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This work introduces a synergistic combination of analytical and numerical methods to study the
Hawking effect in optical systems containing the analog of a pair white-black hole. Our analytical
treatment, based on techniques from Gaussian quantum information, provides a simple and efficient
model to describe all aspects of the out state, including the entanglement between any bi-partition.
We complement the study with a numerical analysis, and apply our tools to analyze the influence
that ambient thermal noise and detector inefficiencies have on the out state. We find that aspects
of the Hawking effect that are of quantum origin, i.e. quantum entanglement, are extremely fragile
to the influence of inefficiencies and noise. We propose a protocol to amplify and observe these
quantum aspects, based on seeding the process with a single-mode squeezed input, opening the door
to new possibilities for experimental verification of the Hawking effect.

Introduction. The Hawking effect of spontaneous
particle pair creation by black holes [1, 2] can be under-
stood as a process of two-mode quantum squeezing trig-
gered by a causal horizon. What makes the phenomenon
remarkable is not only the squeezing—which generically
appears in other time-dependent spacetimes— but its in-
trinsic thermal (Planckian) character allowing one to as-
sociate a temperature with the horizon. This connection
with thermodynamics [3, 4] lead to a profound and fer-
tile crossroad between diverse areas of physics. There is,
therefore, a strong motivation to experimentally confirm
this prediction, as well as to explore open issues in Hawk-
ing’s derivation, such as the role of arbitrarily high energy
modes [5] or a potential loss of unitarity [6]. This interest
has motivated a plethora of analog models, in which the
physics of squeezing generated by causal barriers can be
recreated in the laboratory [7–13].

A major challenge for observing aspects of the sponta-
neous Hawking process, even in analog models, is the ex-
traordinarily weak character of the output, easily masked
by ambient noise. A promising alternative is to enhance
the intensity of the output by replacing the initial vac-
uum state with a non-vacuum input, i.e., to focus on the
stimulated Hawking process. However, although stim-
ulated Hawking radiation has been accessed in labora-
tory experiments [8, 9, 12], one can explain the observa-
tions made so far as a process of classical amplification
of waves. Consequently, the stimulated process has been
regarded as containing little value to assert the quantum
nature of the Hawking effect [8, 12].

The goal of this work is to introduce a strategy to
enhance the quantum aspects of the Hawking process.
We point out that stimulating the Hawking effect can
also amplify the entanglement between the outputs—not
merely their intensities—as long as one chooses appropri-
ate quantum initial states and systematic inefficiencies
are sufficiently under control. We describe a protocol
to observe the amplified entanglement and to unambigu-
ously identify the main characteristics of the Hawking
process and its quantum origin out of observations.

Although the core of our ideas is general, we formu-

late them in the context of optical systems. The advan-
tage is the possibilities optical systems offer to gener-
ate, manipulate, and observe quantum states as well as
their entanglement structure [14]. We use units in which
c = ~ = kB = 1.

Set up. Optical systems provide a popular scenario
to recreate the physics of the Hawking process [7, 12, 15–
26]. An electromagnetic pulse propagating in a dielectric
medium can locally change the optical properties of the
medium, modifying the refractive index (Kerr effect). In
this way, by introducing strong pulses in non-linear ma-
terials, one can modify the speed of propagation of weak
probes propagating thereon. Probes that are initially
faster than the pulse will slow down when trying to over-
take it, and if the pulse is strong enough, its rear end will
act as an impenetrable (moving) barrier. This is the opti-
cal analog of the horizon of a white hole—a region where
no signal can enter. Similarly, an analog black hole hori-
zon appears in the front end of the pulse. Since the pair
white-black hole propagates with the strong pulse, from
now on we will work in the comoving frame.

The presence of white-black horizons can also be un-
derstood by looking at the dispersion relation for weak
probes of frequency ω. A detailed analysis of the disper-
sion relation of dielectric materials with a sub-luminal
dispersion relation and characterized effectively by a sin-
gle Sellmeier term, such as diamond, can be found in
[20]. The most relevant features are the following. Far
away from the strong pulse, the dispersion relation has
four solutions, ki, i = 1 . . . 4. The modes k1 and k4 are
short-wavelength modes, in contrast to k2 and k3. Fur-
thermore, k1, k2 and k4 are left-movers (negative group
velocity), while k3 wave-packets propagate to the right
(see Fig. 1). The strong pulse modifies the dispersion re-
lation in such a way that, inside the pulse, the wavenum-
bers k3 and k4 become complex and no longer describe
propagating modes. Only k1 and k2 propagate in the
interior region, and since both are left-movers, they will
necessarily exit the rear end of the pulse. Hence, the
interior of the strong pulse is analogous to the interior
region of a white-black hole pair.
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FIG. 1. Illustration of the structure of in, int and out modes
for an optical analog white-black hole in a comoving frame.

FIG. 2. Left: Illustration of the two elements responsible
for the Hawking process in optical black holes: a two-mode
squeezer associated with the horizon, and a beam splitter as-
sociated with a process of scattering. Right: Equivalent quan-
tum circuit.

The analog quantum circuit. Although the exis-
tence of optical horizons originates in non-linear optics,
it is well known that the evolution of weak probes is well
approximated by linear equations, and the non-linearities
induced by the strong pulse can be all encoded in the
optical properties of the medium. This is the analog
of the quantum field theory in curved spacetimes used
in Hawking’s original derivation. In the optical set up,
the resolution of the evolution reduces to computing the
scattering matrix (S-matrix) describing the dynamics of
wave-packet modes which, in the asymptotic region, have
wavenumber centered around kini . Since different fre-
quencies ω do not mix with each other—because the
properties of the dielectric are time-independent in the
comoving frame—one computes the S-matrix for each in-
dividual frequency. We propose an analytical approxima-
tion for the S-matrix, obtained by combining elementary
operations consisting of two-mode squeezers and beam-
splitters, which we choose by paying attention to the
physics of the problem.

For pedagogical purposes, we begin by writing an ana-
log quantum circuit exclusively for the black hole side
of the pulse, momentarily neglecting the white hole. In
the astrophysical case, the evolution is dominated by two
physical processes, a mixing of positive- and negative-

frequency modes induced by the horizon, and a scattering
process due to the gravitational potential barrier. Math-
ematically, the first process corresponds to a two-mode
squeezer, while the second to a beam-splitter. The situa-
tion is analog for optical black holes, except that we have
three in modes, kin1 , kin2 and kin4 , and three out modes,
kint1 , kint2 and kout3 (see Fig. 2).

It is straightforward to convert this circuit into an ana-
lytic expression for the S-matrix. First, recall the action
of a two-mode squeezer on the annihilation operators:

akin1 → akin1 cosh rH + a†
kin4

eiφ sinh rH ,

akin4 → akin4 cosh rH + a†
kin1

eiφ sinh rH , (1)

where rH and φ are the intensity and angle, respectively,
of the Hawking squeezer. The action of the beam-splitter
is the orthogonal transformation

akin2 → akin2 cos θ + akout
3

sin θ ,

akout
3
→ −akin2 sin θ + akout

3
cos θ , (2)

where cos θ and sin θ are the transmission and reflec-
tion amplitudes of the splitter, respectively. Combining
these two operations—following the order written in the
circuit—and changing variables to the quadrature opera-
tors, xi ≡ 1√

2
(aki +a†ki) and pi ≡ −i√

2
(aki −a

†
ki

), we con-

struct the S-matrix corresponding to the circuit in Fig. 2,
which, when acting on the vector of quadrature operators
~rin = (x1, p1, x2, p2, x4, p4), implements the Heisenberg
evolution: ~rout = S · ~rin.

With this formalism, it is particularly easy to evolve
any Gaussian state, such as the vacuum, coherent,
squeezed, or thermal states. Note that a Gaussian state
is completely characterized by its first and second mo-
ments, ~µ ≡ 〈~r〉 and σ ≡ 〈{(~r − ~µ), (~r − ~µ)}〉, where σ
is the covariance matrix and {·, ·} the symmetric anti-
commutator (see e.g. [27, 28]). Because linear evolu-
tion preserves Gaussianity, given an initial Gaussian state
(~µin, σin), the final state is also Gaussian, characterized
by (~µout, σout) = (S · ~µin, S · σin · S>).

Regarding the white hole, since it is the time reversal
of the black hole, its analog quantum circuit and cor-
responding S-matrix can be easily obtained by invert-
ing the elements in the black hole circuit. Combining
the two, one obtains the analog circuit for the complete
white-black hole system (see Fig. 3). The S-matrix for
the white-black hole system is then obtained by multi-
plying the action of squeezers and beam-splitters in the
sequence indicated in the circuit. The result is an 8 × 8
matrix which depends on three parameters: rH , θ, and
the phase φ.
Numerical analysis. In order to test the accuracy

at which our analog circuit describes the physics of the
white-black hole system, we have solved the dynamical
evolution numerically (see [16, 17, 29–38] for previous nu-
merical efforts). We summarize here the most important
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FIG. 3. White-Black hole analog quantum circuit.

results of our analysis (a detailed description will appear
in [39]).

Our code is based on the analytical model proposed
in [20], building on previous work [40], and rooted in
the Hopfield model [41]. We solve the dynamical equa-
tion in the frequency domain, which is a 4th order ordi-
nary differential equation in the co-moving frame (equa-
tion (11) in [20]). We compute the evolution of in
wave-packets uinki (tin), with wavenumbers centered on
each of the four solutions of the dispersion relation,
(kin1 , k

in
2 , k

in
3 , k

in
4 ), and with initial spatial support far

away from the white-black hole. After evolving each
wave-packet, we decompose the result in the basis of
out wave-packets centered around (kout1 , kout2 , kout3 , kout4 ),
uinki (tout) =

∑
j αij u

out
kj

(tout) + βij ū
out
kj

(tout), where the
bar denotes complex conjugation. The Bogoliubov coef-
ficients αij and βij encode the dynamics, and from them
we construct the S-matrix.

We model the perturbation of the refractive index as

δn(x, t) = δn0 sech2
(
t−x/u

∆

)
(a common choice in the

literature [7, 12]), where u is the speed of the perturba-
tion; x and t are space-time coordinates in the lab frame;
and δn0 and ∆ determine its amplitude and width, re-
spectively. We have performed simulations for δn0 and
∆ ranging from 0.01 to 0.1, and from 2 fs to 10 fs, respec-
tively. We find this is the range for which the analogy
with the Hawking effect works better (see below).

For ∆ & 4 fs and 0.1 ≤ ω/TH ≤ 5, the circuit in
Fig. 3 provides a good approximation for the dynam-
ics, with agreement at the level of (or better than) a
percent. In this regime, we confirm that the intensity
of the Hawking squeezer, rH , when computed for differ-
ent frequencies, follows a Planckian distribution, in the

sense that coth2 rH ≈ exp
{

ω
TH

}
with a temperature TH

which agrees with the analog surface gravity of the hori-
zon at the level of a few percent (see Fig. 4). (Devia-
tions at the percent level are expected due to dispersive
effects.) For instance, we find TH = 10.4 K for (∆ =
4fs, δn0 = 0.1); TH = 3.51 K for (∆ = 6fs, δn0 = 0.05);
and TH = 0.52 K for (∆ = 8fs, δn0 = 0.01) for diamond,
for which the refractive index is approximately given by

n2(λ) = 1+ 4.658λ2

λ2−112.52 [42], where λ is the free-space wave-
length measured in the lab frame and expressed in nm.

The analysis also reveals interesting subtleties: (i) If
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FIG. 4. Left axis (red dots): Numerical results for
ln
(
coth2 rH

)
vs ω for a strong pulse determined by ∆ = 6 fs

and δn = 0.05. We also show the straight line fit ω/TH , with
TH = 3.51 K. Right axis (blue triangles): Deviation of the
beamsplitter transmission probability from unity (1 − cos2 θ)
vs ω.

the pulse width ∆ and/or the intensity δn0 are very
small, the tunneling probability for the in mode kin3 to
cross the white hole and exit on the black hole side as
kout3 becomes non-negligible. This effect is more pro-
nounced for low frequencies. For instance, for ∆ = 2 fs
and δn0 = 0.01, this effect introduces order-one discrep-
ancies between the numerics and our analytical circuit
for ω/TH . 0.1, although the discrepancies quickly de-
crease for larger ω or larger values of ∆ and/or δn0. This
is an intrinsic limitation of optical analog models, rooted
in the fact that right moving modes in the region be-
tween the two horizons do actually exist—in contrast to
the astrophysical case—although they have exponentially
decaying amplitudes. See [43] for a previous analysis on
this tunneling effect. (ii) We observe a mixing between
kin2 and kout1 slightly higher than predicted by our cir-
cuit. Since these modes have symplectic norms of differ-
ent signs, this implies that there is another contribution
to particle creation, originating from scattering and un-
related to the Hawking process. Such contribution was
discussed in a different context in [44]. We find that this
additional particle creation is non-thermal. It impacts
the mean number of output quanta in the mode kout2

and its relevance is more important for large frequencies.
However, the impact on the most relevant output chan-
nels for the Hawking effect—the modes kout1 , kout3 and
kout4 —is negligible for ω/TH . 5 in all our simulations.

Stimulated Hawking process. We have explored
the evolution of a family of Gaussian initial states and
have studied the output intensities and entanglement
structure generated during the Hawking process. We
quantify the entanglement by means of the logarithmic
negativity (LogNeg) [45, 46] (for previous discussion of
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FIG. 5. Stimulating the white hole for entanglement en-
hancement. Continuous lines: LogNeg between the outgo-
ing white-hole partner-modes kout1 and kout4 versus the ini-
tial squeezing intensity rink3

, computed from the circuit model
for various values of the Hawking squeezing strength, rH .
Curves from top to bottom indicate decreasing values of rH .
Dots: Results from the numerical simulations evaluated at
ω/TH = 1.08 (same conditions as Fig. 4). Noise parameters

are nenv = (ew/(TH/2) − 1)−1 and η = 0.9.

entanglement in other analog models, see [24, 32, 47–57]).
LogNeg is based on the PPT criterion, similarly to other
inequalities used in some previous works (see e.g. [51]).
But LogNeg has the additional advantage that it is an
entanglement quantifier; i.e., it can be used to quantify
the amount of entanglement and not only to signal its
presence. This is important for our goals. An interesting
observation is that non-classical inputs (squeezed states)
alter the covariance of the final state and can be used to
amplify the entanglement generated by the Hawking pro-
cess. This is not possible with coherent state inputs, since
they have the same covariance matrix as the vacuum. Us-
ing our formalism, we can obtain analytical expressions
for the main aspects of the out state (given any initial
state) in terms of the open parameters rH , θ, φ of the
circuit, the latter of which we determine numerically and
are obviously independent of the quantum states chosen
for the weak probes.

We have incorporated the effect of losses (e.g. detec-
tor inefficiencies) and ambient noise, both ubiquitous in
real experiments. Noise (e.g. a thermal environment)
can be incorporated by adding nenv photons to each in-
put mode, while the effects of inefficiencies can be mod-
eled by the following transformation of the final state:
~µout →

√
η ~µout, σout → η σout+(1−η) I, where 0 ≤ η ≤ 1

is the attenuation factor. In the calculations below we
add the same amount of noise and inefficiencies to all
channels, although this can be generalized straightfor-
wardly.

A simple protocol. We find that a convenient strat-

egy is to illuminate the white hole with a single-mode
squeezed state in the long wavelength mode kin3 , and ob-
serve the Hawking-pair of modes (kout1 , kout4 ) leaving the
white hole (see Fig. 1). This strategy produces an op-
timal amount of entanglement enhancement, carried by
the (kout1 , kout4 ) mode pair, and more importantly, it al-
lows us to recover the information about the Hawking
process in a simple manner, as we now describe.

From the quantum circuit, we find that the mean
particle number 〈noutki

〉 for i = 1, 4 grows linearly with

sinh2 rink3 , where rink3 is the squeezing intensity chosen for
the input state. The rates of these linear growths are

mkout
1

= η (1 + 2nenv) cos2 θ sinh2 rH ,

mkout
4

= η (1 + 2nenv) cos2 θ cosh2 rH . (3)

These rates can be determined in the lab by measur-
ing the intensity of the output modes while tuning the
initial squeezing rink3 . By taking ratios, one can ob-
tain the intensity of the Hawking squeezer rH(ω) as
mkout

4
/mkout

1
= coth2 rH . The effects of thermal noise

and inefficiencies cancel out in this ratio.
Although this protocol permits one to reconstruct the

properties of the Hawking squeezer, rH(ω), it is based on
intensities and does not involve any genuinely quantum
property. Interestingly, the rH(ω) can be independently
reconstructed from the entanglement (LogNeg) between
the Hawking-pair (kout1 , kout4 ) emitted by the white hole.
The analytical expression for the LogNeg between these
two modes is lengthy, and its behavior with the initial
squeezing intensity rink3 is better illustrated in Fig. 5.
There are two important takeaway messages from our
analysis: (i) In the absence of the Hawking squeezer,
rH(ω) = 0, there is no entanglement between kout1 , kout4

(not explicitly shown in Fig. 5), no matter what the
value of the initial single-mode squeezing rink3 is. There-
fore, the observation of such entanglement must be at-
tributed to the Hawking effect, and not to the initial
state, which contains no entanglement between these two
modes. (ii) The LogNeg increases monotonically with the
initial squeezing intensity rink3 (if inefficiencies are small;
see below), and thus initial squeezing enhances the quan-
tum properties of the output. Obtaining the LogNeg,
for instance by reduced-state reconstruction using homo-
dyne measurements [14], and comparing with the theo-
retical curves in Fig. 5, the Hawking squeezing strength,
rH(ω), can be obtained from a quantity of purely quan-
tum origin. The value of rH(ω) obtained in this way must
agree with the one independently obtained from intensi-
ties [Eqns. (3)], providing a strong consistency test.

To illustrate the way this protocol works, we have
added to Fig. 5 the results for the LogNeg obtained from
numerical simulation, for different initial squeezing rink3 .
The numerical simulations are completely independent
from our analytical calculations. By comparing with a
family of theoretical curves obtained for different rH , we
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can identify the value of the Hawking squeezing inten-
sity rH(ω) which corresponds to the numerical simula-
tions. In a real experiment one would proceed in a similar
fashion, by replacing the numerically generated points in
Fig. 5 with experimental data. One needs to make sure
that the initial squeezing is not too large to trigger sub-
stantial non-linear effects, such as those discussed in [58].

We now discuss the effects of noise and inefficiencies.
Noise systematically reduces the entanglement in the fi-
nal state, even causing it to vanish if the environment
number of photons nenv is large enough. For instance,
for vacuum input, the entanglement in the bipartition
(kout1 |kout4 ) disappears when nenv is larger than a fre-
quency dependent threshold, which we find to be equal to
(ew/TH − 1)−1 for low frequencies (ω/TH � 1) and equal
to e−w/(2TH) for large frequencies (ω/TH � 1). This last
result is in agreement with previous findings in [49]. In
the absence of inefficiencies (η ≈ 1), squeezing a single
mode in the initial state can always be used to overcome
these thresholds and restore the entanglement.

On the other hand, entanglement is sensitive to the
effects of inefficiencies even when initial squeezing is
present. In particular, for values of the attenuation pa-
rameter η smaller than a critical value ηc, the effect of
squeezing the input is reversed, and initial squeezing de-
grades the entanglement in the output. For instance, we
find ηc ≈ 0.8 for ω/TH = 1, while ηc ≈ 0.9 for ω/TH = 4.

Conclusions. Our analytical treatment presents two
main advantages: (i) Its generality—it is not based on
any concrete model of the optical media, and in fact it can
be applied to other, non-optical analog models (see [57],
where related techniques have been recently discussed
in Bose-Einstein condensates); (ii) Its capabilities—it al-
lows us to compute in a few lines all aspects of the out-
put channels, including the entire entanglement struc-
ture. We have complemented the model with a numerical
simulation, which we use to check its validity, determine
its free parameters, and delimit its regime of applicabil-
ity. We have analyzed the effects of background noise
and inefficiencies and found that quantum entanglement
is easily masked, or completely erased, by these deleteri-
ous effects.

Furthermore, we have introduced a strategy to am-
plify the quantum features and overcome entanglement-
degrading effects and have proposed a protocol to ob-
serve them in the lab. Although additional difficulties
may arise in a real experiment, our ideas constitute a
step forward in the observability of the Hawking process.
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