geometry is BH spec-
troscopy [24-26], now a thriving field [27-34]. If a compact
binary merger leads to the formation of a rotating BH, as
predicted in GR, the spacetime should asymptote to the
Kerr metric through a relaxation process during which
it can be described as a perturbation of the Kerr metric.
The late-time GW signal (the “ringdown”) is a superpo-
sition of damped exponentials with complex frequencies
known as the quasinormal modes (QNMs), which can
be computed within perturbation theory as poles of the
associated Green’s function [35-37]. The residues corre-
sponding to these poles in the complex frequency plane
dictate the amplitude of the response. To model a ring-
down signal using Kerr QNM frequencies in vacuum, we
should take into account the surrounding matter (even if
it can be considered as a small perturbation). This is the
main motivation of our work.

The behavior of the Green’s function in the entire
complex plane can be investigated using the mathemat-
ical notion of “pseudospectrum” [38-42]. Through the
pseudospectrum we can understand whether the QNM
spectrum itself is stable under perturbations [43—45].
Recent work on the pseudospectrum showed that all
Schwarzschild QNMs exhibit spectral instability, with
the possible exception of the longest-lived (fundamental)
mode [39]. The fundamental QNM is expected to domi-
nate the GW response of BHs, and its spectral stability is
crucial for BH spectroscopy with GW observations [40].

In this paper we consider generic, small perturbations
of the effective potential dictating the dynamics of GWs
around Schwarzschild BHs consisting of tiny “bumps”,
which may be produced (e.g.) by matter in the local
BH environment [46], and we show that they inevitably
lead to large shifts in the frequency and damping time
of the fundamental mode. The spectral instability of
the fundamental mode has important implications for
BH spectroscopy: while the overtone instability pointed
out in Refs. [39, 40] may not be easy to observe in the
near future, the fundamental mode is already within the
LIGO/Virgo detection range.

We will work in geometrical units (G = c=1).

The Regge- Wheeler equation. Gravitational fluctua-
tions in the background of a nonrotating BH with mass M
can be reduced to the study of a radial gauge-independent
master function ¥. In Fourier space ¥ obeys an ordinary
differential equation [47, 48]
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where the tortoise coordinate r, is defined in terms of
the areal coordinate r via dr/dr, = 1 — 1/r, w is the
Fourier variable, and we set the Schwarzschild radius
2M = 1. The angular coordinates were separated via
an expansion in tensor spherical harmonics with angular
number ¢ = 2,3.... Without loss of generality we focus
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FIG. 1. Migration of £ = 2 QNMs as a function of the bump position a for a Péschl-Teller perturbation with e = 1076, Left:
Individual modes migrate along the black lines. The mode w(® (bold line) reduces to the Schwarzschild fundamental mode
when € — 0, and the arrows indicate the direction of migration as a increases. Modes with the same value of a have the same
color, and are connected with dotted lines. Top right: Zoom-in around the unperturbed fundamental QNM w® . Bottom right:
Real and imaginary parts of the migration distance Aw(®) of the perturbed fundamental QNM. We use units such that 2M = 1.

on odd-type gravitational perturbations, described by the
Regge-Wheeler potential

(Y2

Since GW emission is predominantly quadrupolar, we
focus on the / = 2 mode and write V = V5. QNM
frequencies are defined as the complex eigenvalues w of
Eq. (1) such that perturbations are purely ingoing at the
event horizon and outgoing at spatial infinity [36, 37].
Instability of the fundamental mode. Consider now
a small perturbation to the effective potential (induced
e.g. by matter in the BH exterior [46]) of the form

‘/;:V+6Vbump7 (3)

with € < 1 and Vyump & generic “bump” located at r, = a,
such that Viump goes to zero as r, — Fo00 at least as fast
as V. Such a bump could be introduced by matter sur-
rounding the BH (see [49] or the Supplemental Material
for explicit examples). We are interested in the complex
QNM frequencies wi? = w'), + iw) of the perturbed
potential V.. When the perturbation is added, the origi-
nal fundamental mode w(()o) migrates continuously in the
complex plane along a curve which, in general, depends
on € and on the parameters characterizing Viump-

Note that w((f) is not necessarily the fundamental mode
of the perturbed potential V., which is defined as the
QNM with the smallest |wr|. We define w to be the
fundamental mode of the perturbed potential V. and

we set w(©) = w(()e) — i.e., we drop the subscript 0 from

the QNM frequencies that correspond to a continuous
deformation of the original fundamental mode w(®) = wéo).
We observe that one can destabilize the fundamental
QNM in two different ways, as illustrated in Fig. 1:
(i) Quasi-stable destabilization via migration of the fun-
damental mode. By measuring the variation Aw(®) =
w® —wO in a continuous deformation of the original
fundamental QNM frequency, for large enough a we find
regimes in which w(® = w, but |Aw®/w®| > €. In
this case the fundamental QNM is destabilized because it
migrates over distances in the complex plane which are
much larger than the scale of the perturbation e.
(i) Discontinuous overtaking of the fundamental mode.
In the regime |Aw(®) /w(®| > ¢, QNMs which initially had
large |w;| can “overtake” w(®) to become the new funda-
mental mode w. Each overtaking causes a discontinuous
jump in g which is orders of magnitude larger than e.
Poschl-Teller and Gaussian bumps. We demon-
strate these phenomena by modelling the perturbation
Vibump either by the Poéschl-Teller potential

Ver(rs — a) = sech? (r, — a), (4)

or by a Gaussian peak with varying width o:

Vo (r. — a) = exp (W) . (5)

We use the shooting method to solve for the QNMs by
integrating Eq. (1) numerically from the boundaries to



0.18

~
3016

0.14 _—**’""(’J—//jh/n/)];s/ t/o wr < 0.2 . 46 . _— i
o Poschl-Teller, € = 1076
0.66 0.68 0.70 0.72 0.74 0.76 0.78
WR
0.75F - - ——
- 0.50F
B quasi-stable overtaking
0.25F
0.00 L Poschl-Teller, e = 10.° .
0 10 20 30 40

10-3
104
w O,
107°F quasi-stable I't%}]g
10°¢
Lo Poschl-Teller '\\) .
10 20 30 40
a
10t ===z
.-: : :>
- Sa
o
~. e__
SEUNY LIT--D
quasi-stable .
1
Gaussian (overtaking zone ot shown) ~*y

10 20 30 40 50 60 70
a

FIG. 2. Top left: Migration of the fundamental mode w in the complex plane when a is increased, for a Poschl-Teller bump
with e = 107%. Discontinuous jumps in @ are shown with dotted lines. Bottom left: Variation of the real part of @ in the top
left panel as a function of a. Top right: “Phase diagram” of € vs a for a Poschl-Teller bump. Bottom right: “Phase diagram” of

o vs a for a Gaussian bump with different values of e.

the center, and searching for the values of w that give
a matching solution (see e.g. [50]). We have performed
convergence tests and cross-checked our results against
alternative numerical methods [51, 52].

Figure 1 shows the modes for the Poschl-Teller bump
as we increase a for a fixed value of ¢ = 1076, In the
left panel we highlight in bold the curve traced by a
continuous perturbation of the original fundamental mode.
The top-right panel zooms into the trajectory near w(®)
for moderate a, and the bottom-right panel shows the real
and imaginary parts of the perturbed QNM frequency as
functions of a. The perturbed QNM moves over regions
such that |[Aw(?)/w®] > ¢ for sufficient large a: the
bottom-right panel shows that |Aw(€)| grows exponentially
from ~ 1076 to ~ 1072 in the regime 10 < a < 33. This
is the “migration instability” of item (i) above.

The exponential growth with a is related to the expo-
nentially increasing nature of the eigenfunction ¥ ~ e?"=:
at large r,, the response of the eigenfunction to a pertur-
bative bump increases exponentially. In the mathematical
literature, a similar exponential behavior is expected for
small disturbances of symmetric multi-well potentials [53—
56]. To the best of our knowledge, there are no analogous
theorems for potentials of relevance to BH physics.

For a ~ 30, the arrows show that new modes move
fast towards the bottom left of Fig. 1. Eventually some
of these modes overtake w(®): this is the (discontinuous)
overtaking instability described in item (ii) above. For
bumps at large enough distance a, the fundamental QNM
can be destabilized by perturbations with ¢ < 1.

The top-left panel of Fig. 2 shows the discontinuous
overtaking instability of the fundamental mode in more
detail. For a Poschl-Teller bump located at small values

of a, the fundamental mode is still w = w(?). Around
a ~ 33, a new mode coming from the right overtakes w(®
and becomes the new fundamental mode w, so that the
real part of w has a discontinuity. After three consec-
utive overtakings with Awr ~ O(1072), @ jumps one
more time to wr < 0.2, with Awg ~ O(1071), and the
fundamental QNM is completely destabilized.

The bottom-left panel of Fig. 2 shows wg as a func-
tion of a. We can identify three different regimes: a
first regime where the fundamental mode is quasistable,
a regime where multiple overtakings occur, and a third
regime where the fundamental QNM is completely desta-
bilized. In the latter regime, the separation between the
real parts of two consecutive modes is given to a very
good approximation by wpi1,r — wp,r = w/a: this is
the expected characteristic behavior of modes trapped
between two potential barriers located at distance a from
each other (see e.g. [9, 40, 46]) and it can lead to multiple
ringdown wave trains or “echoes” [57].

We have repeated the analysis for Poschl-Teller per-
turbations with different amplitudes e. The top-right
panel of Fig. 2 shows a “phase diagram” in the (a, €)-
plane showing where spectral instabilities are possible.
The overtaking instability occurs as soon as we get into
the gray area, while the top-right region corresponds to
complete destabilization. The bottom-left panel of Fig. 2
is a cross-section of this diagram, corresponding to the
horizontal long-dashed line at ¢ = 1075. The trend is
clear and consistent with the previous discussion: as a in-
creases, the values of € needed to destabilize the spectrum
decrease exponentially, as they should if the instability is
indeed related to the exponentially increasing response of
the wave function to the bump for large values of a.



In the bottom-right panel of Fig. 2 we show a similar
“phase diagram” for Gaussian perturbations with different
values of the amplitude € and width o. For clarity, in this
case we show only the phase diagram boundaries corre-
sponding to complete destabilization. A broader bump
(i-e., a bump with larger values of o) is more effective at
destabilizing the fundamental mode. This is not simply
due to the fact that we are fixing € and increasing o,
thus producing a “stronger” perturbation of the original
potential. We have repeated the analysis normalizing the
Gaussian bump by 1/v/270, and we obtain qualitatively
similar results (see the dotted line in the bottom-right
panel). The fact that the QNM instability occurs for
smaller a when the bump is wider is not an artifact of the
larger area under the curve. As we show in the Supple-
mental Material, the qualitative features of this study are
confirmed by the analysis of a simple toy model consisting
of a double rectangular barrier (cf. [46]).

Conclusions. We have studied two model problems in
which the potential describing gravitational perturbations
of a Schwarzschild BH is perturbed by either a Poschl-
Teller or a Gaussian “bump” of amplitude € located at
distance = a from the light ring. We have demonstrated
that the fundamental mode of the Schwarzschild potential
can be destabilized in two ways: either because it migrates
continuously by an amount |Aw(® /w(®)| > € when the
perturbing bump is located at large enough a (“migration
instability”), or because of the appearance of a new family
of “trapped modes” in between the two potential barriers
that can overtake the original fundamental mode (“over-
taking instability”). We have shown through “instability
phase diagrams” that the value of € needed to destabilize
the spectrum decreases exponentially as a increases, and
that broad bumps are more likely to destabilize the fun-
damental mode. The analysis is therefore consistent with
the conclusions of Ref. [39]: short length-scale (ultravi-
olet) perturbations do not destabilize the fundamental
QNM, but large-scale (infrared) perturbations might.

How does spin affect the instability, and does the in-
stability play a role in gravitational turbulence for near-
extremal Kerr BHs [58]?7 What are the implications of

our results for modeling the ringdown of BHs surrounded
by matter or other forms of “hair”? In GW astronomy,
is this instability a threat to the BH spectroscopy pro-
gram [40], and can it circumvent the failure of determinism
in GR [52, 59]? More fundamentally, do infrared and/or
ultraviolet corrections to general relativity affect at a
fundamental level the meaning of the QNM spectrum
and BH stability? These are important questions that
must be addressed through numerical simulations and
further theoretical work (see Ref. [60] for first steps in
this direction).
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