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Arbitrarily long quantum computations require quantum memories that can be repeatedly mea-
sured without being corrupted. Here, we preserve the state of a quantum memory, notably with
the additional use of flagged error events. All error events were extracted using fast, mid-circuit
measurements and resets of the physical qubits. Among the error decoders we considered, we in-
troduce a perfect matching decoder that was calibrated from measurements containing up to size-4
correlated events. To compare the decoders, we used a partial post-selection scheme shown to retain
ten times more data than full post-selection. We observed logical errors per round of 2.2±0.1×10−2

(decoded without post-selection) and 5.1± 0.7× 10−4 (full post-selection), which was less than the
physical measurement error of 7 × 10−3 and therefore surpasses a pseudo-threshold for repeated
logical measurements.
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Introduction.– Preparing and preserving logical quan-
tum states is necessary for performing long quantum
computations [1]. Because noise inevitably corrupts
the underlying physical qubits, quantum error correc-
tion (QEC) codes have been designed to detect and re-
cover from errors [2–6]. Significant efforts are currently
focused on demonstrating capabilities that will be neces-
sary for implementing practical QEC. An optimal choice
of a code varies depending on the device and its noise
properties [7]. Notable experimental implementations
include NMR [8, 9], ion traps [10–13], donors [14–16],
quantum dots [17, 18], and superconducting qubits [19–
23]. Recent developments of high-fidelity mid-circuit
measurements and resets of superconducting qubits have
enabled the preparation and repeated stabilization of
logical states [24–26]; demonstrations of such quantum
memories with enhanced lifetimes have been limited by,
among other reasons, a combination of gate and mea-
surement cross-talk.

One way to mitigate cross-talk [27] is to reduce the
lattice connectivity [28, 29]. Consequently, fault-tolerant
operations require intermediary qubits; such qubits can
be used to flag high-weight errors originating from low-
weight errors [30, 31]. In certain QEC codes and lattice
geometries, flag qubits supply the information needed to
extend the effective distance of a QEC code up to its
intended distance, and thus enable maximal efficiency at
detecting and correcting errors [32].
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FIG. 1. (Color) (a) Experiments were performed on
ibmq kolkata, which had 27 qubits connected in a heavy
hexagon (HH) topology. The 7 qubits used for the J4, 1, 2K
code are colored yellow, blue and pink. (b) The code lay-
out indicates a single weight-4, X stabilizer (pink), and two
weight-2, Z stabilizers (blue) on the four data qubits (yellow)
labelled di for integers ‘i’ from 0 to 3. For the weight-2 sta-
bilizers, superscripts ‘0,2’ (‘1,3’) indicates the data qubits on
which they operate. The reduced connectivity of the graph is
addressed by flag qubits (blue) alternating between (i) being
used as weight-2 stabilizers, and (ii) as intermediary qubits
used to detect errors on the center, syndrome qubit (pink). (c)
Circuit diagram for the code layout in (b) applied to an initial
|−〉L logical state with repeated X- (pink), flag (white) and Z-
check (blue) stabilizer measurements, together comprising a
round, with mid-circuit reset operations (‘0’) applied between
rounds. In this illustration, the final measurement measures
the four data qubits in the X-basis (gray).
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We demonstrated repeated error detection and cor-
rection of a J4, 1, 2K error-detecting topological stabilizer
code on a heavy-hexagonal (HH) device designed to mit-
igate the limiting effects of cross-talk using flag qubits.
The combination of fast readout with reduced qubit con-
nectivity improved, after post-selecting on instances in
which no errors were detected, logical errors per round
when compared to the physical measurement error rate.
A thorough analysis of this code led us to introduce a par-
tial post-selection scheme allowing us to discard ten times
less data for comparing matching decoding algorithms.
Compared against previously known decoding strategies
on the entire data set, we found that a decoder performed
best with experimentally-calibrated edge weights that ac-
count for the correlations between syndromes; we show
that the computational cost of calibrating such a decoder
scales linearly with the size of the syndrome extraction
circuit for topological codes due to the local nature of
the parity checks, and thus can be extended to larger
distance codes even without any post-selection. Further-
more, we showed that correlations between five or more
syndromes can be eliminated by the application of a “de-
flagging” procedure. The minimal impact of deflagging
on logical errors is an encouraging sign that this tech-
nique, and its extension to general flag-based codes, is a
viable way to process flag outcomes in practice.

Theory of correlation analysis, decoding, deflagging,
and post-selection.– Active error-correction involves de-
coding, using syndrome measurements, the errors that
occurred in the circuit so that the proper corrections can
be applied. We define error-sensitive events to be lin-
ear combinations of syndrome measurement bits that,
in an ideal circuit, would be zero. Thus, a non-zero
error-sensitive event indicates some error has occurred.
For the HH code, there are two types of error-sensitive
events defined as: (1) the difference of two subsequent
measurements of the same stabilizer, and (2) flag qubit
measurements.

Error-sensitive events are depicted as nodes in a decod-
ing graph with edges representing errors that are detected
by both events at their end points (Figure 2(a) and [33]).
If the probability an edge occurs is P , then the edge is
given weight log((1 − P )/P ). The decoding graph may
also have a boundary node, so that an error detected by
just one error-sensitive event can be represented as an
edge from that event to the boundary node. In practice,
there are also errors detected by more than two error-
sensitive events that could be represented as hyperedges
in a more general decoding hypergraph.

Given a set of non-zero error-sensitive events,
minimum-weight perfect-matching (MWPM) finds paths
of edges connecting pairs of those events with minimum
total weight, and is a simple and effective decoding algo-
rithm for a topological stabilizer code that only operates
on a decoding graph [34], as opposed to a decoding hy-
pergraph. While MWPM is computationally efficient, the
analogous matching algorithm on a hypergraph is not,
which limits the practicality of a decoding hypergraph.

The effectiveness of MWPM depends crucially on edge
weights in the decoding graph. We explored three strate-
gies for setting these edge weights: (1) In the uniform
approach, all edge weights were identical. (2) In the an-
alytical approach, edge weights were individually calcu-
lated in terms of Pauli error rate parameters ρj , where
the index j indicates one of the six errors being con-
sidered: CNOT gates, single-qubit gates, idle locations,
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FIG. 2. (Color) (a) Decoder graph for the code layout de-
picted in Figure 1(b). Syndrome measurements from weight-4
(2) stabilizers are mapped to the pink (blue) nodes, and the
weight-2 flag measurements are mapped onto the white nodes.
Identical to Figure 1, ‘0,2’ (‘1,3’) denotes the left (right) hand
side of the code layout, with the colors of the circuits and
syndrome measurement matching in both figures. For ini-
tial | − /+〉L states stabilized by the circuit in Figure 1(c),
there are three different possible size-4 hyperedges within each
round, each highlighted in dark blue across three consecutive
rounds. The boundary nodes in black have, by definition,
edges with weight ‘0’ connecting them; rendering all bound-
ary nodes to be effectively a single node for the purposes of
the decoding process. (b) Applying the technique introduced
in the main text to experiment in Figure 1(c), we estimated
the correlation probabilities for all of the hyperedges shown
in (a). The probabilities are sorted from largest to small-
est based on the results from a least-squares fit using a six-
parameter noise model. Points with darker colors represent
hyperedges of greater sizes, as shown in the lower half of the
plot. Hyperedges with indices greater than 93 (shaded gray)
had no analytical expression, but were still experimentally ad-
justed to quantify the impact of computational leakage. The
result of fitting the six-parameter noise model (fit, pink dash)
agreed well with the analytical (red dash) curve generated
using noise terms from simultaneous randomized benchmark-
ing).
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initialization, resets, and measurements. The numerical
values of the parameters ρj can be chosen in several ways
as discussed in the next section on logical error measure-
ments and decoding. (3) In the correlation approach, we
analyzed experimental data to determine a set of edge
probabilities that are likely to have produced it. This ap-
proach involved first calculating the probabilities for all
hyperedges in the decoding hypergraph before determin-
ing the edge probabilities used in the decoder graph. Im-
portantly, this calibrated decoder graph, informed by the
experimentally estimated hyperedge probabilities, can be
used for any fault-tolerant protocol, and is not limited to
the HH code or when post-selection is employed.

The key idea of the estimation protocol is as follows:
a hyperedge in the decoding hypergraph represents any
of a number of Pauli faults in the circuit that are indis-
tinguishable from one another because they each lead to
the same set of non-zero error-sensitive events. If sev-
eral faults occur together, the symmetric difference of
their hyperedges is denoted S, the syndrome, or, in other
words, the set of non-zero error-sensitive events that is
observed. The probability that we observe a particular S
is the probability that hyperedges occur in combination
to produce S. Since this is related to the probability αh

of an individual hyperedge h occurring, we can learn αh

from many observations of S.

Realistically, the possible hyperedges are limited in
size |h| by locality of the circuits. In the J4, 1, 2K code,
we found that hyperedges are limited to sizes four or
less. Finding αh in practical time begins by considering
local clusters and then adjusting local estimates recur-
sively from size-4 hyperedges down to size-1 and -2 (Fig-
ure 2 and [35]). Only size-1 and -2 edges are required
for MWPM, but ignoring larger hyperedges can result in
nonphysical, negative size-1 correlations. Another way
we explored decoding strategies was to consider analyz-
ing only a subset of all data. By Pauli tracing, we classi-
fied edges in the decoding graph into three categories de-
pending on whether its inclusion in the minimum-weight
matching necessitated: (1) flipping the logical measure-
ment, (2) not flipping the logical measurement, or (3) is
ambiguous [36]. The ambiguous case occurs specifically
for error-detecting codes, like the J4, 1, 2K code presented
here, because some errors result in the decoder having to
choose between two equally probable corrections.

Using these classifications for edges in the decoder
graph, we explored three degrees of post-selection. The
most conservative approach, using full post-selection, in-
volved discarding all results showing any non-zero error-
sensitive event; this approach was the only one in which
further decoding cannot be done. In the opposite regime,
without post-selection, all results were kept and any am-
biguous edges in the MWPM were treated without flip-
ping the logical measurement; here, logical error rates
could have been improved by decoding but was not
strictly needed. Finally, the intermediate regime involved
a partial post-selection scheme whereby results were only
discarded if the MWPM algorithm highlighted an am-

biguous edge; here, decoding had to be done so that re-
sults with ambiguous edges that were highlighted could
be discarded.

Logical error measurements and decoding.– Fitting the
adjusted hyperedge probabilities to analytical expres-
sions produces approximate estimates for the six-noise
parameters in the error correcting experiments (Fig-
ure 2(b)). These noise estimates were found to be in
good agreement with benchmarks based on simultaneous
randomized benchmarking. Experiments were performed
on four logical states (|−/+〉L and |0/1〉L) each of which
was stabilized up to 10 rounds to extract a logical er-
ror per round of stabilizers (Figure 3). This logical error
varied depending on the analysis method.

For the full post-selection scheme, the logical error for
some rounds fell below the best and average physical ini-
tialization and measurement errors - a hallmark of be-
ing below a so-called pseudo-threshold for fault-tolerant
quantum computing. Fitting the decay curves resulted
in inferred logical errors per round of 6.4±1.3×10−4 for
| − /+〉L, and 11± 1× 10−4 for |0/1〉L.

If none of the instances of the experiment were dis-
carded, then the logical error remained consistently
above the pseudo-threshold. In this analysis without any
post-selection and without decoding, we inferred logical
errors per round of 40.4 ± 0.2 × 10−3 for | − /+〉L, and
102± 2× 10−3 for |0/1〉L.
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FIG. 3. (Color) (top) Fraction of total results used for the
logical states ((a) |0〉L, (b) |−〉L) as the number of stabi-
lizer rounds were repeated from 0 to 10 times when full (blue
squares), none (yellow circles), or partial (gray triangles)
post-selection analysis was used. For partial post-selection,
the analytical decoder was used to exclude ambiguous shots.
(bottom) The corresponding logical errors versus number of
rounds. The dashed red lines indicate the pseudo-threshold
as determined by the best (average) physical measurement
errors of 7× 10−3 (7.7× 10−3).
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Recalling that the J4, 1, 2K is an error detecting code,
we used the syndrome outcomes from each stabilizer
round to perform a post-facto logical correction in
software. Discarding instances where ambiguous edges
were highlighted by the decoder allowed us to apply the
partial, in contrast with the full, post-selection scheme.
With this scheme, significantly more instances of the

experimental runs remained, resulting in inferred logical
errors per round of 10.7 ± 0.7 × 10−3 for | − /+〉L, and
6.2± 0.3× 10−3 for |0/1〉L.

(a) (b) (c)

Lo
gi

ca
l E

rr
or

 p
er

 R
ou

nd

25.5%

5.8% 4.6%3.2%

Full None

No Decoding Decoding without post-selection Decoding with partial post-selection

Correlation Analytical Uniform Correla?on Analytical Uniform

Lo
gi

ca
l E

rr
or

 p
er

 R
ou

nd

Lo
gi

ca
l E

rr
or

 p
er

 R
ou

nd

FIG. 4. (Color) Logical errors per round initially in |−/+〉L states under various analysis methods with acceptance probability
per round labelled above. Results varied depending on whether the flag events were directly used for decoding (flag) or indirectly
used for decoding using a deflagging procedure. (a) Logical error per round for full and none post-selection methods. 25.5%
of the counts were rejected with each round for the full post-selection scheme. (b) Comparison between errors using three
decoder graphs on data without post-selection. (c) Comparison between errors using three decoder graphs on data with partial
post-selection. The approximate percentage of counts rejected for each stabilizer round are indicated above each bar.

Within the none and partial post-selection schemes,
we were able to compare the performance of three differ-
ent instances of decoders (Figure 4). The most generic
decoder assumes there was no known noise model for
the underlying physical system. Such a uniform decoder
graph, in which every edge of the decoder graph was given
equal weights, was expected to perform better than no
decoding at all; but, was expected to be worse than any
other graph whose edges were informed by some knowl-
edge of the underlying noise. For instance, by selecting a
simple, Pauli noise model, analytical expressions for the
edge weights were calculated and led to improved log-
ical error rates. Alternatively, if no assumptions were
made about the noise, then edge weights were populated
by the experimentally calibrated, correlation probabili-
ties described earlier. We found that, as expected, such
a correlation decoder graph indeed corrected for logi-
cal errors more effectively than the uniform decoding
strategy and compared well with the analytical method
(Figure 4(b)). However, when the partial post-selection
scheme was used, this trend no longer held since an ana-
lytical decoder with noise parameters from simultaneous
randomized benchmarking outperformed the correlation
analysis (Figure 4(c)).

While the correlation analysis should, in principle, con-
tain complete information about all of the noise in our
experiments, its implementation is expected to become

more computationally costly when applied to codes at
larger distances. We simplified the decoder graph and
thus the number and size of hyperedges needed in the
correlation analysis, by feeding-forward information from
each round of flag measurements. This procedure, known
as “deflagging”[37], allowed us to eliminate all 30 of the
size-4 hyperedges in an experiment with 10 rounds of
stabilizer measurements without a significant increase in
the logical error per round (Figure 4). Furthermore, the
logical errors were mostly preserved compared to results
without the deflagging procedure.

Näıvely extending the HH code to distance-3 would
result in size-5 hyperedges arising in the decoder hyper-
graph. However, when deflagging is applied, we found
that there were no longer any size-5 hyperedges, and the
number of size-4 hyperedges reduced from 148r − 12 to
60r − 12, where r ≥ 1 is the number of rounds. Since
the computational resources scale exponentially with the
largest weight hyperedge in a graph, we expect that the
deflagging procedure will provide a dramatic reduction
in the computational resources needed to carry out the
correlation analysis for codes beyond distance-3.

Conclusions.– Experimentally preparing and repeat-
edly stabilizing a logical quantum state, with error rates
nearly ten times smaller than the lowest physical mea-
surement error rate, is an important step towards execut-
ing larger, fault-tolerant circuits. The hexagonal lattice
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on which we demonstrated our findings can be extended
to operate larger distance versions of the fault-tolerant
HH code used here, or for related codes [38–40] or even
other codes using additional, bosonic degrees of free-
dom [41, 42]. Although the distance-2 version was imple-
mented on a subset of qubits within a hexagonal lattice,
other topologies are also expected to benefit; for exam-
ple, a heavy-square topology akin to the rotated surface
code with added flag qubits [32] or for distance-3 demon-
strations of the widely studied surface code [43, 44]. Nev-
ertheless, our probabilistic error correction methods and
higher order error correlation analysis represents an ap-
proach for improving decoders for codes with or without
flags within any device topology. We also demonstrated
an effective use of flags to limit the extent of the correla-
tions needed for efficient decoding. Our approach for ex-
tracting quantitative noise figures from the experiments
creates a path to diagnose and reduce the logical errors
per round of codes at larger distances.

As quantum computing devices become larger and less
noisy, approaches such as ours may form the basis for ef-
ficiently decoding experimentally relevant errors. Other
decoding strategies such as maximum-likelihood algo-
rithms are known to scale unfavorably with code dis-
tances but may also benefit from our approach [45–47].
Eventually, decoders will need to be trained in real-
time [48], whereby logical operations could be interleaved
with calibration circuits to periodically update the de-

coder graph’s prior information with calibrated corre-
lation probabilities. Previously studied bootstrapping
techniques [26] coupled with the periodic re-calibration
of the correlation edges may eventually approach near-
optimal decoding efficiencies, although the existence of
an optimal strategy remains an open question.
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