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In the expanding universe, relativistic scalar fields are thought to be attenuated by “Hubble
friction”, which results from the dilation of the underlying spacetime metric. By contrast, in a
contracting universe this pseudo-friction would lead to amplification. Here, we experimentally mea-
sure , with five-fold better accuracy, both Hubble attenuation and amplification in expanding and
contracting toroidally-shaped Bose-Einstein condensates, in which phonons are analogous to cos-
mological scalar fields. We find that the observed attenuation or amplification depends on the
temporal phase of the phonon field, which is only possible for non-adiabatic dynamics . The mea-
sured strength of the Hubble friction disagrees with recent theory [J. M. Gomez Llorente and J.
Plata, Phys. Rev. A 100 043613 (2019) and S. Eckel and T. Jacobson, SciPost Phys. 10 64 (2021)]
; because our experiment probes physics outside the scope of this theory—with large excitations in
rings of intermediate thickness—this indicates the presence of new physics.

During the early universe’s rapid expansion, primor-
dially fluctuating scalar fields are thought to have been
exponentially redshifted and attenuated by the expand-
ing spacetime metric, where “Hubble friction” con-
tributes to the latter [1]. Unlike true friction, Hubble
friction is non-dissipative and therefore, while it attenu-
ates scalar fields in an expanding universe, it would am-
plify them in a contracting universe. In previous work [2],
our group showed that an atomic Bose-Einstein conden-
sate (BEC) in an expanding toroidal trap could simulate
elements of an expanding universe, including the redshift-
ing of phonons in analogy to the redshifting of photons.
Here, we build upon these studies by: including con-
tracting universes; measuring both Hubble attenuation
and amplification with five-fold increased precision; and
showing that the magnitude of Hubble friction disagrees
with recent theoretical work [3, 4].

While the study of astrophysical systems is ordinar-
ily limited to observations, the development of well-
controlled laboratory systems has enabled tabletop re-
alizations of general relativistic phenomena. Examples
from a variety of physical platforms ranging from clas-
sical fluids to cold atomic systems include: the realiza-
tion of acoustic black hole horizons [5–7]; stimulated and
spontaneous Hawking radiation [8–10]; and scattering
processes around rotating black holes [11]. With their
unprecedented control and measurement capabilities, ul-
tracold atoms are an emerging platform for realizing min-
imal models relevant to high energy physics [12], astro-
physics [13–16], and cosmology [2, 17–19].

In BECs, phonons are scalar fields that evolve approx-
imately according to an effective spacetime metric de-
fined by the background BEC [18]. For toroidally-shaped
BECs, expanding or contracting 1D universes can be sim-
ulated by dynamically changing the BEC’s radius and

observing the evolution of azimuthal phonons. Unlike
the expansion observed in the photon-dominated epoch
of the universe, we explore non-adiabatic expansions and
contractions where the rate of the metric change exceeds
the oscillation frequency.

Phonons are predominately phase excitations with re-
spect to the BEC’s order parameter. For a toroidal BEC
with radius R(t) (see Fig. 1) and 3D volume V(t), az-
imuthal phonons with mode number m, have an approx-

FIG. 1. Ring-trapping potential and resulting atomic density.
The green surface schematically depicts the trapping poten-
tial; the orange lines mark the typical chemical potential µ.
The blue-dashed curve shows a power law fit to the potential
(up to µ) around ρ = |r−R| = 0 giving exponent 2.02(3) for
this example. The measured 2D density n2D(ρ, θ) is shown
in the ex−ey plane (with peak density 165 µm−2) and the
white dashed arc marks the mean radius R. Because of the
short 500 µs TOF, the observed width of the ring is slightly in
excess of that anticipated from the in-situ T-F approximation.
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imate phase profile δφ1D(θ, t) ≡ δφ(t) sin(mθ) indepen-
dent of r and z and obey the wave equation [4]{

∂2t +

[
2γ +

V̇(t)

V(t)

]
∂t + ω2

m(t)

}
δφ(t) = 0 (1)

at low energy (i.e., small m). Here, the instantaneous an-
gular frequency is ωm = mcθ(t)/R(t), for speed of sound
cθ(t). Because we focus exclusively on the m = 1 mode,
the m subscript is omitted in what follows. The quan-
tity in square brackets is reminiscent of damping because
it multiplies the first derivative of time. It includes a
phenomenological damping constant γ [20] and the non-
dissipative “Hubble friction” V̇/V arising from the chang-
ing metric defined by the background condensate. We
model the external potential (see Fig. 1) as quadratic in
z and power law in ρ = |r − R|; in the Thomas-Fermi
(T-F) and thin-ring approximations, these lead to the
BEC’s 3D volume V ∝ Rα and cθ ∝ R−α/2, where
the value of the constant α depends on the potential [4].
Rather than detecting δφ1D, we measure the associated
density perturbation δn1D(θ, t) = δn(t) sin(mθ). The re-
lationship between δφ and δn is ∂tδφ = −(g/~)(δn/Rα),
in terms of the Gross–Pitaevskii equation [21] interaction
constant g.

In our experiments, the potential V (ρ) is nominally
fixed during expansion or contraction, predicting V̇/V =
γHṘ/R with strength γH = α. In expanding systems
(Ṙ > 0) the Hubble friction term attenuates phonons,
while in contracting systems it amplifies them. In the
non-adiabatic regime Ṙ/R & ωm, the timing of expansion
or contraction relative to the phonon’s temporal phase
becomes important for subsequent dynamics. Because
the Hubble friction term includes the product of Ṙ/R
and δn(t) ∝ ∂tδφ(t), tuning the timing of expansion or
contraction relative to the oscillation changes the degree
of amplification or attenuation.

Our experiments [23, 24] begin with quasi-2D 23Na
BECs with N ≈ 1×105 atoms confined in a pair of blue-
detuned (λ = 532 nm) optical dipole traps. The chemical
potential is µ ≈ h×2.7 kHz. Harmonic vertical confine-
ment, with frequency ωz/2π ≈ 1.2 kHz, is provided by
a horizontally propagating Hermite-Gauss TEM01 beam.
We generate nearly arbitrary space and time-dependent
potentials in the r-θ plane by imaging λ = 532 nm laser
light reflected by a digital micro-mirror device (DMD)
onto the BEC. We use these potentials to create toroidal
traps with variable radius R (see Fig. 1) and projected
radial width ≈ 5 µm.

A nearly-pure [94(2) %] azimuthal phonon excitation
with mode number m = 1 is generated by perturbing
the toroidal BEC with a potential Vph sin(mθ) [25]. This
repulsive potential—generated by the DMD—is applied
for 2 ms, imprinting the phonon’s phase modulation onto
the BEC. After imprinting, the phonon evolves for an
initial time ti , at which point the torus is expanded or
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FIG. 2. Phonon evolution in a contracting toroidally-shaped
BEC, averaged over three measurements. (a) Density pertur-
bations for a ring with Ri = 38.4(6)µm at 10 ms and 35 ms,
and Rf = 11.9(2)µm at 45 ms and 53 ms. The density scale of
images before contraction is multiplied by 2. The horizontal
bar corresponds to 80 µm. (b) Experimental measurements
and (c) fit to Eq. (1) of angular density perturbation δn1D

as a function of azimuthal angle θ and time t, where the ring
contraction occurs at ti. (d) Phonon amplitude δn as a func-
tion of time. The circles plot the phonon amplitude obtained
from fitting each time-slice of (b) to a sinusoid [22]. The
red curve is the instantaneous amplitude from the fit in (c).
The diamonds are the measured BEC mean radius and the
blue line is the programmed radius . The grayscale bar en-
codes the value of |Ṙ/R|, with a maximum of 328(11) s−1 at
tpeak = 41 ms. The arrow indicates ti = 38.2 ms.

contracted using an error function profile [2], with 10 %-
90 % rise time 3.6 ms, and continues to evolve for up
to ≈ 150 ms. For expansion, the initial and final radii
are Ri = 11.9(2) µm and Rf = 38.4(6) µm; these are
reversed for contraction [22]. We detect the phonon at
various points during the complete evolution using par-
tial transfer absorption imaging [26] after a short 500 µs
time of flight, giving the 2D density n2D(ρ, θ) [see Fig. 1].

The phonon excitation’s density perturbation [see
Fig. 2(a)] is δn2D = n2D − n02D, where n02D is the density
with no phonon present. Integrating along r gives the
azimuthal density perturbation δn1D(θ, t). Figure 2(b)
shows the time evolution of δn1D, and Fig. 2(c) shows the
resulting fit to Eq. (1), from which we obtain both the
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(a) Expansions (b) Contractions

FIG. 3. Phonon amplitude δn as a function of time t for (a) expanding and (b) contracting tori. The symbols, curves, and
grayscale bars are all as notated in Fig. 2(d). The expansion data (a) used Ri = 11.9(2) µm and Rf = 38.4(6) µm, and vice
versa for contraction (b). The red curves show simultaneous fits to a complete data set , which includes all expansions or
contractions.

red- or blueshift (via cθ) and the Hubble friction (from
γH). In our system, the phenomenological damping γ
is observed to depend strongly on radius Instead, we
parameterize the damping in terms of the quality factor
Q = ω/2γ , which is more independent of radius than γ
(see [24, 27]).

Because the 3.6 ms expansion or contraction is a small
fraction of the phonon oscillation period, the overall fit
is insensitive to how Q interpolates between Qi to Qf .
We therefore assume a simple linear dependence of Q
on R. As shown in Fig. 2(b), our data typically has
less than one oscillation before R changes; to reduce
the uncertainty in Qi and ω(Ri), we include fixed-radius
rings in a simultaneous fit. These fits include as free pa-
rameters γH, Qi, Qf , α as well as the initial speed of
sound cθ,i, initial amplitude δni, initial temporal phase
ϕ0 , and an overall offset angle δθ capturing a small
angular misalignment between the camera and DMD.
cθ(t) = cθ,i (R(t)/Ri)

−α/2 follows the expected scaling.

Figure 2(d) summarizes the outcome of this fit. The
red curve is the time-dependent density perturbation δn
obtained from the full fit, while the circles plot δn from
independent fits to δn sin(θ + δθ) of each time-slice in
Fig. 2(b) , providing a 1D representation of the data
in Fig. 2(b). The blue curve displays the radius of the

DMD pattern while the diamonds plot R obtained from a
2D T-F fit to the observed density distribution [28]. The
gray band plots Ṙ/R during contraction, with maximum
Ṙ/R ≈ 1.53× ω.

We study the hypothesized impact of the phonon phase
on the Hubble friction during expansion or contraction
by changing ti [see Fig. 2(d)], thereby phase-shifting the
phonon by (cθ,i/Ri)ti. We define tpeak as the time when
the Hubble friction reaches its peak strength, i.e., when
|Ṙ/R| is maximal. The phase of the phonon at tpeak
is ϕpeak ≡

∫ tpeak

0
dt ω(t) + ϕ0. Figure 3 shows example

time-traces with multiple ti for both expansion and con-
traction, providing a complete picture to investigate the
strength of Hubble friction . The black circles show the
time evolution of the phonon amplitude δn(t) for a range
of ti for both expansions (a) and contractions (b).

The red curves in Fig. 3 show the results of global fits
[29] of Eq. (1) to our complete dataset, which includes

17 contractions and 11 expansions. The parameters γH,
α, Qi, Qf , cθ,i and δni are global, i.e., they are shared
across all time traces. For each time trace, δni is scaled
by the atom number N(t) for that trace, and cθ,i is cor-
respondingly scaled by ∝ N(t)α/2 [30]; this accounts for
both atom loss during and after expansion or contrac-
tion and for overall drifts in atom number during data
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acquisition. Each global fit includes 7 additional time-
traces, each with constant R, roughly from Ri to Rf .
Because cθ(R) ∝ Rα/2 in stationary rings, these addi-
tional datasets further constrain α. We performed sepa-
rate global fits for expansion and contraction data, giving
an independent measure of their Hubble friction coeffi-
cients. Finally, to mitigate potential systematic biases
introduced by overfitting, we perform these global fits in
eight different ways, with the number of fit parameters
varying between 32 and 101 for ≈ 7.5×104 independent
data points. Each fit yields different best-fit values, but
generally they agree within 2-σ. These fitting methods
differ on whether the temporal and azimuthal phases are
shared across the time traces and if atom number varies
within each time trace (see supplemental material for de-
tails). We take the mean of the values obtained from
the eight methods as the best fit value. Their standard
deviation is added in quadrature to the average 1-σ un-
certainty from the fit to obtain the final uncertainty in
the measurement.

Table I lists the best-fit values, with γH different for
contraction and expansion. The values of α are in agree-
ment with each other . For our power-law potential
model [4], α ranges from 1/2 (for a harmonic potential)
to 1 (for a hard-wall potential). Our average value of
α ≈ 0.495 suggests that we have a harmonic potential in
both z and r. The values of cθ,i and δni depend on the
initial density, which is larger for expansions (i.e., smaller
initial rings) than contractions.

Lastly, we confirm our expectation that the phonon
phase ϕpeak has a marked impact on the amplitude fol-
lowing expansion or contraction in the non-adiabatic
limit. Our experiments probe 1.3 . ϕpeak/π . 2.9.
Fig. 4(a) illustrates our process for obtaining the final
amplitudes Af where we fit the oscillatory behavior to
an exponentially decaying sinusoid with the amplitude
and temporal phase as free parameters . By contrast,
the initial amplitude Ai is obtained from our global fit,
from the envelope of the decaying sinusoid evaluated at
tpeak. Figure 4(b) plots the fractional change in ampli-
tude Af/Ai versus ϕpeak with black circles, and the solid
blue curve depicts Af obtained from our global fits . Our
simulations (grey curves) show that the significant oscil-
lations for γH = 0, give way to more uniform gain with
increasing γH. The measured values of Af/Ai are gener-
ally larger than would be expected for γH = 0, showing
Hubble amplification due to contraction. Unlike Ref. 2,
which probed 1.8 . ϕpeak/π . 2.1, where Af/Ai has lit-
tle dependence on Hubble friction, our greater range of

TABLE I. Best fit global parameters.

Qi Qf α γH cθ,i δni

(mm/s) (rad−1)
Expansion 3.5(1) 4.4(2) 0.47(1) 0.28(4) 5.42(2) 7.47(13)

Contraction 7.8(3) 3.5(1) 0.52(3) 0.36(3) 4.36(4) 4.50(5)

(b)

(a)

FIG. 4. Phonon amplitude vs. phase. (a) Data (black
circles), fit (red curve), and oscillation envelope (blue curve)
used to extract the amplitude Af at tpeak. The grayscale bar is
as notated in Fig. 2(d). (b) Ratio of amplitudes Af/Ai versus
ϕpeak, the oscillation’s phase at tpeak. The black circles plot
the data , and the error bars correspond to the fit uncertainty
in the determination of Af . The gray dashed, blue solid, and
gray dashed-dot curves show the prediction of Eq. (1) for
γH = 0, 0.36, and 1, respectively, with α = 0.52. The red line
indicates the prediction for an adiabatic contraction.

ϕpeak allows us to better constrain γH . In addition to
the overall oscillation, an additional dependence on φpeak
appears and is not captured by our model (data below
φpeak/π < 2 generally lie above the γH = 0.36 curve,
and below for φpeak/π > 2). This additional depen-
dence may indicate a more complicated damping process
for our phonons that could obscure our fitting for γH .

The observed oscillatory dependence of Af on ϕpeak

results from the rapid non-adiabatic, i.e. superluminal,
contraction in this experiment. The solid red curve em-
phasizes this point by plotting the simulated behavior
for a slow adiabatic contraction, computed with γ = 0.
No dependence on ϕpeak is present in this limit, as the
phonon would undergo many oscillations during expan-
sion and therefore lose any dependence on initial phase.
The deviation from the adiabatic curve is associated with
“classical” stimulated emission or absorption (described
by the mean field G-P equation ) into or out of the
phonon field, in much the same way that these processes
have been observed in acoustic black holes [14].

Our data generally agrees with the predictions of
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Refs. 3 and 4, with the notable exception γH 6= α. This
discrepancy could be due to three possible effects. First,
the simple scaling of cθ with R holds only in the thin-ring
approximation, and this can cause up to a 10 % error in α.
Second, while the excitation of higher azimuthal modes
should have little impact (due to angular momentum con-
servation), expansion or contraction-driven mode mixing
with higher excited radial modes (from non-adiabatic ex-
pansion) can contribute to an error in γH , which we es-
timate may be as high as 20 %. Third, we create large-
amplitude phonons to maximize our detection signal, and
this may lead to non-linear damping effects [33]. We note
that general relativity is itself a non-linear wave equation,
so related effects are potentially present in true cosmol-
ogy. In this linear regime, this complicates our measure-
ment of γH, and potentially causing the additional de-
pendence on φpeak seen in Fig. 4(b).

For future experiments, our system is flexible enough
to explore different metric scalings such as 2D expansions
or contractions where γH > 1, as suggested in Ref. 4. Our
experimental setup could also readily explore other ana-
logue gravity systems such as black hole horizons in 2D
systems, where, for example the acoustic metric resulting
from quantized vortices could open new directions [34].

The authors are grateful to T. Jacobson for useful dis-
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reading of the manuscript. This work was partially sup-
ported by NIST and NSF through the Physics Frontier
Center at the Joint Quantum Institute.
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