
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Temperature-Dependent Periodicity of the Persistent
Current in Strongly Interacting Systems

Ovidiu I. Pâţu and Dmitri V. Averin
Phys. Rev. Lett. 128, 096801 — Published  4 March 2022

DOI: 10.1103/PhysRevLett.128.096801

https://dx.doi.org/10.1103/PhysRevLett.128.096801


Temperature-dependent periodicity of the persistent current in strongly interacting
systems
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The persistent current in small isolated rings enclosing magnetic flux is the current circulating in
equilibrium in the absence of an external excitation. While initially studied in superconducting and
normal metals, recently, atomic persistent currents have been generated in ultracold gases spurring
a new wave of theoretical investigations. Nevertheless, our understanding of the persistent currents
in interacting systems is far from complete, especially at finite temperatures. Here we consider the
fermionic one-dimensional Hubbard model and show that in the strong-interacting limit, the current
can change its flux period and sign (diamagnetic or paramagnetic) as a function of temperature,
features that cannot be explained within the single-particle or Luttinger liquid techniques. Also, the
magnitude of the current can counterintuitively increase with temperature, in addition to presenting
different rates of decay depending on the polarization of the system. Our work highlights the
properties of the strongly-interacting multi-component systems which are missed by conventional
approximation techniques, but can be important for the interpretation of experiments on persistent
currents in ultracold gases.

Introduction. The existence of a persistent current
(PC) in small metallic rings threaded by magnetic flux
φ at low temperatures has been theoretically predicted
since the early days of quantum mechanics [1] and su-
perconductivity [2–5]. Following the publication [6], PCs
were the focus of intense theoretical investigations, and
were experimentally confirmed in both invididual and en-
sembles of metal rings [7–12]. Resurgent interest in the
field is due to the generation of atomic PCs in ultracold
gases of single-component bosons [13, 14], spinor bosons
[15], and very recently of spinfull fermions [16].

The PC is a paradigmatic example of quantum coher-
ence in mesoscopic systems and its magnitude is given by
I(φ) = −∂F (φ)/∂φ with F (φ) = −kBT lnZ(φ) the free
energy and Z(φ) the canonical partition function [17, 18].
Gauge-invariance implies periodicity, I(φ + φ0) = I(φ),
with φ0 the flux quantum φ0 = h/e (h is the Planck’s
constant and e the charge of the electron) and from
time-invariance we have I(−φ) = −I(φ). In addition
to the amplitude of the current, defined by Imax =
maxφ∈(0,φ0/2)|I(φ)|, and periodicity, we are interested in
the sign of the magnetic response: diamagnetic or para-
magnetic. A system is diamagnetic (paramagnetic) if
F (φ) has a local minimum (maximum) at φ = 0. While
there is a large body of work, mainly focused on free elec-
trons with disorder, our understanding of PCs in inter-
acting systems, especially its temperature dependence, is
far from complete. Using a variational approach, Leggett
conjectured [19] that the ground-state energy of N polar-
ized interacting fermions is diamagnetic for odd N and
paramagnetic for even N . This conjecture was proved
and extended to the case of small temperatures using
Luttinger liquid (LL) methods [20]. At small temper-
atures and within the LL regime, the amplitude of the
current decreases exponentially with temperature, but
the periodicity and sign of the current remain unchanged.

For interacting fermions with spin [N↓(N↑) electrons have
spin down (up)] a general result valid at arbitrary tem-
perature [21] is that F (0) ≤ F (φ/φ0) for N↓,↑ both odd,
and F (1/2) ≤ F (φ/φ0) for N↓,↑ both even. This result
does not preclude periodicities smaller than φ0 or changes
in the sign of the current with temperature, as we will
show below.

The Hubbard model in a magnetic field. We con-
sider a system of N electrons of which N↓ have spin down
on a ring lattice with L sites and repulsive interactions.
The ring is threaded by an Aharonov-Bohm flux φ. The
system is described by the Hubbard Hamiltonian [22–25]

H = −t
L∑
j=1

[∑
σ

(
e−ieAc†j+1,σcj,σ + h.c.

)
− U

t
nj,↑nj,↓

]
,

(1)

with nj,σ = c†j,σcj,σ the number of electrons of spin
σ = {↓, ↑} at site j. In (1), A = 2πφ/(Lφ0) is the vector
potential of the magnetic flux, t is the electron hopping
integral and U > 0 quantifies the strength of the repulsive
interaction. In the following, we will measure the energies
in units of t and set ~ = 1 and e = 1. The Hamiltonian
(1) is exactly solvable with the Bethe ansatz equations

(BAEs) [24]: kjL = 2πIj+2πφ/φ0−
∑N↓
α=1 θ

(
sin kj−λα

u

)
,∑N

j=1 θ
(
λα−sin kj

u

)
= 2πJα +

∑N↓
β=1 θ

(
λα−λβ

2u

)
where

u ≡ U/4t, j = 1, · · · , N , α = 1, · · · , N↓, θ(x) =
2 arctan(x) and Ij = N↓/2 (mod 1), i.e., Ij is integer
or half-integer depending on whether N↓ is even or odd,
and similarly, Jα = (N−N↓+1)/2 (mod 1). The energy

and momentum of a state are E = −2
∑N
j=1 cos kj and

P =
[∑N

j=1 kj

]
mod 2π. To find the PC we need to solve

the BAEs for the ground state (at T = 0) or for all the
relevant excited states (at T > 0). We look first at some
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FIG. 1. Dependence of the ground-state energy (left columns; normalized by t) and current (right columns; in units of
I0(N↓) + I0(N↑)) on the magnetic flux and strength of the interaction for N = 8, N↓ = 4 and N = 10, N↓ = 5. From top row
to bottom the coupling strength is U = 5000, 50, 5.5, 1, 0 and the density is the same in both cases n = 0.1.

limiting cases.

The U = 0 case. Because the particles are non-
interacting, it is sufficient to consider spinless fermions.
For fermions with spin, the PC is then given simply by
the sum of the contributions from the two spin direc-
tions [26]. The momenta of M spinless fermions in the
ring are kj = 2π (j + φ/φ0) /L, with j integer. This im-
plies that at φ = 0, the ground-state is degenerate for
even M , but not for odd M , i.e., the PC depends on
the parity of the number of particles. In terms of the
“Fermi vector” kF (M) ≡ πM/L and the Fermi veloc-
ity vF (M) = 2 sin kF (M), the PC of spinless fermions

is [27]: IFF (M,φ) = − I0(M)
sinπ/L sin

(
2π
L

φ
φ0

)
for M odd,

and IFF (M,φ) = I0(M)
sinπ/L sin

[
π
L

(
1− 2|φ|

φ0

)]
sgnφ for M

even with I0(M) = evF (M)/L. Therefore, the PC for
electrons with spin is I(φ) = IFF (N↓, φ) + IFF (N↑, φ).
When N↓,↑ are both odd, I(φ) is diamagnetic; when N↓,↑
are both even, it is paramagnetic.

The U = ∞ case. In this “impen-
etrable” limit [28–31] the BAEs for the kj ’s be-

come k∞j = 2π
(
Ij + φ/φ0 +

∑N↓
α=1 Jα/N

)
/L , which

are equivalent to the result for spinless fermions
in a ring threaded by a magnetic flux φ/φ0 +∑N↓
α=1 Jα/N. In the ground-state, Ij ’s fill an inter-

val between Imin and Imax, resulting in the en-

ergy E = −2 sin(πN/L)
sin(π/L) cos

[
2π
L

(
φ
φ0

+ 1
N

∑N↓
α=1 Jα +D

)]
where D ≡ (Imin + Imax)/2. This formula is valid for
densities n = N/L < 1 (at half-filling, n = 1, the
sine factor in E gives 0). The energy is minimized by

choosing the set {Jα}
N↓
α=1 such that

∑N↓
α=1 Jα = −p for

(p − 1/2)/N < φ/φ0 + D < (p + 1/2)/N . This implies
that the PC for the not-fully-polarized impenetrable sys-
tem at zero temperature is: a) periodic with a period
of 1/N of the flux quantum (this remains valid in the
case of SU(κ) fermions with κ > 2 as shown in a recent
study [31]), b) diamagnetic, and c) does not present par-
ity effects [29, 30] - see also Fig. 1. Note that for fully
spin-polarized electrons, N↓ = 0, the system is effectively
non-interacting even for large U , and PC is described by
the same expressions as for U = 0, e.g., has the period of
one flux quantum. This abrupt change of the flux period
(from 1 to 1/N) between the polarized electrons and a
system with even one flipped spin can be understood in
terms of the change of the rotation period of the electron
system in real space [32]. For polarized electrons, the
rotation period is 1/N of the full rotation, while a spin
flip changes this period to a full rotation.

First correction. For u large but finite, the
charge momenta with accuracy 1/u are [25, 30, 33] kj =

k∞j + ∆kj/u with ∆kj = Es
∑N
n=1

[
sin k∞j − sin k∞n

]
/L,

where Es = −2
∑N↓
α=1 1/[N(Λ2

α + 1)] is the energy per
lattice site of an antiferromagnetic XXX Heisenberg

spin-chain with spin rapidities {Λα}
N↓
α=1 satisfying the

BAEs: Nθ(Λα) = 2πJα +
∑N↓
β=1 θ[(Λα − Λβ)/2] . The

energy with the same 1/u accuracy is E = E∞ +

2Es
Lu

[
N
∑N
j=1 sin2 k∞j −

(∑N
j=1 sin k∞j

)2]
with E∞ =

−2
∑N
j=1 cos k∞j . Note that the energy depends on φ via

k∞j . Thus, in the strong-coupling limit, the spin degrees
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of freedom are described by an anti-ferromagnetic Heisen-
berg spin chain with the coupling constant ∼ N↓/(Lu),
while the charge degrees of freedom are similar to free
fermions. This regime, in which the energies of the
charge and spin sectors satisfy Echarge � Espin, is called
the spin-incoherent regime [34–40]. It is particular to
multi-component systems, and presents universal prop-
erties which are different from the LL case. For the
Hubbard model, the lowest energy states in this regime
are obtained [30] by considering the same distribution
of Ij ’s as in the infinite repulsion case and finding the
states of the Heisenberg chain with the lowest energy for
a given momentum q = 2π

∑M
α=1 Jα/N , which are the

des-Cloizeaux-Pearson excitations [41].

The dependence of the ground-state energy and cur-
rent on the strength of interaction at zero temperature
is shown in Fig. 1 for “balanced” systems with N = 8
and N = 10. At very strong coupling (U = 5000) the
current is diamagnetic and has other characteristic fea-
tures of the impenetrable case: 1/N periodicity and no
parity effects. For weaker interaction, the contribution of
the spin sector becomes more pronounced, as manifested
by the raising of the N parabolas. We can see that for
U = 50 and U = 5.5, while the PC is still diamagnetic,
the periodicity changes to 1/2. At very weak interaction,
the periodicity becomes 1, and for U = 0, one obtain a
paramagnetic (diamagnetic) current for N↓,↑ even (odd).
Therefore, the strength of the interaction has a strong
influence on the zero-temperature PC, changing its peri-
odicity, amplitude, and even the sign (paramagnetic or
diamagnetic). Also, the 1/2 periodicity seen in Fig. 1 at
strong and intermediary coupling (U = 50 and U = 5.5)
is a particular case of the additional N↓/N periodicity
characterizing the PC of the strongly interacting Hub-
bard model first discovered in [42] for N↓ � N . Figure
1 provides a proof of this additional N↓/N periodicity in
the microscopic regime of small N . From the point of
view of the real-space rotations, this periodicity can be
viewed as a manifestation of the antiferromagnetic order,
which for the balanced electron system makes the rota-
tion period 1/N↓ of the full rotation, i.e. two times the
period 1/N for spinless electrons.

In the mesoscopic regime (N,L � 1), and at zero
temperature, the calculation of the persistent current is
equivalent to the calculation of the finite size corrections
to the energy due to the change of the boundary con-
ditions from periodic to twisted [30]. For any value of
U and n < 1, and assuming that the Ij ’s and Jα’s are
consecutive numbers, the corrections to the ground-state
energy due to the magnetic flux are [30, 43, 44]

∆E(φ) =
2πvc
L

[
Zcc

(
Dc +

φ

φ0

)
+ ZscDs

]2
+

2πvs
L

[
Zcs

(
Dc +

φ

φ0

)
+ ZssDs

]2
, (2)

where Zcc, Zcs, Zsc, Zss are the matrix elements of the
dressed charge matrix (see [47]), vc,s are the velocities
of the charge and spin excitations and Dc and Ds satisfy
the constraints Imax−Imin+1 = N , Imax+Imin = 2Dc ,
Jmax − Jmin + 1 = N↓ , Jmax + Jmin = 2Ds.

When U � 1 we have Zcc ∼ 1, Zcs ∼ 0, Zsc ∼ N↓/N
and Zss is given by a simple integral equation [45, 46]. In
the same limit the charge and spin velocities behave like
vc ∼ 2 sinπn, vs ∼ 1/U, which means that in the first
approximation we can neglect the second term of (2)

∆E(φ) =
2πvc
L

[(
Dc +

φ

φ0

)
+
N↓
N
Ds

]2
. (3)

When N↓/N = 1/m with m = 2, 3, · · · , this expression
shows that the current has a N↓/N periodicity. When
N↓/N is not very close to 1/m, the situation is more
complicated (see [47]).

Persistent current at finite temperature. Com-
puting thermodynamics of the Hubbard model, even in
the thermodynamic limit, is a very difficult task, and
it is sensible to assume that computing the 1/L cor-
rections is outside the reach of analytical methods. In
the strong coupling limit, however, one can take ad-
vantage of the fact that the energy of the spin sec-
tor is much smaller than the energy of the charge sec-
tor, which allows for direct computation of the canon-
ical partition function at low temperatures by sum-
ming over all the spin eigenstates and only some of
the charge excitations. For a dilute system (n < 0.1)
the relevant temperature scales are TF = π2n2 for the
charge degrees of freedom and Ts = π2n3/U for the
spin degrees of freedom. For temperatures T � TF
the partition function can be computed as Z(φ) =∑

relevant sets I
∑

all sets J exp{−E({kj}, φ)/T} and
gives the PC. This approach requires the knowledge of
the all CNN↓

states of the Heisenberg spin-chain with N

sites and N↓ spins down, which can be found in [49–51].
Using this method we were able to investigate the PC for
all systems with N ≤ 10 , N↓ ≤ N/2 and T < 0.06TF .
While below we focus on dilute systems, we note that
our results remain valid for all densities 0 < n < 1, if
U/n� 1 (see [47]).

The dependence of the PC on temperature in the
strongly interacting Hubbard model is very complex with
the polarization of the system playing an important role.
For a system with N = 8 and N↓ = 2, Fig. 2 shows that
while at very low temperatures the current is diamagnetic
with period 1/8, at higher temperatures the periodicity
changes to 1/4. At even higher temperatures the current
becomes paramagnetic with period 1. The evolution of
the current with increasing temperature for a system with
N = 10 and N↓ = 2 is similar (but note paramagnetic
current at intermediate temperatures): diamagnetic with
period 1/10, paramagnetic with period 1/5, and param-
agnetic with period 1. Therefore, we see the following
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FIG. 2. Dependence of the free energy (left columns in units of t) and current (right columns normalized by I0(N↓) + I0(N↑))
on the magnetic flux and temperature for N = 8, N↓ = 2 and N = 10, N↓ = 2. From top row to bottom the temperatures are
T/Ts = 1.01 ; 48.1 ; 582 for N = 8 and T/Ts = 1.01 ; 48.1 ; 455 for N = 10. The density and interaction strength are n = 0.01
and U = 100.

pattern: in the ground-state, the current is diamagnetic
with periodicity 1/N , and is followed at higher temper-
atures by the current with N↓/N periodicity whose sign
is the same as the one at zero temperature, which can be
derived from (2). At very high temperatures, the current
should have the same characteristics as for free fermions
with spin, i.e., for both N↓,↑ even, paramagnetic with pe-
riod 1. This general pattern can be understood by noting
that an increase in temperature is qualitatively similar to
the decrease in U , and therefore the evolution of the cur-
rent with T mimics the evolution of the current at T = 0,
when interaction decreases. For instance, the doubling of
the current period from 1/N to N↓/N in Fig. 2 can again
be related to the change of the rotation symmetry of the
electron system in real space, from full rotation at low
temperatures, to half of the rotation at the intermediate
temperatures, when the two spin-down electrons become
located symmetrically in the system.

Qualitatively, the amplitude of the PC is reduced expo-
nentially with increasing temperature. The quantitative
temperature dependence of the amplitude is plotted in
Fig. 3 for systems with N = 6 and N = 10, and shows
that there are different rates of decay associated with the
different ranges of the system parameters: Luttinger liq-
uid, spin-incoherent, and almost free. The fastest rate of
decay is in the LL regime; in the spin-incoherent regime,
the rate of decay depends strongly on the polarization
of the system. A very interesting feature which can be
seen in Fig. 3 is the presence of an interval of temper-
ature in which the amplitude is increasing with T for
N↓,↑ = 3 and N↓,↑ = 5. This counterintuitive feature is
present at the transition between the LL and the spin-
incoherent regime and is due to the fact that the tail of
the momentum distribution gets strongly suppressed as
the temperature increases (for a similar phenomenon in
spinless fermionic systems with non-trivial geometry or
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FIG. 3. Temperature dependence of the amplitudes (normal-
ized by I0(N↓) + I0(N↑)) for N = 6 and N = 10. Note that
for N = 6, N↓ = 3, and N = 10, N↓ = 5, there is an interval
in which the amplitude is increasing with temperature. For
all cases n = 0.01 and U = 100.

dissipation see [52, 53]). This momentum reconstruction
was first noticed in the case of the Gaudin-Yang model
(obtained in the dilute limit of the Hubbard model) in
[54]. In details, the PC is on the order of that produced
by an electron at the Fermi level, I = evF /L. At finite
temperature, the occupation probabilities of levels close
in energy to the Fermi level, and producing positive and
negative contributions to the current, are not very dif-
ferent, leading to suppression of the current associated
with the broadening of the momentum distribution. At
the LL-spin-incoherent transition, however, the fraction
of particles with higher momenta decreases, resulting in
a softer rate of decay for some polarizations, or even in-
crease in the magnitude of the PC.

We expect that the temperature dependent periodicity
and the different rates of decay of the PC to be general
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features of strongly interacting fermionic systems with
spin-independent interactions. The reason is that such
systems (integrable and non-integrable) present both the
LL and spin-incoherent regimes, as it can be seen more
explicitly in the “Wigner-molecule” regime of the charged
fermions.

Conclusions. In summary, we calculated the per-
sistent current in the strongly repulsive Hubbard model
at finite temperatures from the Bethe ansatz equations.
The current shows several notable characteristics, in-
cluding the temperature-dependent period and the coun-
terintuitive temperature dependence of the amplitude.
To the best of our knowledge, this is the first exam-
ple of a temperature-dependent period of the persistent
current, despite a large number of previous studies of
temperature-dependent PCs in many different models.
It is quite unexpected, since the period is a fundamen-
tal quantum property of the system which should be
statistics-independent. An interesting future develop-
ment would be an extension of our results to any value
of temperature by the alternative (but considerably more
computationally expensive) method of exact diagonaliza-
tion and finding similar transport regimes in other, possi-
bly non-integrable, models of strongly interacting parti-
cles. We believe also that our findings will have consider-
able implications for the interpretation of experiments on
persistent currents of multi-component systems that can
be generated and investigated in the present-day atom-
tronics circuits [55–62].
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for Scientific Research (CNCS-UEFISCDI). D.V.A. was
supported by the US NSF grants EAGER 1836707 and
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