

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Form Factors and Two-Photon Exchange in High-Energy Elastic Electron-Proton Scattering

M. E. Christy et al. Phys. Rev. Lett. **128**, 102002 — Published 11 March 2022 DOI: 10.1103/PhysRevLett.128.102002

Form factors and two-photon exchange in high-energy elastic electron-proton scattering

M. E. Christy,¹ T. Gautam,¹ L. Ou,² B. Schmookler,² Y. Wang,³ D. Adikaram,⁴ Z. Ahmed,⁵ H. Albataineh,⁶ S. F. Ali,⁷ B. Aljawrneh,^{8,9} K. Allada,² S.L. Allison,¹⁰ S. Alsalmi,¹¹ D. Androic,¹² K. Aniol,¹³ J. Annand,¹⁴ J. Arrington,^{15,16} H. Atac,¹⁷ T. Averett,³ C. Ayerbe Gayoso,³ X. Bai,¹⁸ J. Bane,¹⁹ S. Barcus,³ K. Bartlett,³ V. Bellini,²⁰ R. Beminiwattha,²¹ J. Bericic,⁴ H. Bhatt,²² D. Bhetuwal,²² D. Biswas,¹ E. Brash,²³ D. Bulumulla,¹⁰ C. M. Camacho,²⁴ J. Campbell,²⁵ A. Camsonne,⁴ M. Carmignotto,⁷ J. Castellanos,²⁶ C. Chen,¹ J-P. Chen,⁴ T. Chetry,²⁷ E. Cisbani,²⁸ B. Clary,²⁹ E. Cohen,³⁰ N. Compton,²⁷ J. C. Cornejo,^{3,31} S. Covrig Dusa,⁴ B. Crowe,³² S. Danagoulian,⁸ T. Danley,²⁷ W. Deconinck,³ M. Defurne,³³ C. Desnault,²⁴ D. Di,¹⁸ M. Dlamini,²⁷ M. Duer,³⁰ B. Duran,¹⁷ R. Ent,⁴ C. Fanelli,² E. Fuchey,²⁹ C. Gal,¹⁸ D. Gaskell,⁴ F. Georges,³⁴ S. Gilad,² O. Glamazdin,³⁵ K. Gnanvo,¹⁸ A. V. Gramolin,³⁶ V. M. Gray,³ C. Gu,¹⁸ A. Habarakada,¹ T. Hague,¹¹ G. Hamad,²⁷ D. Hamilton,¹⁴ K. Hamilton,¹⁴ O. Hansen,⁴ F. Hauenstein,¹⁰ A. V. Hernandez,⁷ W. Henry,¹⁷ D. W. Higinbotham,⁴ T. Holmstrom,³⁷ T. Horn,⁷ Y. Huang,¹⁸ G.M. Huber ,⁵ C. Hyde,¹⁰ H. Ibrahim,³⁸ N. Israel,²⁷ C-M. Jen,³⁹ K. Jin,¹⁸ M. Jones,⁴ A. Kabir,¹¹ B. Karki,²⁷ C. Keppel,⁴ V. Khachatryan,^{40,41} P.M. King,²⁷ S. Li,⁴² W. Li,⁵ H. Liu,⁴³ J. Liu,¹⁸ A. H. Liyanage,¹ D. Mack,⁴ J. Magee,³ S. Malace,⁴ J. Mammei,⁴⁴ P. Markowitz,²⁶ S. Mayilyan,⁴⁵ E. McClellan,⁴ F. Meddi,²⁸ D. Meekins,⁴ K. Mesick,⁴⁶ R. Michaels,⁴ A. Mkrtchyan,⁷ B. Moffit,⁴ R. Montgomery,¹⁴ L.S. Myers,⁴ P. Nadel-Turonski,⁴ S. J. Nazeer,¹ V. Nelyubin,¹⁸ D. Nguyen,¹⁸ N. Nuruzzaman,¹ M. Nycz,¹¹ R.F. Obrecht,²⁹ K. Ohanyan,⁴⁵ C. Palatchi,¹⁸ B. Pandey,¹ K. Park,¹⁰ S. Park,⁴⁰ C. Peng,⁴⁷ F. D. Persio,²⁸ R. Pomatsalyuk,³⁵ E. Pooser,⁴ A.J.R. Puckett,²⁹ V. Punjabi,⁴⁸ B. Quinn,³¹ S. Rahman,⁴⁴ M.N.H. Rashad,¹⁰ P.E. Reimer (b),¹⁶ S. Riordan,⁴⁰ J. Roche,²⁷ I. Sapkota,⁷ A. Sarty,⁴⁹ B. Sawatzky,⁴ N. H. Saylor,⁵⁰ M. H. Shabestari,²² A. Shahinyan,⁴⁵ S. Širca,⁵¹ G.R. Smith,⁴ S. Sooriyaarachchilage,¹ N. Sparveris,¹⁷ R. Spies,⁴⁴ A. Stefanko,³¹ T. Su,¹¹ A. Subedi,²² V. Sulkosky,² A. Sun,³¹ Y. Tan,⁵² L. Thorne,³¹ N. Ton,¹⁸ F. Tortorici,²⁰ R. Trotta,⁵³ R. Uniyal,⁷ G.M. Urciuoli,²⁸ E. Voutier,²⁴ B. Waidyawansa,⁴ B. Wojtsekhowski , X. Yan,⁵⁴ L. Ye,²² Z. H. Ye,^{18,55} C. Yero,²⁶ J. Zhang,¹⁸ Y. X. Zhao,⁴⁰ and P. Zhu⁵⁶ ¹Hampton University, Hampton, Virginia 23669, USA ²Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ³William and Mary, Williamsburg, Virginia 23185, USA ⁴Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ⁵University of Regina, Regina, SK, S4S 0A2 Canada ⁶Texas A & M University, Kingsville, Texas 77843, USA ⁷Catholic University of America, Washington, DC 20064, USA ⁸North Carolina Ag. and Tech. St. Univ., Greensboro, North Carolina 27411, USA ⁹Al Zavtoonah University of Jordan, Amman, Jordan ¹⁰Old Dominion University, Norfolk, Virginia 23529, USA ¹¹Kent State University, Kent, Ohio 44240, USA ¹²University of Zagreb, Trg Republike Hrvatske 14, 10000, Zagreb, Croatia ¹³California State University, Los Angeles, Los Angeles, California 90032, USA ¹⁴SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK

¹⁵Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

¹⁶Argonne National Laboratory, Lemont, Illinois 60439, USA

¹⁷Temple University, Philadelphia, Pennsylvania 19122, USA

¹⁸University of Virginia, Charlottesville, Virginia 232904, USA

¹⁹University of Tennessee, Knoxville, Tennessee 37996, USA

²⁰Istituto Nazionale di Fisica Nucleare, Dipt. di Fisica dell Univ. di Catania, I-95123 Catania, Italy

²¹Syracuse University, Syracuse, New York, 13244, USA

²²Mississippi State University, Mississippi State, Mississippi 39762, USA

²³Christopher Newport University, Newport News, Virginia 23606, USA

²⁴Institut de Physique Nucleaire, 15 Rue Georges Clemenceau, 91400 Orsay, France

²⁵Dalhousie University, Nova Scotia, NS B3H 4R2, Canada

²⁶Florida International University, Miami, Florida 33199, USA

²⁷Ohio University, Athens, Ohio 45701, USA

²⁸Istituto Nazionale di Fisica Nucleare - Sezione di Roma, P.le Aldo Moro, 2 - 00185 Roma, Italy

²⁹University of Connecticut, Storrs, Connecticut 06269, USA

³⁰Tel Aviv University, Tel Aviv-Yafo, Israel

³¹Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

³²North Carolina Central University, Durham, North Carolina 27707, USA

³³CEA Saclay, 91191 Gif-sur-Yvette, France

³⁴Ecole Centrale Paris, 3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France

³⁵Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine

³⁶Boston University, Boston, Massachusetts 02215, USA

³⁷Randolph Macon College, Ashland, Virginia 23005, USA

³⁸Cairo University, Cairo, 12613, Egypt

³⁹Virginia Polytechnic Inst. & State Univ., Blacksburg, Virginia 234061, USA

⁴⁰Stony Brook, State University of New York, New York 11794, USA

⁴¹Cornell University, Ithaca, New York 14853, USA

⁴²University of New Hampshire, Durham, New Hampshire 03824, USA

⁴³Columbia University, New York, New York 10027, USA

⁴⁴University of Manitoba, Winnipeg, MB R3T 2N2, Canada

⁴⁵AANL, 2 Alikhanian Brothers Street, 0036, Yerevan, Armenia

⁴⁶Rutgers University, New Brunswick, New Jersey 08854, USA

⁴⁷Duke University, Durham, North Carolina 27708, USA

⁴⁸Norfolk State University, Norfolk, Virginia 23504, USA

49 Saint Mary's University, Halifax, Nova Scotia B3H 3C3, Canada

⁵⁰Rensselaer Polytechnic Institute, Troy, New York 12180, USA

⁵¹Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

⁵²Shandong University, Jinan, China

⁵³Duquesne University, Pittsburgh, Pennsylvania 15282, USA

⁴Huangshan University, Tunxi, Daizhen Rd, China

⁵⁵Tsinghua University, Beijing, China

⁵⁶University of Science and Technology of China, Hefei, Anhui 230026, China

(Dated: February 10, 2022)

We present new precision measurements of the elastic electron-proton scattering cross section for momentum transfer (Q^2) up to 15.75 (GeV/c)². Combined with existing data, these provide an improved extraction of the proton magnetic form factor at high Q^2 and double the range over which a longitudinal/transverse separation of the cross section can be performed. The difference between our results and polarization data agrees with that observed at lower Q^2 and attributed to hard two-photon exchange (TPE) effects, extending to 8 (GeV/c)² the range of Q^2 for which a discrepancy is established at >95% confidence. We use the discrepancy to quantify the size of TPE contributions needed to explain the cross section at high Q^2 .

32

41

42

45

46

PACS numbers: 25.30.Bf, 13.40.Gp, 14.20.Dh

Elastic electron scattering is a key process used in studies of 19 1 matter across a wide range of energy scales and in many sub- 20 2 fields of physics. In the one-photon exchange approximation 21 3 (OPE), first calculated in Ref. [1], the differential electron- 22 nucleon elastic scattering cross section, $d\sigma(\theta_e)/d\Omega_e$, is the ²³ product of the cross section for a structureless object and a 24 structure-dependent term that depends on the Sachs magnetic 25 and electric form factors [2], $G_M(Q^2)$ and $G_E(Q^2)$, which en- ₂₆ 8 code the spatial distributions of magnetization and charge in 27 9 the proton: 10

$$\frac{d\sigma(\theta_e)}{d\Omega_e} = \frac{d\sigma_{Mott}}{d\Omega_e} \cdot \frac{\tau G_M^2(Q^2) + \varepsilon G_E^2(Q^2)}{\varepsilon(1+\tau)}. \tag{1}$$

In Eq. (1), θ_e is the scattering angle of the electron, ₃₃ 11 $d\sigma_{_{Mott}}/d\Omega_e$ is the cross section for scattering of an electron $_{_{34}}$ 12 with incident (scattered) energy E_e (E'_e) from a structureless ³⁵ target, $Q^2 = 4E_eE'_e\sin^2(\theta_e/2)$ is the negative four-momentum ³⁶ 13 14 transfer squared, $\varepsilon \equiv \left[1 + 2(1+\tau)\tan^2(\theta_e/2)\right]^{-1}$ is the vir- ³⁷ 15 tual photon polarization parameter, and $\tau \equiv Q^2/4M_p^2$. The ³⁸ structure-dependent term is isolated in the reduced cross sec- ³⁹ 16 17 tion. 18 40

$$\sigma_{R} = \tau G_{M}^{2}(\mathbf{Q}^{2}) + \varepsilon G_{E}^{2}(\mathbf{Q}^{2}) = \sigma_{T} + \varepsilon \sigma_{L}$$

$$= G_{M}^{2}(\mathbf{Q}^{2})(\tau + \varepsilon \operatorname{RS}(\mathbf{Q}^{2})/\mu_{p}^{2}), \qquad (2)_{43}^{42}$$

where σ_L and σ_T are the longitudinal and transverse contributions to the cross section, respectively, $RS = (\mu_p G_F/G_M)^2$ is the normalized Rosenbluth slope, and μ_p is the proton magnetic moment. The form factors can be extracted using measurements at fixed Q^2 but different values of ε , corresponding to different electron scattering angles. A linear fit to measurements of $\sigma_{R}(\varepsilon)$ yields an intercept of $\sigma_{R}(\varepsilon = 0) = \tau G_{M}^{2}$, and a slope of $d\sigma_R/d\varepsilon = G_F^2$. This method is commonly known as Rosenbluth or Longitudinal/Transverse (L/T) separation.

Pioneering measurements of elastic electron-proton scattering by R. Hofstadter [3] confirmed the theoretical expectation of linear dependence of σ_{R} as a function of ε , which supported the use of the OPE approximation. Theoretical studies of the effects beyond OPE were performed soon after that [4, 5]. Early experimental searches using recoil proton polarization [6] and lepton charge asymmetry [7, 8] failed to find significant deviations from the OPE approximation. A number of precision measurements, including one in Ref. [9], extended linearity tests up to $Q^2 = 3 (GeV/c)^2$ and demonstrated that G_E and G_M both approximately follow the dipole form $G_D \equiv (1 + Q^2 / \Lambda^2)^{-2}$, with $\Lambda^2 = 0.71$ GeV², yielding form factor scaling: $\mu_p G_E/G_M \approx 1$. At larger Q² values, τ enhances the contribution from G_M^2 to the cross section, making it difficult to extract G_E^2 . Analyses at higher Q² values [10, 11] extracted G_M under the assumption that RS = 1, and found that Q⁴ $G_M(Q^2)$ was Q²-independent above 10 (GeV/c)², consistent with pQCD predictions [12].

The reduced sensitivity to G_E^2 at high Q^2 in the Rosenbluth method motivated the use of double polarization observ-

^{*} Contact person, bogdanw@jlab.org

ables [13], for which the OPE formalism was developed in106 48 Refs. [13-16]. Polarization measurements are directly sensi-107 49 tive to the ratio G_E/G_M , but not to the individual form fac-108 50 tors. About 20 years ago the first precision measurements of 109 51 G_F/G_M for Q² up to several (GeV/c)² were performed using₁₁₀ 52 the polarization transfer method [17] and a novel effect was111 53 discovered: the form factor ratio (FFR) extracted from polar-112 54 ization data decreased dramatically with Q^2 [17–19]. 55 112

The decrease of the FFR with increasing Q^2 , an unexpected₁₁₄ 56 effect, implied a significant reduction of G_E , with theoretical₁₁₅ 57 explanations ranging from the role of quark orbital momen-116 58 tum [20] to the effect of the diquark correlation in the nucleon₁₁₇ 59 ground state [21]. In addition, the difference between the FFR₁₁₈ 60 extracted from the polarization measurements and from the119 61 cross section results was surprising, and requires deeper un-120 62 derstanding. This difference is referred to henceforth as the₁₂₁ 63 form factor ratio puzzle (FFRP). 64 122

A reanalysis of the world data on RS [22], and new mea-123 65 surements of RS values with both scattered electron detec-124 66 tion [23] and recoil proton detection [24], confirmed with¹²⁵ 67 improved precision the original observation of form factor¹²⁶ 68 scaling, enhancing the FFRP. Assuming that there are no un-127 69 expected errors with the now extensive body of Rosenbluth₁₂₈ 70 and polarization measurements, and that the radiative correc-129 71 tions (RC) applied are complete (except for the excluded hard₁₃₀ 72 TPE contributions), the only remaining explanation within 13173 the Standard Model is two-photon-exchange (TPE) or higher-132 74 order corrections. The hard TPE contributions are defined₁₃₃ 75 in this context as the TPE terms omitted in conventional₁₃₄ 76 radiative correction procedures which include only the IR-135 77 divergent terms, meaning that the definition of hard TPE de-136 78 pends slightly on the RC prescription [25]. 79 137

An analysis of world data found that non-linearities in the¹³⁸ reduced cross section as a function of ε , indicating deviations¹³⁹ from the OPE picture, were extremely small [26], although¹⁴⁰ the lack of non-linear contributions does not rule out a change₁₄₁ to the slope that could explain the FFRP. At large Q² values,¹⁴² where the slope arising from G_E^2 is small, even a tiny change₁₄₃ of RS can modify the extraction of G_E/G_M significantly. ¹⁴⁴

TPE cross section contributions have the opposite sign for145 87 electron and positron scattering, making a comparison of e^{+} -146 88 p and e^{-} -p scattering one of the most direct tests for TPE. A¹⁴⁷ 89 global re-examination of electron/positron scattering compar-148 90 isons in 2003 showed evidence for TPE [27] at low Q² val-149 91 ues. After 2010, new experiments were performed to improve150 92 the precision and extend the kinematic range of these compar-151 93 isons [28–30], observing clear hard TPE in the ratio of e^+ - p_{152} 94 and e^- -p elastic scattering up to $Q^2 \approx 2$ (GeV/c)². Finally, the¹⁵³ 95 contribution of TPE to polarization transfer observables was154 96 found to be small [31], as predicted by calculations [32–34].155 97 Given this empirical understanding, the discrepancy (FFRP)156 98 is taken in our study as a measure of the TPE impact on the₁₅₇ 99 cross section, as in Refs. [22, 35, 36]. 100 158

¹⁰¹ While most examinations of the FFRP focus on hard TPE,¹⁵⁹ ¹⁰² any ε -dependent correction would contribute to the discrep-¹⁶⁰ ¹⁰³ ancy, leading to new examinations of the full radiative cor-¹⁶¹ ¹⁰⁴ rection procedures [25, 37, 38]. The most recent and com-¹⁶² ¹⁰⁵ plete update [38] was applied to SLAC data [9, 39], yielding¹⁶³ a reduced discrepancy still providing a clear confirmation of the FFRP for Q^2 from 4-7 (GeV/c)². Notwithstanding these experimental and theoretical efforts, a full calculation of the TPE contribution is still not available mostly due to its dependence on the hadron structure of the intermediate states (see reviews [40–42]).

This work provides new experimental data at very large Q^2 , addresses the significance of the FFRP at much higher values of Q^2 than previously investigated, provides reanalyzed RC for six previous experiments, and improves the precision of experimental constraints on TPE effects in elastic *e-p* scattering. Our new low- ε data, combined with existing high- ε measurements [10, 11, 39, 43], provide new Rosenbluth separations of G_E and G_M above 7 (GeV/c)² and significantly improved precision in the extraction of G_M . Our new data also provide an important baseline for high- Q^2 measurements enabled by the 12 GeV upgrade at Jefferson Lab, where precise knowledge of the elastic cross section is needed for experimental normalization and cross checks, and as input to the broader program of high- Q^2 proton and neutron structure measurements.

This experiment, referred to hereafter as GMp12, was performed in Hall A of Jefferson Lab using the basic suite of experimental instrumentation [44]. A 100% duty-factor electron beam with current up to 68 μ A and energy from 2.2 to 11 GeV was incident on a 15-cm long liquid hydrogen target. The target operated at a temperature of 19 K, a pressure of 25 psia, and a density of 0.0732 g/cm³. The hydrogen target was complemented by a "dummy" target consisting of two aluminum foils, used to measure and subtract events originating from the entrance and exit windows of the hydrogen cell. The target density reduction with increasing beam intensity, due to localized boiling of the cryogen, was found to be 2.7% per 100 μ A, [45], with an uncertainty in the variation across the current range of the experiment of 0.35%

The energy of incident electrons was determined using the Hall A ARC energy measurement system, [46], which measures the field integral of the dipoles which bend the beam through 34.257 degrees from the accelerator into Hall A. These results were cross checked with spin precession studies and beam energy measurements in Hall C. The uncertainty in the beam energy was found to be less than 0.1% for all kinematics [47]. The beam current was measured by beam charge monitors (BCMs) [48], which were calibrated against a wellunderstood Unser monitor [49]. The uncertainty on the beam current and accumulated charge was defined by the accuracy of the BCM calibration. An absolute uncertainty of 0.06 μ A stems from the current source utilized to calibrate the Unser monitor. The latter results in an uncertainty of 0.1% at a current of 65 μ A, utilized for most of the GMp12 kinematics, and up to a maximum of 0.6% for the lowest current of 10 μ A.

The scattered electrons were detected in the left and right Hall A High Resolution Spectrometers (LHRS and RHRS, respectively), with the central momentum of the spectrometers set to detect elastically scattered electrons. The HRSs have a solid angle acceptance of 6.0 msr, momentum acceptance of $\pm 4.5\%$, intrinsic momentum resolution of 2.5×10^{-4} , and angular resolution of 0.6 mrad. The primary trigger was formed

as a coincidence of signals in the front and back scintilla-164 tor planes (separated by two meters) and the gas Cherenkov 165 counter. The trigger efficiency was monitored using a sam-166 ple of triggers that required only two of these three signals. 167 For this experiment, the tracking system in each HRS was up-168 graded by adding a three-layer straw tube drift chamber to 169 allow accurate determination of the track reconstruction effi-170 ciency [50]. The particle identification detectors included a 171 two-layer shower detector and a gas Cherenkov counter with 172 enhanced light collection efficiency by means of a wavelength 173 shifter [51]. Dead times of the trigger counters, front-end 174 electronics, and DAQ were constantly measured using pulser 175 generated events [45, 52]. The uncorrelated systematic un-176 certainty of the GMp12 cross section data is 1.2-1.3%, while 177 the overall normalization uncertainty is 1.6% (2.0%) for the 178 LHRS (RHRS) data. A more detailed breakdown and discus-179 sion of the main systematic uncertainties is presented in the 180 supplemental material [53]. 181

Full simulations of the incident electron-target interaction 182 and the electron trajectory through the HRS magnets and de-183 tectors were performed for each kinematic setting using an 184 updated version of the magnetic optics Monte Carlo code [54] 185 incorporating the HRSs. The event distributions in the detec-186 tor package were compared with the simulated data and used 187 to fine-tune the model of the HRS optical transport. Radiative 188 processes were implemented using the approach built into the 189 Monte Carlo simulation, described in Ref. [55], based on an 190 updated implementation [9] of the RC formalism of Ref. [56]. 191 The resulting cross section values from GMp12 were then ad-192 justed to account for the difference between the prescription 193 above and the RC calculation of Refs. [25, 37, 38] which has 194 the most accurate evaluation of the internal and external radi- $\frac{220}{221}$ 195 ation. This is essential for the analysis in the present work, as 196 it resolves some of the discrepancy seen in past comparisons $\frac{222}{223}$ 222 197 based on older radiative correction procedures. 198

The kinematics and reduced cross section results from the GMp12 experiment are shown in Table I.

We combine our results with cross sections from several₂₂₇ 202 JLab and SLAC experiments [9-11, 23, 39, 43] spanning a⁻⁻⁻⁻₂₂₈ 203 Q^2 range of 0.4-31 (GeV/c)² in a global fit of the Q^2 and $\varepsilon_{_{229}}$ 204 dependence of the elastic cross section using Eq. 2. These ex_{-230} 205 periments, comprising 121 kinematic points, were chosen be-206 cause the publications provide sufficient information on their $_{232}$ 207 RC procedures and cutoffs to allow us to self-consistently₂₃₃ 208 implement the RC modification [38]. The normalizations of $_{234}$ 209 the data for the individual experiments were allowed to vary₂₃₅ 210 based on their quoted normalization uncertainties, except for₂₃₆ 211 the data of Ref. [23], which cover a wide range of Q^2 with the₂₃₇ 212 best accuracy. The cross sections were fit in terms of G_M and $_{_{238}}$ 213 RS with the following simple parametrization: 214 239

$$G_{M} = \mu_{p} (1 + a_{1}\tau) / (1 + b_{1}\tau + b_{2}\tau^{2} + b_{3}\tau^{3}), \qquad \frac{^{240}}{^{241}}$$

RS = 1 + c_{1}\tau + c_{2}\tau^{2}. (3)²⁴²

243

The fit gives $\chi^2 = 88.7$ for 107 degrees of freedom; the param-244 eters and uncertainties are given in Tab. II. The cross section₂₄₅ database and the full covariance matrix of the fit parameters₂₄₆ are given in the supplemental material [53]. 247

TABLE I. Kinematics and reduced cross sections for GMp12, with statistical and point-to-point systematic uncertainties added in quadrature. Points labeled with an asterisk (*) were taken with the RHRS. There is an additional 1.6% (2.0%) normalization uncertainty for the LHRS (RHRS) data.

E_e	θ_e	Q^2	ε	σ_{R} (Eq. 2)
(GeV)	(deg)	$(\text{GeV/c})^2$		
2.222	42.001	1.577	0.701	$(4.273 \pm 0.040) \times 10^{-2}$
2.222^{*}	48.666	1.858	0.615	$(2.983 \pm 0.057) \times 10^{-2}$
6.427	24.250	4.543	0.826	$(3.813 \pm 0.057) \times 10^{-3}$
6.427	30.909	5.947	0.709	$(1.805 \pm 0.025) \times 10^{-3}$
6.427	37.008	6.993	0.599	$(1.113 \pm 0.016) \times 10^{-3}$
6.427	44.500	7.992	0.478	$(7.289 \pm 0.109) \times 10^{-4}$
8.518	30.909	9.002	0.648	$(5.163 \pm 0.078) \times 10^{-4}$
6.427^{*}	55.900	9.053	0.332	$(4.859 \pm 0.107) \times 10^{-4}$
8.518	34.400	9.807	0.580	$(3.923 \pm 0.059) \times 10^{-4}$
8.518*	42.001	11.19	0.448	$(2.565 \pm 0.041) \times 10^{-4}$
8.518^{*}	48.666	12.07	0.356	$(1.933 \pm 0.043) \times 10^{-4}$
8.518^{*}	53.501	12.57	0.301	$(1.664 \pm 0.053) \times 10^{-4}$
10.587	48.666	15.76	0.309	$(8.405 \pm 0.227) \times 10^{-5}$

TABLE II. Fit parameters and uncertainties (Eq. 3)

a_1	b_1	b_2	b_3	c_1	<i>c</i> ₂
0.072(22)	10.73(11)	19.81(17)	4.75(65)	-0.46(12)	0.12(10)

Figure 1 shows the global fit to G_M along with the values extracted from individual cross section measurements using the fit to $RS(Q^2)$ to extrapolate to $\varepsilon = 0$. Our new data reduce the high-Q² uncertainties on G_M in the global fit by > 30%.

We also performed direct Rosenbluth separations by grouping together points with similar Q² values, as indicated by the boxes in the top panel of Fig. 1. The normalization resulting from the global fit was applied to each data set, modifying the cross sections from Table I, and the data in each Q² bin were interpolated to a common Q²_c value using the global fit [53]. G_E and G_M were then extracted from a linear fit to the ε dependence of σ_R for each of the seven Q² bins. The results of this extraction are given in Table III. Figure 2 shows \sqrt{RS} (yielding $\mu_p G_E/G_M$ in the OPE) from our global analysis, along with a fit to the polarization data.

While it is conventional to compare measurements by showing $\sqrt{\text{RS}} = \mu_p G_E/G_M$, it is more correct to use RS which is the observable most directly extracted from the cross sections. Our quantitative comparisons of the FFRP use RS, as detailed in Ref. [53]. We find that the cross section data, using the best available radiative corrections but excluding hard TPE contributions, show a 2σ discrepancy with the polarization data up to 8 GeV² (1 σ up to 14 GeV²).

Accommodating this discrepancy at large Q^2 values requires a TPE contribution that reduces the cross section by ~4% at $\varepsilon = 0$, assuming a linear ε dependence and a vanishing TPE contribution at $\varepsilon = 1$, as detailed in the supplemental material [53], which includes Refs. [57–73]. The cross section has a ~2% variation over the typical ε range of the

FIG. 1. (Top) Kinematics of elastic *e-p* data, Refs. [9–11, 23, 39, 43] and this work, used in the global fit and Rosenbluth separations; boxes (1-7) indicate the groupings of points for the Rosenbluth separations. (Bottom) Effective proton magnetic form factor, normalized by the standard dipole $\mu_p G_p$, obtained from the cross section measurements. The curve shows the result of our global fit, with the gray shaded area indicating the 68% confidence interval.

data. This is qualitatively consistent with some high- Q^2 cal-248 culations [33, 41] that predict large deviations from linear ε 249 dependence which, however, are most significant below the 250 ε range of the current data. Note that without the updated 251 radiative corrections applied in this analysis, the discrepancy 252 would have required TPE with a $\sim 6.5\%$ linear ε dependence, 253 consistent with previous estimates [22, 74] based on analyses 254 270 of data at lower Q^2 values using the older RC procedures. 255

271

272

In summary, the e-p elastic scattering cross section was273 256 measured for beam energies in the range of 2.2 - 11 GeV and₂₇₄ 257 Q^2 up to 15.75 (GeV/c)². These new, high-precision cross₂₇₅ 258 sections provide an important baseline for the future proton₂₇₆ 259 and neutron structure investigations in the Jefferson Lab 12277 260 GeV program. Our data were combined with existing cross278 261 section measurements [9-11, 39, 43] to perform Rosenbluth279 262 separations in a new Q² regime. The observed difference be-280 263 tween the measured Rosenbluth slope and the OPE expecta-281 264 tion, based on G_E/G_M from polarization data, would be re-282 265 solved with a $\sim 4\%$ contribution to the cross section from hard₂₈₃ 266 TPE up to $Q^2 = 8 \text{ GeV}^2$, with no indication of significant $Q^2_{_{284}}$ 267 dependence at large Q^2 values. 285 268

FIG. 2. Direct Rosenbluth separation results for \sqrt{RS} (= $\mu_p G_E/G_M$ in OPE). The black solid (red dashed) curve shows the results of our fit to the cross section data with (without) the new GMp12 data. The blue dot-dashed curve shows $\mu_p G_E/G_M$ from a fit to the polarization data [53]. The shaded bands show the 68% confidence intervals of the respective fits. We plot $-\sqrt{|RS|}$ for the highest Q² point (an open circle), where RS < 0.

TABLE III. Rosenbluth separation results for the data groupings shown in the top panel of Fig. 1, after centering to the average Q_c^2 . The quoted values of σ_L and σ_T as defined in Eq. 2, and $G_M/(\mu_p G_D)$ and $\mu_p G_E/G_M$ are obtained assuming validity of the OPE approximation. For the largest Q², where $\sigma_L < 0$, we quote $-\sqrt{|\text{RS}|}$.

Q_c^2	$\sigma_{_T} imes 10^5$	$\sigma_{_L} imes 10^5$	$ G_M/(\mu_p G_D)$	$\mu_p G_E / G_M$
$(\text{GeV/c})^2$			(OPE)	(OPE)
5.994	167 ± 4	7.1 ± 4.6	1.000 ± 0.011	0.75 ± 0.25
7.020	104 ± 3	9.3 ± 5.3	0.967 ± 0.015	1.18 ± 0.35
7.943	71.0 ± 2.7	4.1 ± 3.9	0.943 ± 0.018	1.0 ± 0.5
8.994	49.8 ± 1.7	0.7 ± 3.0	0.934 ± 0.016	0.5 ± 1.2
9.840	36.9 ± 2.4	1.9 ± 3.5	0.909 ± 0.029	1.1 ± 1.0
12.249	18.0 ± 0.8	1.2 ± 1.8	0.858 ± 0.019	1.3 ± 1.1
15.721	8.6 ± 0.5	-0.2 ± 1.2	0.840 ± 0.025	(-0.9 ± 2.8)

ACKNOWLEDGMENTS

We thank the Jefferson Lab accelerator and Hall A technical staff for their outstanding support of this experiment, which was part of the first run group to take data at JLab after the accelerator upgrade. We thank N. Kivel for careful reading of the manuscript and his valuable suggestions. Communications with P.N. Kirk, S. Rock, and A. Sill about technical aspects of their experiments are very much appreciated. This work was supported in part by the Science Committee of Republic of Armenia under grant 21AG-1C085, the Natural Sciences and Engineering Research Council of Canada (NSERC), the UK Science and Technology Facilities Council (Grant nos. STFC 57071/1 and STFC 50727/1), the U.S. National Science Foundation grant PHY-1508272, and the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contracts DE-AC02-05CH11231, DE-AC02-06CH11357, and DE-SC0016577, and DOE contract DE-

- ²⁸⁷ [1] M. N. Rosenbluth, Physical Review **79**, 615 (1950).
- ²⁸⁸ [2] R. Sachs, Phys. Rev. **126**, 2256 (1962).
- 289 [3] R. Hofstadter, Rev. Mod. Phys. 28, 214 (1956).
- ²⁹⁰ [4] S. D. Drell and M. A. Ruderman, Phys. Rev. 106, 561 (1957). ³⁴⁸
- ²⁹¹ [5] S. D. Drell and S. Fubini, Phys. Rev. **113**, 741 (1959).
- [6] J. C. Bizot, J. M. Buon, J. Lefrançois, J. Perez-y Jorba, and 350
 P. Roy, Phys. Rev. 140, B1387 (1965). 351
- [7] J. Mar, B. C. Barish, J. Pine, D. H. Coward, H. DeStaebler, 352
 J. Litt, A. Minten, R. E. Taylor, and M. Breidenbach, Phys. 353
 Rev. Lett. 21, 482 (1968). 354
- [8] B. Bouquet, D. Benaksas, B. Grossetête, B. Jean-Marie, G. Par-355
 rour, J. Poux, and R. Tchapoutian, Physics Letters B 26, 178356
 (1968).
- ³⁰⁰ [9] R. C. Walker *et al.*, Phys. Rev. **D49**, 5671 (1994).
- ³⁰¹ [10] P. N. Kirk *et al.*, Phys. Rev. **D8**, 63 (1973).
- ³⁰² [11] A. F. Sill *et al.*, Phys. Rev. **D48**, 29 (1993).
- ³⁰³ [12] G. P. Lepage and S. J. Brodsky, Phys. Rev. Lett. 43, 545 (1979),361
- ³⁰⁴ [Erratum: Phys. Rev. Lett.43,1625(1979)]; Phys. Rev. **D22**,₃₆₂ ³⁰⁵ 2157 (1980). ³⁶³
- [13] A. I. Akhiezer, L. N. Rozentsveig, and I. M. Shumushkevich,³⁶⁴
 Soviet Physics JETP 6, 588 (1958), Zhurnal Eksperimental'noi³⁶⁵
- i Teoretischeskoi Fiziki, 33, 765 (1957); A. I. Akhiezer and 366
 M. Rekalo, Sov. Phys. Dokl. 13, 572 (1968), [Dokl. Akad. Nauk 367
- M. Rekalo, Sov. Phys. Dokl. 13, 572 (1968), [Dokl. Akad. Nauk₃₆₇
 Ser. Fiz. 180, 1081 (1968)]; Sov. J. Part. Nucl. 4, 277 (1974),₃₆₈
 [Fiz. Elem. Chast. Atom. Yadra 4, 662 (1973)]. 369
- ³¹² [14] G. Frolov, Soviet Physics JETP 7, 525 (1958).
- ³¹³ [15] J. H. Scofield, Phys. Rev. **113**, 1599 (1959); Phys. Rev. **141**,₃₇₁ ³¹⁴ 1352 (1966). ³⁷²
- [16] R. G. Arnold, C. E. Carlson, and F. Gross, Phys. Rev. C23, 363373
 (1981). 374
- [17] M. K. Jones *et al.* (Jefferson Lab Hall A), Phys. Rev. Lett.³⁷⁵
 84, 1398 (2000), arXiv:nucl-ex/9910005 [nucl-ex]; O. Gayou³⁷⁶
 et al. (Jefferson Lab Hall A), Phys. Rev. Lett. 88, 092301³⁷⁷
- 320
 (2002), arXiv:nucl-ex/0111010; V. Punjabi et al., Phys. Rev.378

 321
 C71, 055202 (2005), [Erratum: Phys. Rev.C71,069902(2005)],379

 322
 arXiv:nucl-ex/0501018 [nucl-ex].
 380
- ³²³ [18] A. J. R. Puckett *et al.*, Phys. Rev. **C85**, 045203 (2012),³⁸¹ ³²⁴ arXiv:1102.5737 [nucl-ex]. ³⁸²
- 325
 [19] A. J. R. Puckett *et al.*, Phys. Rev. Lett. **104**, 242301383

 326
 (2010), arXiv:1005.3419 [nucl-ex]; Phys. Rev. **C96**,384

 327
 055203 (2017), [erratum: Phys. Rev.C98,no.1,019907(2018)],385

 328
 arXiv:1707.08587 [nucl-ex].
- [20] G. A. Miller and M. R. Frank, Phys. Rev. C65, 065205 (2002),387
 arXiv:nucl-th/0201021 [nucl-th]; A. V. Belitsky, X.-d. Ji,388
 and F. Yuan, Phys. Rev. Lett. 91, 092003 (2003), arXiv:hep-389
 ph/0212351 [hep-ph].
- [21] C. D. Roberts, M. S. Bhagwat, A. Holl, and S. V. Wright,391
 Eur. Phys. J. ST 140, 53 (2007), arXiv:0802.0217 [nucl-th];392
- I. C. Cloet, G. Eichmann, B. El-Bennich, T. Klahn, and C. D.³⁹³
 Roberts, Few Body Syst. 46, 1 (2009), arXiv:0812.0416 [nucl-³⁹⁴
- th]; M. Y. Barabanov *et al.*, Prog. Part. Nucl. Phys. **116**, 103835₃₉₅
 (2021), arXiv:2008.07630 [hep-ph].
- 339 [22] J. Arrington, Phys. Rev. C68, 034325 (2003), arXiv:nucl-397
 av(30305009 [nucl-ex]; Phys. Rev. C 69, 022201 (2004),398
 arXiv:nucl-ex/0309011.
- M. E. Christy *et al.* (E94110), Phys. Rev. C70, 015206 (2004),400
 arXiv:nucl-ex/0401030 [nucl-ex].
- 344 [24] I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005),402

arXiv:nucl-ex/0410010 [nucl-ex].

345

346

347

349

358

359

360

370

- [25] L. C. Maximon and J. A. Tjon, Phys. Rev. C62, 054320 (2000), arXiv:nucl-th/0002058 [nucl-th].
- [26] V. Tvaskis, J. Arrington, M. E. Christy, R. Ent, C. E. Keppel, Y. Liang, and G. Vittorini, Phys. Rev. C73, 025206 (2006), arXiv:nucl-ex/0511021 [nucl-ex].
- [27] J. Arrington, Phys. Rev. C69, 032201 (2004), arXiv:nuclex/0311019 [nucl-ex].
- [28] I. A. Rachek *et al.*, Phys. Rev. Lett. **114**, 062005 (2015), arXiv:1411.7372 [nucl-ex].
- [29] D. Adikaram *et al.* (CLAS), Phys. Rev. Lett. **114**, 062003 (2015), arXiv:1411.6908 [nucl-ex]; D. Rimal *et al.* (CLAS), Phys. Rev. **C95**, 065201 (2017), arXiv:1603.00315 [nucl-ex].
- [30] B. S. Henderson *et al.* (OLYMPUS), Phys. Rev. Lett. **118**, 092501 (2017), arXiv:1611.04685 [nucl-ex].
- [31] M. Meziane et al., Phys. Rev. Lett. 106, 132501 (2011).
- [32] D. Borisyuk and A. Kobushkin, Phys. Rev. C90, 025209 (2014), arXiv:1405.2467 [hep-ph].
- [33] P. G. Blunden, W. Melnitchouk, and J. A. Tjon, Phys. Rev. C72, 034612 (2005), arXiv:nucl-th/0506039 [nucl-th].
- [34] A. V. Afanasev, S. J. Brodsky, C. E. Carlson, Y.-C. Chen, and M. Vanderhaeghen, Phys. Rev. D 72, 013008 (2005), arXiv:hepph/0502013.
- [35] I. A. Qattan, A. Alsaad, and J. Arrington, Phys. Rev. C 84, 054317 (2011), arXiv:1109.1441 [nucl-ex].
- [36] J. C. Bernauer *et al.* (A1), Phys. Rev. C **90**, 015206 (2014), arXiv:1307.6227 [nucl-ex].
- [37] R. Gerasimov and V. Fadin, Phys. Atom. Nucl. 78, 69 (2015).
- [38] A. V. Gramolin and D. M. Nikolenko, Phys. Rev. C93, 055201 (2016), arXiv:1603.06920 [nucl-ex].
- [39] L. Andivahis et al., Phys. Rev. D50, 5491 (1994).
- [40] J. Arrington, P. G. Blunden, and W. Melnitchouk, Prog. Part. Nucl. Phys. 66, 782 (2011), arXiv:1105.0951 [nucl-th].
- [41] A. Afanasev, P. Blunden, D. Hasell, and B. Raue, Prog. Part. Nucl. Phys. 95, 245 (2017), arXiv:1703.03874 [nucl-ex].
- [42] Z. Ye, J. Arrington, R. J. Hill, and G. Lee, Phys. Lett. B 777, 8 (2018), arXiv:1707.09063 [nucl-ex].
- [43] S. Rock et al., Phys. Rev. D 46, 24 (1992).
- [44] J. Alcorn et al., Nucl. Instrum. Meth. A522, 294 (2004).
- [45] B. Schmoockler, Nucleon Structure and Its Modification in Nuclei, Ph.D. thesis, Massachusetts Institute of Technology (2018).
- [46] J. Berthot and P. Vernin, Nucl. Phys. News 9N4, 12 (1999).
- [47] S. Santiesteban *et al.*, "Precision Beam Energy Determination for the CEBAF 12 GeV Upgrade," In preparation for publication in Nucl. Instrum. and Meth. A, arXiv:2110.06281 [physics.acc-ph].
- [48] T. Gautam, Precision Measurement of the Proton Magnetic Form Factor at high Q2, Ph.D. thesis, Hampton University, Hampton, Virginia (2019).
- [49] K. Unser, Application of accelerators in Research and Industry, Proceedings, 6th conference, Denton, Texas, USA, November 3-5, 1980, IEEE Trans. Nucl. Sci. 28, 2344 (1981).
- [50] Y. Wang, Measurement of the Proton Elastic Cross Section at Q2 = 0.66, 1.10, 1.51 and 1.65 GeV2, Ph.D. thesis, College of William & Mary (2017).
- [51] K. Allada, C. Hurlbut, L. Ou, B. Schmookler, A. Shahinyan, and B. Wojtsekhowski, Nucl. Instrum. Meth. A782, 87 (2015),

- arXiv:1502.01772 [physics.ins-det].
- L. Ou, Precision Measurements of Electron-Proton Elastic428
 Scattering Cross Sections at Large Q2, Ph.D. thesis, Mas-429
 sachusetts Institute of Technology (2018).
- 407 [53] "See supplemental material at [url will be inserted by publisher]431
 408 for the data base and the global fit of the e-p cross section data,432
 409 which includes references [57-73],".
- [54] J. Arrington, *Inclusive Electron Scattering From Nuclei at x > 1*⁴³⁴
 and High Q2, Ph.D. thesis, California Institute of Technology⁴³⁵
 (1998), arXiv:nucl-ex/0608013.
- ⁴¹³ [55] R. Ent, B. W. Filippone, N. C. R. Makins, R. G. Milner, T. G.⁴³⁷ ⁴¹⁴ O'Neill, and D. A. Wasson, Phys. Rev. C **64**, 054610 (2001). ⁴³⁸
- 415 [56] L. W. Mo and Y.-S. Tsai, Rev. Mod. Phys. 41, 205 (1969). 439
- ⁴¹⁶ [57] Y.-C. Chen, C.-W. Kao, and S.-N. Yang, Phys. Lett. B 652, 269440
- 417 (2007), arXiv:nucl-th/0703017. 441
- 418 [58] J. J. Kelly, Phys. Rev. **C70**, 068202 (2004). 442
- [59] K. Makino and M. Berz, Computational accelerator physics.
 Proceedings, 8th International Conference, ICAP 2004, St. Pe-444
- 421
 tersburg, Russia, June 29-July 2, 2004, Nucl. Instrum. Meth.445

 422
 A558, 346 (2006).
 446
- [60] R. C. D. Walker, A measurement of the proton elastic form fac-447 tors for $1 \le Q^2 \le 3$ (GeV/c)², Ph.D. thesis, California Institute448
- 425
 of Technology (1989).
 449

 426
 [61] Y.-S. Tsai, Phys. Rev. 122, 1898 (1961).
 450

[62] Y. S. Tsai, (1971), technical report SLAC-PUB-848.

427

- [63] G. Ron *et al.* (Jefferson Lab Hall A), Phys. Rev. C 84, 055204 (2011), arXiv:1103.5784 [nucl-ex].
- [64] X. Zhan et al., Phys. Lett. B 705, 59 (2011), arXiv:1102.0318 [nucl-ex].
- [65] M. Paolone *et al.*, Phys. Rev. Lett. **105**, 072001 (2010), arXiv:1002.2188 [nucl-ex].
- [66] T. Pospischil et al. (A1), Eur. Phys. J. A 12, 125 (2001).
- [67] M. K. Jones *et al.* (Resonance Spin Structure), Phys. Rev. C 74, 035201 (2006), arXiv:nucl-ex/0606015.
- [68] C. B. Crawford *et al.*, Phys. Rev. Lett. **98**, 052301 (2007), arXiv:nucl-ex/0609007.
- [69] B. D. Milbrath *et al.* (Bates FPP), Phys. Rev. Lett. **80**, 452 (1998), [Erratum: Phys.Rev.Lett. 82, 2221 (1999)], arXiv:nucl-ex/9712006.
- [70] O. Gayou et al., Phys. Rev. C 64, 038202 (2001).
- [71] A. V. Gramolin and D. M. Nikolenko, (2016), https:// github.com/gramolin/rosenbluth/.
- [72] Cross section database and fit details in (txt/Excel) format. Publisher will insert URL.
- [73] Details of cross section and polarization fit results, and L/T separations, in (txt/Excel) format. Publisher will insert URL.
- [74] J. Arrington, W. Melnitchouk, and J. Tjon, Phys. Rev. C 76, 035205 (2007), arXiv:0707.1861 [nucl-ex].