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We investigate the magnetic excitations of elemental gadolinium (Gd) using inelastic neutron scattering,
showing that Gd is a Dirac magnon material with nodal lines at K and nodal planes at half integer `. We
find an anisotropic intensity winding around the K-point Dirac magnon cone, which is interpreted to indicate
Berry phase physics. Using linear spin wave theory calculations, we show the nodal lines have non-trivial Berry
phases, and topological surface modes. We also discuss the origin of the nodal plane in terms of a screw-
axis symmetry, and introduce a topological invariant characterizing its presence and effect on the scattering
intensity. Together, these results indicate a highly nontrivial topology, which is generic to hexagonal close
packed ferromagnets. We discuss potential implications for other such systems.

Topological materials exhibiting quasiparticles with linear
band crossings effectively described by the Dirac equation
play an important role at the frontier of condensed matter
physics [1, 2]. The electronic structure of Graphene estab-
lished it as the prototypical example of a fermionic Dirac
material [1, 3]. It was subsequently realized that related
physics can occur in systems with bosonic quasiparticles in-
cluding among others phonons [4], photons [5, 6], and more
recently, magnons [7–12]. The interesting topological fea-
tures of magnon bands are often associated with band de-
generacies that can be understood as a consequence of sym-
metries describable by spin-space groups [13, 14]. Magnon
band structures can realize analogs of e.g. Chern insulators
and topological semimetals [10–12] and can host both Dirac
[7, 8, 15] or Weyl magnons [16–20], as well as exhibit ex-
tended one-dimensional nodal degeneracies [15, 21, 22] and
triply-degenerate points [23]. Consequently magnetic systems
can also exhibit phenomena similar to those found in topo-
logical electronic materials, for example a magnon thermal
Hall effect arising from gapped bands with topologically non-
trivial Chern numbers [24–29]. In this work we describe a
system with a magnon nodal plane degeneracy, thus further
extending the fruitful analogy between topological magnets
and topological electronic systems [30, 31].

Dirac band crossings have been observed in the layered
local-moment magnetic systems CrI3 [32] and CoTiO3 [33,
34]. These systems are related to the honeycomb ferromagnet,
a simple bipartite lattice that is the prototypical example of a
two-dimensional Dirac magnon system. One strong indicator
of non-trivial topology is an anisotropic “winding” intensity
around the Dirac point, as seen in CoTiO3 [35, 36]. Dirac
magnons have also been observed in the three-dimensional
antiferromagnet Cu3TeO6 [37, 38].

In this Letter we use inelastic neutron scattering to measure
the magnon spectrum of elemental gadolinium (Gd), showing
directly that it is a Dirac material. Gd is a highly isotropic
ferromagnet with the hexagonal close packed (HCP) structure
that forms a simple three-dimensional bipartite lattice. We
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Figure 1. (a) HCP crystal structure of Gd. The lattice is bipartite,
with interpenetrating layers of ABAB-stacked triangular lattices. (b)
First Brillouin zone of Gd. The dark blue lines delineate the asym-
metric unit in reciprocal space, the red dots show the high symmetry
points (notated on the right), and the green regions indicate nodal
lines at h = k = 1/3 and nodal planes at ` = ±1/2.

demonstrate experimentally that the magnon bands in Gd (i)
exhibit Dirac nodal lines with a clear anisotropic winding in-
tensity and non-trivial Berry phase, and (ii) interestingly also
show a nodal plane. We discuss the protection of the nodal
plane by a combination of a screw-axis symmetry and effec-
tive time reversal symmetry, and introduce a Z2 topological
invariant to characterize it. Our results suggest that the entire
class of rare earth HCP ferromagnets is a simple model system
for topological magnetism.

The Gd HCP structure and its reciprocal lattice are illus-
trated in Fig. 1. Gd orders ferromagnetically at Tc = 293 K
[39–41]. Although Gd is metallic, the first three valence elec-
trons are completely itinerant and the rest are localized, leav-
ing an effective Gd3+ at each site [42]. In the half-filled f
shell, the orbital angular momentum is effectively quenched
leaving S = 7/2 magnetism [43] with near-perfect isotropy
and spin-orbit coupling that vanishes to first order. (Small
anisotropies do exist in Gd [44] which influence the direc-
tion of the ordered moment [40], but these are of the order
30 µeV [45]—so small that they have never been measured
with neutrons.) This makes Gd an ideal material for studying
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Heisenberg exchange on a hexagonal lattice.
The Gd spin wave spectrum was first measured by Koehler

et al. in 1970 [46]; but only along (hh0), (hh̄0), (h00), and
(00`) directions. These data show a linear magnon band cross-
ing at K = (1/3, 1/3, 0), indicating a Dirac node and suggest-
ing the possibility of nontrivial topology. The temperature
dependence of the Gd magnons was measured in the 1980’s
[47, 48], but only along the same symmetry directions as Ref.
[46]. Here we have used SEQUOIA, a modern time of flight
spectrometer [49, 50] at the SNS [51], to measure the Gd in-
elastic neutron spectrum over the entire Brillouin zone vol-
ume. The sample was a 12 g isotopically enriched 160Gd sin-
gle crystal (in fact, the same 99.99% enriched crystal as was
used in Ref. [46]; naturally occurring Gd is highly neutron ab-
sorbing) aligned with the hh` plane horizontal. Measurements
were carried out at 5 K with incident energies Ei = 50 meV
and 100 meV. Data were processed with Mantid software
[52]; see the Supplemental Materials [53] and Ref. [54] for
further details. The resulting full data set allows one to di-
rectly see topological features in the spectrum. The data were
thoroughly analyzed to determine an accurate spin exchange
Hamiltonian: this is discussed in detail in a separate paper
[54] focusing on the Gd magnetic interactions. Here we focus
on the topological properties of the Gd magnon bands.

Data along high-symmetry directions are shown in Fig. 2
alongside the linear spin wave theory (LSWT) fit. As this
comparison demonstrates, the refined model closely repro-
duces the measured spectrum. Due to this agreement and the
high spin length (S = 7/2), LSWT is expected to provide a
good description of Gd.

From a topology perspective, there are two particularly
noteworthy features in the Gd scattering: a nodal line degen-
eracy at h = k = 1/3 extending along `, and a nodal plane
degeneracy at ` = 1/2. We will discuss each in turn.

The first feature in the data is a linear band crossing at K,
shown in Fig. 2. As shown in Fig. 3, it extends along `, mak-
ing it a nodal line. This band crossing shows an anisotropic
intensity pattern [Fig. 2 (e)-(h)], where the intensity follows
sinusoidal modulation winding around the Dirac cone, in-
verted above and below the crossing point. A similar inten-
sity winding was seen in CoTiO3 [33, 34], and is understood
to be a signature of the nodal line and nontrivial Berry phase
around (1/3, 1/3, `) [35, 36]. (This is similar to a signature
of Berry phase physics in graphene seen using polarization-
dependent angle-resolved photoemission spectroscopy [55].)
Unlike CoTiO3, the offset angle of the intensity winding is
zero to within error bars: no anisotropy or off-diagonal ex-
change shifts the intensity away from the (hh0) line.

To more firmly establish the topological nature of the nodal
line, we turn to linear spin-wave theory [56, 57] and a sim-
plified J1 − J2 − J3 model that qualitatively captures the main
features of the full fitted model, including the band crossings,

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j + J3

∑
〈〈〈i, j〉〉〉

Si · S j, (1)

where Jn represents nth nearest neighbor exchange. Jn < 0
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Figure 2. Measured and fitted spin wave spectra of Gd. Panels (a)
and (c) show the measured Gd spectra along high-symmetry direc-
tions. Panels (b) and (d) show spin wave theory calculated spectra
using the best fit Hamiltonian [54]. The top row shows the scattering
at ` = 1, the second row at ` = 2. Note the linear band crossing at K.
Panels (e) and (f) show constant energy slices above and below the
band crossing, showing “intensity arcs”. Panel (g) shows the inten-
sity binned around the circles in (e) and (f), fitted to a sin function.
(h) The “Dirac node” dispersion surface, with colored circles indi-
cating the slices in panels (e)-(f).

indicates ferromagnetic exchange. (For the values of the ex-
change couplings, see Ref. [54].) J1 and J3 couple the two
sublattices, whereas J2 couple only sites within the same sub-
lattice (within ab-planes). This model includes three of the
four largest magnitude exchange interactions that were deter-
mined in the full fit. (Since J4 has a lower coordination num-
ber than J1,2,3, it only produces a smaller `-dependent contri-
bution to the energy.) Details of these calculations are shown
in the Supplemental Material [53].

The HCP lattice is inversion symmetric, and the spin-wave
Hamiltonian has an effective time-reversal symmetry [17, 53].
Together, these symmetries guarantee that the Berry curvature
vanishes everywhere, and thus HCP Gd does not have non-
trivial Chern numbers or Weyl magnons. Nevertheless, the
same symmetries protect the magnon nodal lines, which are
pinned to Brillouin zone corners by threefold rotation sym-
metry about ĉ, C3z. The topology of the magnon nodal lines
can be classified in terms of the Berry phase about a closed
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contour C,

γm [C] =

∮
C

dk · Am (k) , (2)

where Am = i 〈um (k)|∇k|um (k)〉 is the Berry connection, and
|um (k)〉 ∼

(
∓ exp(iφk), 1

)T is the mth energy eigenstate of the
magnon Hamiltonian. If C is pierced once by a nodal line, it
is trivial if γm = 0 and non-trivial if γm = π. Direct evalua-
tion for Eq. (1) for Gd shows γm [C] = ±π for contours sur-
rounding the nodal lines at K and K′ [53], thus demonstrating
their topological nature. It is the nontrivial phase φk of the
wave function |um (k)〉 that generates the Berry phase and the
anisotropic intensity, which is proportional to 1±cos (φk) (plus
sign for upper band) and winds about K [53].

A second noteworthy feature is a nodal plane. As shown in
Fig. 3, the Dirac cone flattens and then inverts as ` increases
(plotting between ` = 1 and ` = 2—the cone at ` = 0 is
not fully visible due to kinematic constraints of the experi-
ment). In fact, every integer shift in ` brings an inversion in
the Dirac cone intensity, and every half-integer ` gives a de-
generacy in the modes at all h and k. This degeneracy, shown
in Fig. 3(e) and (f) where the Dirac cone is completely flat-
tened, gives rise to a nodal plane. Above and below this nodal
plane, there is a discontinuous shift in the Dirac cone inten-
sity. This is caused by the phase φk discontinuously flipping
by π upon passing through the nodal plane. As we discuss
in detail in the Supplemental Material [53], this nodal plane
arises in the HCP ferromagnet from the combination of effec-
tive time-reversal and nonsymmorphic twofold screw symme-
try {C2z, (0, 0, 1/2)}, connecting the two sublattices. Spin ori-
entation plays no role in the Heisenberg limit. Any magnetic
Hamiltonian which maintains these symmetries will also have
a symmetry-protected nodal plane.

We can describe the nodal plane more formally by defin-
ing a Z2 topological invariant, which changes discontinuously
across the nodal plane. Such an invariant can either be defined
in terms of the Pfaffian of a transformed magnon Hamiltonian
[53], or in terms of wavefunction properties. Here we focus on
the latter. We define νm

k ≡ sgn 〈um (k) |σ1|um (k)〉, where σ1 is
the first Pauli spin matrix. If we choose a reference wavevec-
tor k and k′ ≡ k + (0, 0, δkz) the difference 1/2|νk − νk′ | counts
the number of times the nodal plane is crossed (and thus the
number of times the intensity inverts) modulo two.

Although the nodal plane is not expected to produce a topo-
logical surface state [31, 58], the nodal lines are. To investi-
gate this, we theoretically considered the simplest geometry
for surface modes: a slab of a finite number of triangular lat-
tice layers along ĉ as shown in Fig. 1. This was done for the
full fitted LSWT model (26 neighbor exchange terms) using
the SpinW software [59] by creating a supercell geometry with
and without periodic boundary conditions in the c direction
(the c termination was generated by creating a blank space at
the top of the physical layers, effectively breaking periodic-
ity). The result is shown in Fig. 4 for 20 Gd unit cells (40
triangular lattice layers). LSWT [Fig. 4(b)] shows the pres-
ence of a clear surface mode, emerging from the bulk modes
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Figure 3. Evolution of the Dirac cone at K = ( 1
3

1
3 `) as a function of

`. The white dashed lines are calculations using the fitted LSWT
Hamiltonian, while the background colormap shows experimental
neutron scattering data. The two columns show perpendicular cuts
through the K point. As ` goes from 1 to 2, the cone flattens and
inverts, such that the intensity at ` = 1 is opposite of ` = 2. The two
LSWT bands are degenerate at K throughout this evolution, yielding
a nodal line. Note the emergence of a nodal plane at ` = 1.5, where
the two magnon bands degenerate everywhere in the hk plane. To the
right are schematics of the Dirac cone, where intensity inverts after
crossing the nodal plane.

projected into the 2D surface Brillouin zone. Since inelastic
neutron scattering is not a surface probe we cannot resolve
the same mode in the data, but nevertheless find qualitative
agreement with the bulk modes [Fig. 4(a)].

It should be emphasized that neither of these
degeneracies—the nodal line at h = k = 1/3 and the
nodal plane at ` = 1/2—depend sensitively upon the details
of the magnetic exchange Hamiltonian. On the HCP lattice,
they appear with both the simplest nearest neighbor ferro-
magnetic exchange interaction, or with any number of further
neighbor exchanges—so long as they are all Heisenberg
exchanges and the ground state remains ferromagnetic,
preserving effective time-reversal symmetry (this was first
noted by Brinkman in 1967 [13] and the topological conse-
quences have been explored in Ref. [14]). Thus, although
the further neighbor exchange interactions are important for
understanding the wiggles in Gd’s magnon dispersion, they
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Figure 4. Surface magnons in Gd. (a) In-plane high-symmetry cuts
of 5 K Gd scattering integrated from ` = 1 to ` = 2. (b) Linear spin
wave theory (LSWT) calculated modes for a 20-layer Gd slab using
the best fit Hamiltonian. Note that, because of the finite extent along
ĉ, ` is no longer a good quantum number, and the magnon modes
from each layer form a continuum between ` = 1 and ` = 2, such
that the magnon modes strongly resemble the integrated data in panel
(a). The c-axis termination surface magnon mode, shown in red, lies
outside this continuum at lower energies, and is thus distinct from
bulk magnons.

are not important for understanding the topology.
These experiments and calculations were carried out on Gd,

which has near-perfect isotropic Heisenberg exchange. How-
ever, because of the intrinsic connection between symmetry,
degeneracy, and topology [13, 14, 60–62] similar topological
features can be expected in more anisotropic ferromagnetic
HCP metals such as Tb [63, 64], Dy [63, 65], and hexag-
onal Co [66]. (However, for Co one must consider the ef-
fects of itinerancy and continuum scattering likely eliminate
the observability of Dirac magnons in HCP Co [67–69].)
From a topological magnon perspective, it is particularly in-
teresting to consider the addition of interactions breaking the
symmetries protecting the nodal degeneracies. One choice
which can break the effective time-reversal symmetry is the
Dzyaloshinskii-Moriya (DM) exchange interaction [70]

H =
∑

i j

D · (Si × Sj), (3)

where D is the DM vector. Like on the honeycomb lattice
[12], it is symmetry-allowed on the HCP lattice second nearest
neighbor bonds.

It is easily shown on the level of LSWT that easy axis
or easy plane single-ion anisotropy preserves the extended
degeneracies as the effective time reversal symmetry, orig-
inating from spin-space symmetries, is preserved, whereas
DM exchange with out-of-plane D vector lifts the K-point
and nodal plane degeneracy while leaving a grid of ` = 1/2

nodal lines, giving rise to potential chiral surface magnon
modes [54]. However, the true situation is more complicated
for anisotropic rare earth HCP ferromagnets such as Tb or
Dy. In such cases, the strong spin-orbit coupling may induce
other symmetry-allowed off-diagonal exchange, which would
in turn affect the surface modes. This means that that induc-
ing chiral surface modes in these materials may prove a chal-
lenge. Full characterization of other HCP ferromagnets spin
exchange Hamiltonian is necessary to determine the possibil-
ity of directional surface modes.

In conclusion, we have shown that the magnetic excita-
tion spectrum of elemental gadolinium contains nodal line and
nodal plane degeneracies, which are directly visible in the ex-
perimental data. The nodal line around K shows anisotropic
intensity characteristic of nontrivial topology, and Berry phase
calculations confirm this to be so. We also identify a nodal
plane in the data, derive the symmetry requirements for such
a feature, and propose an invariant describing its topology.
These results have implications not just for Gd, but for all
HCP ferromagnets, as the topological features are generic to
the lattice. Other consequences of the HCP topology may
exist—particularly concerning the nodal plane—but these are
left for future study.
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