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Open quantum systems interacting with an environment exhibit dynamics described by the combi-
nation of dissipation and coherent Hamiltonian evolution. Taken together, these effects are captured
by a Liouvillian superoperator. The degeneracies of the (generically non-Hermitian) Liouvillian are
exceptional points, which are associated with critical dynamics as the system approaches steady
state. We use a superconducting transmon circuit coupled to an engineered environment to observe
two different types of Liouvillian exceptional points that arise either from the interplay of energy
loss and decoherence or purely due to decoherence. By dynamically tuning the Liouvillian superop-
erators in real time we observe a non-Hermiticity-induced chiral state transfer. Our study motivates
a new look at open quantum system dynamics from the vantage of Liouvillian exceptional points,
enabling applications of non-Hermitian dynamics in the understanding and control of open quantum
system.

Exceptional points degeneracies (EPs) have been ex-
tensively studied in classical dissipative systems with en-
ergy or particle loss where the dynamics are governed by
effective non-Hermitian Hamiltonians [1, 2]. Recently,
there is growing interest to harness non-Hermiticities for
quantum applications ranging from sensing [3–5] to state
control [6, 7]. Various approaches have been used to
implement non-Hermitian Hamiltonians in quantum sys-
tems such as introducing a mode-selective loss [8, 9], em-
bedding the desired non-Hermitian Hamiltonian into a
larger Hermitian system [6, 10], or removing quantum
jumps from the evolution of an open quantum system
through postselection [7, 11]. However, despite its essen-
tial role in quantum systems, decoherence has not been
a focus of these studies. Indeed, decoherence and its ef-
fects cannot be captured by an effective non-Hermitian
Hamiltonian formalism. Liouvillian superoperators have
been proposed to take account of both the energy loss
and decoherence, capturing the full dynamics of a deco-
hering non-Hermitian system [12–17]. In the Liouvillian
formalism, the dissipative effects are captured by Lind-
blad dissipators, whose effects come in two parts: one
is a coherent nonunitary evolution (i.e., energy or parti-
cle loss) and the other is quantum jumps between the
energy levels that lead to decoherence [18, 19]. This
formalism provides a critical examination when gener-
alizing phenomena and applications observed in classical
systems to quantum systems such as EP sensors [20–22].
The Liouvillian superoperators also exhibit EPs, termed
as Liouvillian EPs (LEPs), to differentiate from those
EPs obtained from Hamiltonians, but these LEPs and
their properties have not yet been experimentally ob-
served. In this Letter, we study the transient dynamics
of a dissipative superconducting qubit as it evolves to-
ward its steady state. We observe LEPs that arise from
the interplay of energy loss and decoherence. By dynam-
ically tuning the Liouvillian superoperator in real time

we observe a non-Hermiticity-induced chiral state trans-
fer. Further, by expanding the dimension of the Hilbert
space from two to three, we construct a subspace where
the non-Hermiticity is purely due to decoherence. Our
study shows the rich features and potential applications
of non-Hermitian physics and EPs beyond the Hamil-
tonian formalism, further enriching applications of open
quantum systems in quantum information technology.

The dynamics of a driven dissipative two-level system
[Fig. 1(a)] can be described by a Lindblad master equa-
tion:

ρ̇ = −i[Hc, ρ] +
∑
k=e,φ

[LkρL
†
k −

1

2
{L†kLk, ρ}] ≡ Lρ, (1)

where ρ denotes the density operator, and Le,φ are the
jump operators, defined as Le =

√
γe|g〉〈e| and Lφ =√

γφ/2σz, describing spontaneous emission from level |e〉
to level |g〉 at a rate γe and pure dephasing at a rate γφ,
respectively. Hc = J(|g〉〈e|+|e〉〈g|)+∆/2(|g〉〈g|−|e〉〈e|),
characterizes coupling between two levels by a drive with
the frequency detuning ∆ relative to the |g〉–|e〉 transi-
tion at a rate J . The dynamics can be fully captured by
a Liouvillian superoperator L. Given a Hilbert space of
dimension N , the Liouvillian approach is based on rep-
resentation of the system state as a density operator and
the corresponding Liouville space has a dimension of N2.
The four eigenvalues of the Liouvillian superoperator are
provided in Fig. 1(b,c) for ∆ = 0: two of them are real
numbers, and the other two exhibit a second-order LEP
degeneracy at JLEP = γe/8−γφ/4 with a transition from
real to complex numbers.

Physical intuition for this LEP can be obtained by re-
casting the Lindblad equation into a Bloch equation for
the expectation values of the Pauli operators {x, y, z} ≡
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FIG. 1. Liouvillian EP in the dynamics of a driven dissipative qubit. (a) Schematic of the system; γe denotes the
spontaneous emission rate of the |e〉 level, and J denotes the coupling rate from an applied drive with frequency detuning
∆ relative to the |g〉–|e〉 transition. (b-c) Real (solid curves) and imaginary (dashed curves) parts of the Liouvillian spectra
when ∆ = 0; the LEP is indicated with a vertical dashed line. The parameters used for calculations are: γe = 4.4µs−1 and
γφ = 0.1µs−1. (d) The coupling between the Pauli expectation values y and z with different losses can be viewed in terms of
a two-mode system (y, z) with passive PT symmetry and EPs. (e) Population dynamics versus evolution time at different J
values with the qubit initialized at the |e〉 state. Two examples (marked by the white dashed lines) of population evolution at
J = 0.1 radµs−1 (black curve) and J = 1.8 radµs−1 (orange curve) are shown in (f). (g) Oscillation frequency (blue squares)
and decay rate (red circles) at different drive amplitudes; the transition marks a LEP. The shaded areas represent the standard
error of the oscillation frequency (blue) and decay rate (red) from fitting the qubit dynamics to a decaying sine wave. The fitting
error diverges below the LEP. The corresponding data are also processed by fitting to exponential decay, and the obtained
decay rates (red crosses) and frequencies (fixed to zero, blue plus symbols) and error bars are provided for comparison. The
solid curves are calculated from the Liouvillian spectra, where the dissipation rates γe = 4.4µs−1 and γφ = 0.1µs−1 are used.

{〈σx〉, 〈σy〉, 〈σz〉} [23],ẋẏ
ż

 = −

γe
2 + γφ ∆ 0
−∆ γe

2 + γφ 2J
0 −2J γe

xy
z

 +

 0
0
γe

 . (2)

The y and z components are coupled, yet exhibit differ-
ent losses, yielding effectively a passive parity-time (PT)
symmetric system [Fig. 1(d)]. The z component exhibits
a loss of excitation (energy), whereas the y component ex-
hibits decoherence from both spontaneous emission and
pure dephasing. There is one LEP for ∆ = 0 except when
γe = 2γφ, where the loss rates for y and z are the same.

In the experiment, we use the lowest two energy levels
(|g〉, |e〉) of a transmon superconducting circuit [24]. The
transmon is dispersively coupled to a three-dimensional
microwave cavity, leading to a state-dependent cavity res-
onance frequency. High fidelity, single-shot readout of
the transmon state can be realized by probing the cav-
ity with a weak microwave signal and detecting its phase
shift [25]. Further, we shape the density of states of the
electromagnetic field which allows us to adjust the dissi-
pation rate of the energy level |e〉 [11]. In this study, we
set γe ≈ 4.5µs−1, much greater than the pure dephas-
ing rate γφ ≈ 0.2µs−1 so that there is a large difference

between the losses of y and z.

To experimentally identify the LEP, we study the tran-
sient dynamics of the qubit to its steady state. We initial-
ize the qubit in the |e〉 state and then apply a resonant
microwave drive to induce a coupling at rate J . Fig-
ure 1(e) displays the measured evolution of the |e〉 state
population for different J . We observe a transition from
exponential decay to exponentially damped oscillation as
the coupling rate is increased. Examples of the evolu-
tion at two different drive amplitudes above and below
the LEP are shown in Fig. 1(f). A classical analogy of
this observation is a damped harmonic oscillator, where
a second-order EP (corresponding to critical damping)
marks the transition from an overdamped to an under-
damped regime. The results are processed by fitting to a
decaying sine wave to determine the oscillation frequency
and decay rate [Fig. 1(g)], which show a transition at
J ' γe/8, in agreement with the Liouvillian eigenvalues.
The fitting uncertainty [the shaded areas in Fig. 1(g)] di-
verges when near or below the LEP, which we attribute to
the redundant free parameters for a decaying sine curve.
We further inspect those data by fitting them to simple
exponential decay: the obtained decay rates match with
those obtained from fitting to decaying sine wave and
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FIG. 2. Dynamical encircling of the Liouvillian EP structure. (a) Schematic of the parameter path (red ellipse) that
encircles a LEP structure (denoted as a green dot) in the parameter space (J,∆). The Liouvillian superoperator exhibits
second-order exceptional lines, forming a triangle-shaped LEP structure (inset). Note that the LEP structure excludes the
origin point (J = 0 and ∆ = 0), marked by the empty circle in the inset (b-e) Evolution of the Bloch components under two
different initial states (|±x〉) and two encircling directions (cw, ccw). The solid curves are the experimental results. We sample
104 measurements per point, leading to a standard error of ∼ 0.01, similar to the thickness of the plotted lines. The dashed
curves are the theoretical calculations from Lindblad master equation, with γe = 4.6µs−1 and γφ = 0.2µs−1. (f) Illustration of
one quantum trajectory (marked by grey arrows) on the Riemann surface, where there is one quantum jump (vertical part of
the trajectory). This trajectory is one example (black curve) from 1000 simulated trajectories (red curves) shown in (g). The
average of the trajectories is the solution of the Lindblad equation (blue curve).

have low uncertainty. We therefore conclude our obser-
vation shows the LEP transition.

One signature of Hamiltonian based EPs is the chiral
state transfer that occurs when the Hamiltonian param-
eters are tuned to encircle an EP. As a result of the topo-
logical structure of the Riemann manifold that describes
the system’s complex energy, one state will map to the
other after the encirclement. Relative gain or loss along
different paths results in chiral state or population trans-
fer [6, 7, 26–28]. This process has also been shown to
induce a chiral geometric phase on quantum states [7].
Here, we investigate whether these population features
persist when encircling the LEPs in the parameter space
(J,∆).

For non-zero ∆, the Liouvillian exhibits second-order
LEP lines and two third-order LEPs, forming a small
“LEP structure” very near the LEP for ∆ = 0 (in-
set in Fig. 2(a)) [29]. We now investigate the effects
of dynamically tuning the Liouvillian parameters to en-
circle this LEP structure. We choose a closed param-
eter path defined as J(t) = 16 cos2(πt/T ) radµs−1 and
∆(t) = ±10π sin(2πt/T ) radµs−1, where T = 2 µs is the
loop period, and “ + ” and “− ” correspond to counter-
clockwise (ccw) and clockwise (cw) encircling directions,
respectively [Fig. 2(a)]. We choose the initial state |+x〉
at t = 0. The results of quantum state tomography at

different points along the parameter path for both cw and
ccw directions are shown in Fig. 2(b, c). While for the
ccw direction, the initial state is transferred to a state
close to |−x〉, for the cw direction, the final state re-
mains approximately at |+x〉. Similar observations also
apply to the case with the initial state |−x〉 [Fig. 2(d,e)].
The deviations of experimental results from theoretical
calculations are mainly attributed to readout infidelity,
imperfect state preparation, and small errors in the to-
mography calibration.

This chiral behavior can be understood from a quan-
tum trajectory picture. The qubit evolution can be de-
scribed by a non-Hermitian Hamiltonian evolution that is
interrupted by randomly occurring quantum jumps. The
non-Hermitian Hamiltonian evolution pertains to the
Riemann structure displayed in Fig. 2(f), which would
induce a state transfer upon one encircling. Figure 2(f)
displays one such trajectory where a quantum jump oc-
curs. The initial state is |+x〉, and a jump to |g〉 occurs
shortly after the beginning of the parameter sweep (at
t ' 0.2 µs), bringing x abruptly to zero. This state con-
tinues to evolve under the time dependent Hamiltonian.
Remarkably, at the end of the parameter sweep, the final
state is near |−x〉. An ensemble of such trajectories is
shown in Fig. 2(g). This chirality of state transfer origi-
nates from the directionality of the quantum jumps which
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favors the ground state and therefore disappears in the
Hermitian limit (see the Supplementary Materials [29]).
Additionally, the chirality is relatively insensitive to small
changes in the loop parameters, occurring for loops that
come near, intersect, or encircle the LEP structure [30].

We highlight several aspects that are different from
previous studies of encircling EPs based on non-
Hermitian Hamiltonians. First, in previous studies, the
initial state is usually chosen to be an eigenstate. How-
ever, here the initial states |±x〉 do not directly corre-
spond to the eigenstates of the Liouvillian superopera-
tors; instead, they are approximately a superposition of
two Liouvillian eigenstates, one of which corresponds to
the steady state, the other an unphysical state [14, 29].
Second, the evolution is trace preserving; in contrast, for
the evolution governed by non-Hermitian Hamiltonian
[7], the state norm decreases with time, and a state re-
normalization at each time step is then required. Third,
the quantum state is mixed due to the decoherence, which
will limit the practical applications of this chiral state
transfer protocol. As we show in the Supplementary Ma-
terials [29], the decoherence effects can be minimized by
optimizing the driving conditions while maintaining the
chiral behavior.

So far, we have only focused on the lowest two levels of
the transmon circuit. By including a higher energy level
(i.e., the |f〉 level, with spontaneous decay rate γf � γe)
as a coherence reference [Fig. 3(a)], we discover a second
type of LEP that is fully induced by decoherence and
has no energy loss involved. The corresponding Liou-
ville space then has a dimension of 9, and the Liouvillian
spectra are provided in the Supplementary Materials [29].
The decoherence induced LEP results from the coupling
between two coherences ρgf and ρef of this qutrit and
occurs at J = γe/4 [Fig. 3(a)]. The dissipation of the
|e〉 level leads to the loss of the coherence ρef , but not
the coherence ρgf . As with energy loss induced EPs, the
interplay between coupling and decoherence yields this
LEP.

To observe this LEP transition, we initialize the cir-
cuit in the state (|g〉 − |f〉)/

√
2 and then apply a res-

onant drive with variable duration to {|g〉, |e〉} transi-
tion, followed by a tomography pulse to determine ρgf
[31, 32]. As displayed in Fig. 3(b), for large J , we ob-
serve damped oscillations in ρgf , yet for J < 1 rad/µs
the oscillations are replaced with exponential decay. We
quantify this transition by fitting the ρgf evolution to a
damped sine wave, extracting the frequency and decay
rate as displayed in Fig. 3(c). We note that this decoher-
ence induced LEP is non-local in the sense that it only
relies on initial coherence between the |f〉 and |g〉 states,
but no further coupling between the {|f〉} and {|g〉, |e〉}
manifolds. Therefore, we expect such decoherence in-
duced LEPs to play a critical role in how many-body
correlations decay due to local operations and sources of
dissipation.
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FIG. 3. Decoherence induced Liouvillian EP. (a)
Schematic of a driven dissipative qutrit. The physical origin
of this LEP arises from the coupling between two coherences
of the density matrix ρgf and ρef that experience unbalanced
losses. The two coherences have the same loss γ̃φ from the
dissipations of the reference level |f〉, but ρef has additional
loss from γe. (b) The measured coherence ρgf versus evolu-
tion time at different J values. (c) Oscillation frequency (blue
squares) and decay rate (red circles) at different drive ampli-
tudes, where the transition marks a LEP. The bands represent
the standard error of the fit. The red crosses and blue plus
symbols indicate the results from an exponential fit. The solid
curves are calculated from the Liouvillian spectra. Parame-
ters used are γe = 4.2 µs−1, γφ = 0.2 µs−1, γf = 0.3 µs−1,
and an additional overall loss 0.75 µs−1 is added to account
for additional decoherence of the |f〉 state.

Our study has revealed and quantified two new types
of EPs occurring in single dissipative quantum systems.
In contrast to prior work, these LEPs do not rely on
postselection to induce non-Hermitian dynamics but in-
stead are evident in the transient dynamics of an open
quantum system as it approaches steady state. Because
the Liouvillian formalism applies to all Markovian dis-
sipative interactions it also encompasses the effects of
quantum measurement [33]. For instance, the quantum
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Zeno effect pertains to the competition between coher-
ent coupling and the dissipative effects of measurement
[34–37]. The transition from a Zeno pinning regime can
naturally be treated in the context of LEPs introduced
here [38–41]. Our study therefore motivates a new look
at open quantum system dynamics from the vantage of
Liouvillian exceptional points, enabling applications of
non-Hermitian dynamics in Floquet physics [42], quan-
tum steering [43], state transfer [44, 45], measurement
induced dynamics [46, 47], and quantum thermal engines
[48].
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