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We observe and study a special ground state of bosons with two spin states in an optical lattice:
the spin-Mott insulator, a state that consists of repulsively bound pairs which is insulating for both
spin and charge transport. Because of the pairing gap created by the interaction anisotropy, it can
be prepared with low entropy and can serve as a starting point for adiabatic state preparation.
We find that the stability of the spin-Mott state depends on the pairing energy, and observe two
qualitatively different decay regimes, one of which exhibits protection by the gap.

Mott insulator states of ultracold atoms in optical lat-
tices have played a central role in ultracold atoms re-
search [1, 2]. Because they are a well-isolated low-entropy
state protected by an energy gap, such states have been
considered as qubits [3], as a starting point for adiabatic
state preparation [4, 5], and for studies of many-body
physics [6], in particular quantum magnetism [7]. They
were used in seminal work on Heisenberg spin Hamilto-
nians [8–10] and as a platform to study Rydberg crystals
[11] and magnetic polarons [12].

When the spin degree of freedom is added to a Mott in-
sulator, it opens up low-lying excitations, and much lower
temperatures are needed to reach the ground state. For
occupations of N = 1, the energy scale is set by superex-
change, the process by which two spins can be swapped
via a virtual intermediate state. This energy scale is often
smaller than 1 nK (e.g. for rubidium). As a result, mag-
netically ordered ground states were only observed using
fermionic lithium (which due to its low mass has com-
paratively large tunneling and exchange energies) [13] or
using special ramping schemes [14, 15].

Because preparing spinful ground states is challeng-
ing, many experiments probed spin dynamics through
quenches, where an initial spin-polarized state is sud-
denly rotated into a spin superposition. This has enabled
study of transport of bound states [17] and spin waves in
isotropic [18] and anisotropic [19, 20] S = 1/2 Heisenberg
models. Recently, we have also studied the relaxation of
rotated spin states in S = 1 Heisenberg models [21]. Par-
allel efforts have succeeded in preparing bipartite product
states through carefully shaped ramps [22, 23].

Here we show that the situation is drastically dif-
ferent for a spinful Mott insulator with two particles
per site. If the on-site interaction energy UAB between
opposite spins is considerably lower than that between
identical spins (U), there is an effective pairing energy
D = U−UAB favoring the formation of repulsively bound
pairs of opposing spins. The ground state of the N = 2
Mott insulator, then, is a Mott insulator of spin-paired
doublons with an excitation gap D. This implies that a
spinful N = 2 Mott insulator has a region in its phase di-
agram where the excitation gap is of scale D or U , which

typically corresponds to 50 nK for rubidium, and is thus
much larger than the superexchange scale (see Fig. 1).
As a function of D, there is a phase transition in the
spin domain between a spin superfluid (also known as a
counterflow superfluid) and a spin insulator. This is in
full analogy with the superfluid-to-Mott insulator tran-
sition in the charge domain [16]. The spin-Mott state
can serve as an ideal starting point for adiabatic prepa-
ration of states with different spin ordering [4]. It is also
analogous to the band insulator of fermions for N = 2
occupation [5], since this state is (in the limit of large
pairing energy) a product state of spin-paired doublons
on each site.

In this Letter, we demonstrate techniques to prepare
and probe the spin-Mott state and study its stability.
Our system comprises two different hyperfine states of
87Rb in a (spin-dependent) optical lattice, which are de-
scribed by the two-component Bose–Hubbard Hamilto-
nian [24]. In one dimension, and assuming equal tunnel-
ing for both components, this is given by:

H =− t
∑
i

(
a†iai+1 + b†i bi+1 + H.c.

)
+
U

2

∑
i

∑
k∈{a,b}

nki
(
nki − 1

)
+ UAB

∑
i

nai n
b
i . (1)

Here nki is the number operator acting on component k
on site i, t is the nearest-neighbor tunneling parameter;
U and UAB are the intra- and interspecies on-site interac-
tions, respectively, where we have assumed U = UAA,BB .

Restricting ourselves to a deep lattice with two parti-
cles per site, this model maps onto an S = 1 Hamiltonian
[4, 24], with the spin-Mott insulator as the ground state
for UAB � U . This is a product state with a single A and
B atom per site, which in the spin mapping corresponds
to |Sz = 0〉.

Correlations become important when the pairing and
superexchange energy become comparable: D ≈ J ≡
−4t2/UAB [21, 25, 26]; in this regime second-order tun-
neling induces quantum fluctuations of the spin around
the spin-Mott insulator. Here the ground state is an
xy ferromagnet that contains correlations between sites
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FIG. 1. Mean-field phase diagram of the (two-component) Mott insulator showing the number of atoms per site for a chemical
potential µ and tunneling rate t (which, in the mean-field model, is enhanced by the coordination number z). The leftmost panel
contains the phase diagram of the single-component system [16]. The other panels, from left to right, show the two-component
phase diagram for D/U = 0, 0.5, and 1.0. As D increases, the lobes with an uneven number of particles shrink, until they
vanish because the absence of interactions leads to the formation of two independent Mott insulators. The lobe color indicates
the excitation gap. In the single-component system the first-excited state is a particle-hole pair, which costs an energy U to
create. In the two-component system it is a spin excitation with an energy on the order of D. The numbers in the lobes indicate
〈n〉 = 〈na〉+ 〈nb〉.

[4]; this bears resemblance to the superfluid phase of the
single-component system, where the excitation gap van-
ishes, and where number fluctuations drive correlations
between sites [16].

Experimental setup Our experiment starts with a
Bose–Einstein condensate (BEC) of approximately 104

atoms. A mixture of the hyperfine states A = |F =
1,mF = −1〉 and B = |F = 1,mF = 1〉 is created us-
ing microwave sweeps, after which the cloud is loaded
into a three-dimensional lattice with depths of at least
25ER to be deep in the Mott-insulating regime. Here
ER = h2/2mλ2 is the recoil energy of a lattice photon
with wavelength λ for an atom of mass m. The inter-
action between different hyperfine states of rubidium is
nearly isotropic [27, 28], and hence for any pair D ≈ 0.
The interaction scale UAB can be adjusted, however, by
separating the Wannier functions of A and B atoms in
the lattice. This can be done using spin-dependent po-
tentials based on the vector AC Stark shift, which sep-
arates spin states with different magnetic moments. We
create such a lattice using a 810-nm wavelength laser and
a tunable polarization gradient [29]. The two transverse
lattices are created using 1064-nm light.

Preparing the spin-Mott insulator ForD ≈ U , the ab-
sence of interspecies interactions leads to the formation
of two independent Mott insulators (see Fig. 1). Here
the system exhibits a large excitation gap which we have
measured through lattice modulation [29]. This is simi-
lar to the single-component case which has a gap of U ;
hence it is straightforward to prepare the ground state of
the Hamiltonian (1). We do so by creating an equal mix-
ture of the two components, followed by a ramp of the
lattice while maintaining D ≈ U . If the atom number is
adjusted to fall within the N = 2 Mott insulator plateau
(but such that it avoids the N = 3 sector), we prepare
a highly ordered spin state with the same wave function
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FIG. 2. The superfluid-to-Mott insulator phase transition for
a system with two spin states. Starting with a spinor BEC in
an equal superposition state of |1,−1〉 and |1, 1〉, we ramp up
the lattice into the Mott-insulating regime while D = U (a).
In the Mott plateau we observe a dip in condensate fraction
(CF, b), while the pairing fraction (c) approaches unity.

on every site.

The pairing fraction is measured using the detection
protocol as described in Ref. [21]; in short, we quench to
D = 0 (see insets in Fig. 3), and take three measurements
using absorption imaging: one of the total atom number,
one of the atom number after removing all pairs using
a Feshbach resonance, and one after selectively remov-
ing just the AB pairs using a Feshbach resonance [30].
The removal procedure has been measured to saturate
the losses over the time during which it is applied, from
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FIG. 3. Preparation of the spin-Mott state for various pairing
energies D. The decrease of the spin pairing fraction for small
D is explained by a finite temperature. Lines are based on
the model of Eq. (2) at various temperatures. Insets: lattice
configuration at various values of D/U .

which we conclude it to be efficient. The pairing fraction
is given by the ratio of differences of these measurements,
which makes it susceptible to shot-to-shot number fluc-
tuations. To mitigate this, all data presented throughout
is obtained as the average of three measurements in each
of the three channels, with the error bar reflecting the
standard error of the mean. Our measurement protocol
directly determines the spin temperature of the system.
It is not affected by holes and singly-occupied sites (it
is affected by triplons, which we minimize by our state
preparation protocol).

To highlight the correspondence between the spin-
Mott insulator and its single-component cousin, we have
measured the characteristic superfluid-to-Mott insulator
phase transition [31]. Both components were imaged in-
dividually using Stern–Gerlach separation during time of
flight, see Fig. 2. From these images, we can determine
the condensate fractions in each state. Using our pair
measurement protocol, we verify that the spin-Mott in-
sulator (realized for deep lattices) has a pairing fraction
close to unity.

The gap of the spin-Mott state shrinks as D is de-
creased. We have explored how small D can become be-
fore we observe a degradation of the spin-Mott state due
to finite temperature or non-adiabatic loading. Figure 3
shows the initial pairing fraction as a function of D, after
ramping into a deep lattice (23 ER). We find that it is
possible to attain high pairing fractions of over 0.9 for a
wide range of initial values of D.

According to matrix-product-state calculations, the
spin-Mott state is the ground state for D > 0.05U at
a lattice depth of 8 ER [4]. The imperfect pairing frac-
tion observed for D < 0.2U in a 23 ER lattice can be
explained by finite spin temperature. We can deduce the
temperature from a model where tunneling is assumed
to be negligible, and hence the Hamiltonian is diagonal
on each site in the basis {|AA〉, |AB〉, |BB〉}. Generaliz-
ing the treatment of a single-component Mott insulator

[32], we obtain the pairing fraction (i.e. the population
in |AB〉), for a thermal state |ψT 〉 at temperature T as

|〈AB|ψT 〉|2 = [1 + 2 exp (−D/kBT )]
−1
. (2)

Fitting this expression to our data, we obtain kBT/U ≈
0.06 ± 0.01, which corresponds to 4 ± 1 nK for U/2π ≈
1300 Hz. This is comparable to temperatures reported
for single-component Mott insulators [33, 34]. We expect
that the charge temperature (set by defects) and the spin
temperature are in equilibrium during the lattice ramp
while tunneling is fast. After loading, the charge temper-
ature increases by diffusion of defects from outer parts
of the cloud, while the spin temperature is protected as
long as D � t (see Fig. 4). The latter is lower than the
temperature of the initial BEC due to adiabatic cooling
during the lattice ramp [4]. Figures 2 and 3 represent
the main result of this paper: the successful preparation
of the ground state of a spinful N = 2 bosonic Mott
insulator which has not been accomplished before.
Relaxation behavior The decay of the spin-Mott state

determines how it can be used as a low-entropy starting
point for further experiments. To investigate this, we
measure the lifetime as a function of lattice parameters.
After the preparation, we ramp D during 100 ms while
staying in a deep (25 ER) lattice – this can be considered
a quench since the tunneling rate is on the order of 1 Hz.
We then lower the lattice to 16 ER and measure how the
pairing fraction decays.

We can distinguish two qualitatively different relax-
ation regimes as a function of D, see the top panel in
Fig. 4. When quenching D close to 0, the system quickly
approaches the thermal state: an incoherent equal mix-
ture of |AA〉, |AB〉, and |BB〉 on every lattice site, which
leads to a pairing fraction of 1/3. For larger values of D
the behavior is qualitatively different: not only does the
relaxation take longer, the pairing fraction also does not
decay to 1/3 over experimentally accessible timescales,
rather it goes to ∼ 1/2. This is what one would expect
if thermalization were constrained to the symmetric sub-
space; i.e. the states |AB〉 and (|AA〉+ |BB〉) /

√
2 with

each receiving half the population. If all couplings pre-
serve the initial symmetry, the system is constrained to
this subspace.

The two different regimes also show up in the relax-
ation behavior as a function of lattice depth. In the bot-
tom panels of Fig. 4 we compare the system when held
in the spin-Mott phase and after quenching to D = 0.
For small values of D, the decay rate scales linearly with
the tunneling rate, while in the spin-Mott state the decay
rate is lattice-depth independent.

This behavior is captured by modelling the total de-
cay rate as the sum of a background contribution and
a term that depends linearly on tunneling but which is
suppressed by D:

Γ (t,D) = Γ0 + (t/2π) / [1 + c1 exp (D/c2)] . (3)
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FIG. 4. Lifetime of the spin-Mott insulator. (a) The relax-
ation shows qualitatively different behavior as a function of D:
The pair fraction either approaches the infinite temperature
limit (1/3, if D is small) or not (1/2, if D is large). Different
colors represent different values of D/U . Inset: fitted life-
times 1/Γ and the equilibrium values of the pair fraction. (b,
c) Lifetime at various lattice depths, represented by different
colors, where D is fixed to be either within the spin-Mott in-
sulator (D = 0.3U , b) or at the isotropic point where D = 0
(c). Inset: fitted lifetime for both data sets scaled by the tun-
neling time 2π/t. For D = 0 we observe that the decay scales
with tunneling, whereas for D = 0.3U it is independent of t.
A single fit of all the lifetimes was done using Eq. (3), which
is shown by the black lines.

Here c1 and c2 are fit parameters, and the form is such
that Γ (t,D)→ Γ0 if D is large, as it is in the spin-Mott
insulator. This expression gives us a quantitative descrip-
tion of the lifetimes measured in Fig. 4 (see Ref. [29]).

We conjecture that a combination of factors causes
this. For D ≈ 0 we enter the regime where the temper-
ature of the N = 2 plateau is sufficiently large to drive
deviations from perfect pairing already observed during
loading (see Fig. 3). First-order tunneling with imperfec-
tions in the Mott insulator will allow entropy transport
from the outer regions of the system inwards, which will
rapidly increase the spin temperature. This is a plausible
explanation for the scaling with tunneling rate.

At higher values of D the excitation gap protects
against relaxation. It is seen through longer lifetimes
that are lattice-depth independent. This makes it un-
likely that the decay is caused solely by either tunnel-
ing or light scattering-related mechanisms. This is con-

firmed by a measurement of a spin-polarized Mott insu-
lator which does show a scaling of lifetime with lattice
intensity. Nevertheless, the interplay between different
effects in our experiment is complicated; increasing the
lattice depth increases both light scattering and confine-
ment. With our current setup it is hard to disentangle
such mechanisms. The cause of the slow spin relaxation
could be mobile atoms in excited bands created by tech-
nical noise of the lattice beams, or grazing collisions with
background gas atoms.
Discussion & conclusions While the spin-Mott insu-

lator is a product state, it can be used as a starting point
for adiabatically preparing correlated spin states such as
the xy ferromagnet [4, 24]. Similar schemes have been
proposed for fermions, where the (gapped) band insula-
tor can be used to adiabatically prepare an antiferromag-
net [5]. In that case the initial product state is stabilized
by the bandgap, whereas in our case it is stabilized by
the pairing energy D. This difference in energy scales
also makes our system suitable for studying spin-charge
separation [35].

Adiabatic state preparation requires that the gaps be-
tween many-body states are traversed sufficiently slowly;
in a Landau–Zener model of avoided crossings, the max-
imum rate is set by the coupling between states [36–38].
In a deep lattice this scales with second-order tunneling
as ∝ 4t2/U [4, 21, 25]. Furthermore, coupling between
different many-body states scales inversely with the num-
ber of sites in a chain. For our present system the su-
perexchange scale is maximally 10 Hz at a longitudinal
lattice depth of 12ER. This is comparable to some of the
decay rates reported in Fig. 4. Therefore, attempts to
adiabatically sweep the spin-Mott state into correlated
spin states were not successful.

Other atomic species are favorable; cesium, e.g., has
a larger fine-structure splitting which makes it possible
to create a spin dependent potential at larger detunings
with less light scattering. The lanthanides are also at-
tractive because they feature spin-orbit coupling in the
ground state, and hence have a vector AC Stark shift for
any lattice detuning.

The future addition of a quantum-gas microscope to
our setup [39] will mitigate some of these issues. With
single-site resolution, experiments can be performed on
short chains with definite length which are fully decou-
pled from surrounding thermal reservoirs.

In conclusion, we have prepared and characterized the
spin-Mott state which is the ground state of the two-
component Bose–Hubbard model in deep lattices, which
can be mapped onto an S = 1 Heisenberg Hamiltonian.
This state features a large pairing gap, and is a promis-
ing platform for adiabatic preparation of magnetic phases
and the study of other many-body phenomena. Addi-
tionally, since the spin-Mott state is a product state of
repulsively bound pairs it offers a way to study pair su-
perfluidity [40, 41] and quantum droplets [42]. Analogous
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to Ref. [43], one could do this by creating a dilute gas
of repulsively bound dimers after reducing the harmonic
confinement and emptying out the singly-occupied sites.
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rberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D.
Lukin, and I. Bloch, Science 319, 295 (2008).

[24] E. Altman, W. Hofstetter, E. Demler, and M. D. Lukin,
New Journal of Physics 5, 113 (2003).

[25] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90,
100401 (2003).

[26] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev.
Lett. 91, 090402 (2003).

[27] D. M. Stamper-Kurn and M. Ueda, Reviews of Modern
Physics 85, 1191 (2013).

[28] A. Widera, F. Gerbier, S. Fölling, T. Gericke, O. Mandel,
and I. Bloch, New Journal of Physics 8, 152 (2006).

[29] See the Supplemental Material at [URL to be inserted] for
details on the experimental setup, our fitting procedure,
and the mean-field model.

[30] A. M. Kaufman, R. P. Anderson, T. M. Hanna,
E. Tiesinga, P. S. Julienne, and D. S. Hall, Phys. Rev.
A 80, 050701(R) (2009).

[31] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and
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and U. Schollwöck, Phys. Rev. A 77, 013607 (2008).

[36] C. Zener and R. H. Fowler, Proceedings of the Royal
Society of London. Series A 137, 696 (1932).

[37] L. Landau, Physikalische Zeitschrift der Sowjetunion 2,
46 (1932).

[38] J. R. Rubbmark, M. M. Kash, M. G. Littman, and
D. Kleppner, Phys. Rev. A 23, 3107 (1981).

[39] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and
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