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Flat-band superconductivity has theoretically demonstrated the importance of band topology to
correlated phases. In two dimensions, the superfluid weight, which determines the critical temper-
ature through the Berezinksii-Kosterlitz-Thouless criteria, is bounded by the Fubini-Study metric
at zero temperature. We show this bound is nonzero within flat bands whose Wannier centers are
obstructed from the atoms — even when they have identically zero Berry curvature. Next, we derive
general lower bounds for the superfluid weight in terms of momentum space irreps in all 2D space
groups, extending the reach of topological quantum chemistry to superconducting states. We find
that the bounds can be naturally expressed using the formalism of real space invariants (RSIs) that
highlight the separation between electronic and atomic degrees of freedom. Finally, using exact
Monte Carlo simulations on a model with perfectly flat bands and strictly local obstructed Wannier
functions, we find that an attractive Hubbard interaction results in superconductivity as predicted
by the RSI bound beyond mean-field. Hence, obstructed bands are distinguished from trivial bands
in the presence of interactions by the nonzero lower bound imposed on their superfluid weight.

Introduction. In a topological insulator, the ground
state Wannier functions face an obstruction to exponen-
tial localization1–5. This real-space picture connects bulk
topological invariants computed from the bands in mo-
mentum space to the local chemistry of electronic states.
Topological states can be either stable or fragile, and
are classified by their symmetry properties in momentum
space6–9. Fragile states can be trivialized by mixing with
non-topological bands10–12, while stable states cannot.
Moreover, stable topological phases are distinguished
by their gapless edge states13,14, while fragile phases
have anomalous boundary signatures exposed by twisted
boundary conditions15,16, magnetic flux17, or defects18.
Although our understanding of non-interacting topolog-
ical bands is nearly exhaustive,19–22, this is not the case
for interactions within topological bands.

Superconductivity in topological bands23,24 is of inter-
est since its discovery within the fragile flat bands25–34

of twisted bilayer graphene35–41. Discovered in Ref. 42,
superconducting order in flat bands, specifically the su-
perfluid weight, originates from quantum geometry char-
acterized by the Fubini-Study metric and has gathered
much excitement43–49. The quantum metric, though dis-
tinct from the band topology, is bounded by the Chern
or (Euler) winding numbers23,50,51. These early results
suggest that topological quantum chemistry could pro-
vide general lower bounds, making contact with mate-
rials databases52–54. Our work affirms this suggestion,
yielding nonzero bounds in phases without winding num-
bers. Our bounds are given by another quantized num-
ber, the real space invariant (RSI)15, which uses sym-
metries to characterize topological, obstructed Wannier
centers (OWCs), and trivial bands.

From a materials perspective, although topological
bands are abundant within real crystals, a significant por-

tion are topologically trivial at the Fermi level. Topolog-
ically trivial bands with space group symmetries have a
finer classification which divides them into trivial atomic
bands, where electrons are exponentially localized at
the atomic sites, and bands with OWCs which, while
exponentially localized, are necessarily centered off the
atoms55–57. Remarkably, we show that, like topologi-
cal bands, OWCs have a nonzero, lower-bounded Fubini-
Study metric even without Berry curvature58,59. When
flat OWC bands are partially filled under attractive in-
teractions, they possess a superconducting instability.

The zero-temperature superfluid weight [Ds]ij of an
isolated flat band within BCS theory59 is60

[Ds]ij = 2|∆|
√
ν(1− ν)

∫
d2k

(2π)2
gij(k) (1)

where ∆ is the superconducting gap, ν is the filling frac-
tion of the flat bands, k is a momentum in the Brillouin
zone (BZ) with area (2π)2/Ωc (Ωc is the unit cell area),
and gij is the Fubini-Study quantum metric. A nonzero
superfluid weight implies a finite critical superconduct-
ing temperature61,62 and a supercurrent J = −4DsA,
where A is the vector potential in the London gauge. In a
Hamiltonian with Norb orbitals and Nocc occupied bands,
we define the (abelian) quantum geometric tensor63

Tr Gij = Tr P∂iP∂jP = gij +
i

2
fij , (2)

where P (k) is the Norb×Norb gauge-invariant projection
matrix onto the occupied bands, ∂i is a momentum-space
derivative, and the trace is over the matrix indices. The
abelian Berry curvature fij = −fji is well studied while
the positive semi-definite quantum metric gij = gji is an
object of more recent interest63–83. With spatial rotation
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FIG. 1. Wannier basis at 1c = 2
3
a1 + 1

3
a2. The Wannier state

|A1c〉 (red) centered at 1c is supported only on the neighboring
atomic sites (grey) with A, 1E, and 2E orbitals. Only one site
overlaps with neighboring Wannier states (blue).

symmetry, [Ds]ij is determined by the trace of gij
84

G =
1

2

∫
d2k

(2π)2
Tr ∇∇∇P · ∇∇∇P ≥ 0, (3)

which is coordinate invariant, dimensionless, and impor-
tantly is quadratic in P (k)60. We give an efficient nu-
merical discretization formula in Ref. 60.

Flat Band Model. We begin by constructing an OWC
model in the space group p3 generated by spinless C3

symmetry and translations along the lattice vectors a1 =
(1, 0),a2 = C3a1. At the origin (the 1a position), we
place electrons in the A, 1E, 2E irreps. These orbitals
induce band representations85,86 with irreps defined by

A1a ↑ p3 = Γ1 +K1 +K ′1, C3 = +1

1E1a ↑ p3 = Γ2 +K2 +K ′3, C3 = e−
2πi
3

2E1a ↑ p3 = Γ3 +K3 +K ′2, C3 = e
2πi
3

(4)

where Γ = (0, 0)T,K = 2π
3 (b1 + b2),K ′ = − 2π

3 (b1 +
b2) are the high symmetry points, and ai · bj = δij .
The full group theory data can be found on the Bilbao
Crystallographic server87–89. To construct a flat band
OWC from these orbitals, we will use a Wannier basis
centered at the 1c position off the atomic sites at 1a as
in Fig. 1. We form the Wannier states

|R, A1c〉 =
1

3
TR

2∑
j=0

C̃j3(|0, A〉+ |0, 1E〉+ |0, 2E〉), (5)

where TR is the translation operator by R, C̃3 is the ro-
tation operator about the 1c position, and |0, ρ〉 are the

ρ orbitals in unit cell 0. Taking C̃3 → e∓
2πi
3 C̃3 in Eq. (5)

yields 1E and 2E states at 1c. It is easy to check that
the states |R, A1c〉 are orthonormal: 〈R, A1c|R′, A1c〉 is
nonzero only if R and R′ are nearest neighbors, and in
this case the only overlap is on a single site which vanishes
due to C̃3 eigenvalues of the orbitals. Fourier transform-
ing Eq. (5) to obtain the eigenstate |k, A1c〉 yields the
eigenvector Uα(k) = 〈k, α|k, A1c〉, α = A, 1E, 2E:

U(k) =
1

3

1
1
1

+
1

3

 1

e
4πi
3

e
2πi
3

eik·(a1+a2)+
1

3

 1

e
2πi
3

e
4πi
3

eik·a2 ,

(6)

and the local momentum-space Hamiltonian

h(k) = −|t|U(k)U†(k) ≡ −|t|P (k) (7)

which has three exactly flat bands: the A1c band at en-
ergy −|t| and the degenerate 1E1c and 2E1c bands at zero
energy. At filling 1/3, h(k) has the band representation

Γ1 +K3 +K ′3 = A1c ↑ p3, (8)

confirming our construction in real space. We also calcu-
late the Berry connection in crystalline coordinates,

Ai(k) = U†(k)i∂iU(k) = (−1/3,−2/3)i , (9)

which is the expectation value of the lattice position oper-
ator in the occupied bands. Noting that the lattice posi-
tion operator is only defined mod 1, Eq. (9) confirms that
the states are located at the 1c position. Because Ai(k)
is independent of k (up to a gauge choice), the Wilson
loop bands are perfectly flat90 and the Berry curvature
is identically zero. Topologically, the model is therefore
trivial. However, we calculate the quantum metric in
cartesian coordinates (a is the lattice constant):

gij(k) =
1

2
Tr ∂iP (k)∂jP (k) = a2δij/6, (10)

so the mean-field superfluid weight in Eq. (1) is nonzero
despite the model being topologically trivial and having
compact Wannier functions (zero correlation length)57.

It is natural to ask what indices describe these compact
OWC phases. By definition, they are induced by off-
site atomic orbitals, so topological quantum chemistry
can identify them because their symmetry data does not
match any of the orbitals present in the lattice. This
is different than the stable and fragile indices which are
independent of the basis orbitals.

Wilson loops can also identify OWCs. A useful ref-
erence is the SSH chain91 where an eigenvalue of π of
the Wilson loop operator identifies the off-site states92,93.
Lastly, OWCs can be most naturally defined using the
RSI formalism developed in Ref. 15. RSIs are local
quantum numbers which are well-defined in fragile and
OWC phases where they supply lower bounds on the
number of states at the high symmetry Wyckoff posi-
tions. By definition, RSIs are invariant under symmetry-
preserving adiabatic deformations. Since the Wannier
states in OWCs cannot be moved to atomic sites with-
out closing a gap, they are characterized by a nonzero
RSI off an atomic site. In space group p3, the RSIs at a
C3-symmetric Wyckoff positions are

δ1 = m(1E)−m(A), δ2 = m(2E)−m(A) (11)

and m(ρ) is the number of ρ irreps. The RSIs can be
conveniently calculated from the momentum space sym-
metry data15. In our model, the only nonzero RSIs are
off the atomic sites at the 1c position, (δ1c,1, δ1c,2) =
(−1,−1). We will now show that, in generality, these off-
site RSIs are responsible for a bounded superfluid weight.
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FIG. 2. C3 Bounds. (a) We label the C3-invariant points Γ,
K, and K′ in the BZ. (b) By taking linear combinations of
P (k), we find lower bounds for the harmonics at |R| = 1,
shown in red and blue. Higher harmonics are not shown.

Lower Bounds in Real Space. We derive general lower
bounds for the superfluid weight in terms of RSIs and or-
bital positions to show that nonzero superfluid weight is a
generic feature of partially filled OWC bands, as has been
shown for Chern insulators and Euler insulators23,50.
Our bounds also apply to all 2D topological bands60 in-
cluding fragile bands. Here, for simplicity, we prove a
lower bound for our model with C3 and all orbitals at
the 1a position. Our starting point is a real space ex-
pression for P (k), the projector onto the occupied A1c

band. If all orbitals are at the 1a position, then h(k) and
P (k) are periodic under k → k + 2πbi. Thus there is a
Fourier representation

P (k) =
∑
R

e−iR·kp(R), p(R) =

∫
dk1dk2

(2π)2
eiR·kP (k),

(12)
defined in terms of the harmonics p(R), which are
Norb ×Norb matrices, the lattice vectors R, and the di-
mensionless crystal momenta ki. Note that P (k) is the
momentum space Green’s function94, so p(R) is the real
space correlation function. The harmonics obey a nor-
malization condition∑

R

||p(R)||2 =

∫
dk1dk2

(2π)2
Tr P (k) = Nocc = 1, (13)

where ||A||2 = Tr A†A is the squared Frobenius norm60.
Rewriting Eq. (3) in real space, we find

G =
1

2

∫
d2k

(2π)2
Tr ∇∇∇P · ∇∇∇P =

1

2Ωc

∑
R

|R|2||p(R)||2 .

(14)
We will use symmetry eigenvalues to show that ||p(a1)||
and symmetry-related terms are bounded below. This
immediately gives a bound for G because G ≥

1
2Ωc
|a1|2||p(a1)||2 since all terms in Eq. (14) are positive

semi-definite. Indeed, all are positive definite except for
the zero mode p(0), the constant mode of P (k).

The momentum space irreps consist of the C3 eigen-
values in the occupied bands at Γ,K,K ′ (see Fig. 2a).
The irrep multiplicities m(ρ) obey60

m(Γ1) + e
2πi
3 m(Γ2) + e−

2πi
3 m(Γ3) = Tr D[C3]P (Γ),

(15)

and similarly for K and K ′. Here D[C3] =

diag(1, e−
2πi
3 , e

2πi
3 ) is the representation matrix of C3 on

the orbitals. Thus the irrep multiplicities give informa-
tion about P (k). Writing out and summing Eq. (12) at
each high-symmetry momentum gives

P (Γ) + e
2πi
3 P (K) + e

4πi
3 P (K ′) = 3

3∑
n=1

p(−Cn3 a1) + . . . ,

(16)
where the dots represent higher harmonics p(R) for |R| >
|ai| (see Fig. 2b). Crucially, the roots of unity cancel
p(0), so only harmonics at R 6= 0 appear in Eq. (16). We
now bound Eq. (16) on both sides. To manipulate the
momentum space side, we use an elementary inequality95

||A||2 ≥ |Tr SA|2/Rk(A) ∀S unitary, (17)

proven in Ref. 60. Choosing A = P (Γ) + e
2πi
3 P (K) +

e−
2πi
3 P (K ′), we see 1/Rk(A) ≥ 1/3 because A is a 3× 3

matrix, and with S = D[C3], we find with Eq. (15):

|Tr SA|2 =
9

4
(m(K3) +m(K ′3)−m(Γ2)−m(Γ3))2 +

3

4
(m(Γ2)−m(Γ3)+m(K1)−m(K2)−m(K ′1)+m(K ′2))2

= 9(δ2
1c,1 − δ1c,1δ1c,2 + δ2

1c,2),
(18)

where we first used Eq. (15) to write the trace in terms
of momentum space irreps, and then used the tables in
Ref. 15 to rewrite them in terms of the RSIs in Eq. (11).

Taking the Frobenius norm of Eq. (16) and applying
the triangle inequality to the real space side gives

||A|| ≤ 3(||p(a1)||+||p(C3a1)||+||p(C2
3a1)||+ . . . ), (19)

where the dots are higher harmonics and we used
||p(R)|| = ||p(−R)|| which follows from Eq. (12). We
check explicitly that Eq. (19) is not a tight inequality
(by a factor of 3) and prevents our bound from being
saturated by this model. All other inequalities are tight.

We next use C3 symmetry which ensures ||p(R)|| =
||p(C3R)||60. Because we have a lower bound for ||A||2,
Eq. (19) proves that ||p(R)|| 6= 0 for some R 6= 0. We
now employ an optimization argument:

1

2Ωc

∑
R

|R|2||p(R)||2 ≥ min
ψR

1

2Ωc

∑
R

|R|2|ψR|2, (20)

where the minimization is taken over all ψR ∈ R obeying∑
R

|ψR|2 = 1, |ψR| = |ψ−R|, ||A|| = 9|ψa1
|+ . . . , (21)

and the dots denote terms depending on ψ|R|>|a1|. As
such, the space of admissible |ψR| described by Eq. (21)
includes the choice where |ψR| = ||p(R)||. By keeping
only the constraints in Eq. (21), and not the restriction
that ψR be the Fourier transform of a projection matrix,
we can perform the minimization in Eq. (20) directly.
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A lemma we prove in Ref. 60 shows that the mini-
mum occurs when ||A|| = 9|ψa1

|, i.e., when Eq. (19)
is saturated with the lowest harmonics possible. This
is expected because higher harmonics have larger |R|2
weights. Adding up the contributions from the inner six
harmonics ||p(R)||2 in Fig. 2, we find60

1

2Ωc

∑
R

|R|2||p(R)||2 ≥ a2

9Ωc
(δ2

1c,1 − δ1c,1δ1c,2 + δ2
1c,2) .

(22)
Plugging in δ1c,1 = δ1c,2 = −1 from Eq. (11), we obtain

G ≥ a2/9Ωc = 2/9
√

3, a factor of 3 below the exact
calculation in Eq. (10). The RSIs in Eq. (22) show that
states off the atomic positions (1a in this case), which
define OWCs, enforce a nonzero superfluid weight. We
obtain bounds for all 2D space groups in Ref. 60.

Hubbard Model. We have shown that single-particle
OWCs and fragile states have a nonzero superfluid weight
at T = 0. However, [Ds]ij in Eq. (1) is obtained from
mean-field BCS theory, which may seem unsuitable to
treat flat band systems lacking a well-defined Fermi sur-
face. We resort to exact numerical simulations to check
its validity at finite temperature.

Using the Hamiltonian h(k) defined in Eq. 7, we form
a spinful Hamiltonian with h↑(k) = h(k) and h↓(k) =
T h↑(k)T −1 = h∗(−k) which preserves time-reversal T .
Here ↑, ↓ label the spins. Including an attractive Hubbard
term with strength |U |, the full Hamiltonian is

H = −|t|
∑
R,σ

w†RσwRσ − |U |
∑
Rα

c†Rα↑c
†
Rα↓cRα↓cRα↑,

(23)

where w†R↑ creates the Wannier state in Eq. (5), w†R↓ =

T w†R,↑T −1, c†Rασ is the creation operator in unit cell R,

orbital α, and spin σ = {↑, ↓}. The attractive Hub-
bard model does not suffer from the fermionic sign prob-
lem, and lends itself to auxiliary-field quantum Monte
Carlo methods96,97. We perform finite-temperature sim-
ulations in the grand canonical ensemble and tune the
chemical potential µ(T ) to half fill the A1c band. We con-
sider a range of Hubbard interactions |U | smaller than the
single-particle gap |t| above the A1c band: |U | = 3, 4, 5,
with |t| = 6. These parameters set us away from the iso-
lated flat band regime |U | � |t|. We focus on a system
with 6× 6 unit cells and periodic boundary conditions.

We can directly extract the finite-temperature super-
fluid weight Ds(T ) from the Monte Carlo results60. The
transition temperature Tc is determined by the Nelson-
Kosterlitz criterion62: Tc = πD−s /2, where D−s is the
superfluid weight at the critical temperature approached
from below. In Fig. 3, we plot Ds(T ) for different |U | as
a function of T/|U |, finding the curves collapse on top of
each other. This confirms Tc ∝ |U |100. Our results prove
that a coherent superconductor emerges upon inclusion
of an attractive Hubbard interaction in the OWC flat
bands, as in topological bands26,100,101. Ref. 26 discusses
the contrasting case of trivial atomic bands.

0.00 0.02 0.04 0.06 0.08 0.10 0.12

T/|U |

0.00

0.02

0.04

D
s
/
|U
| |U | = 3

|U | = 4

|U | = 5

FIG. 3. Monte Carlo. The superfluid weight Ds as a func-
tion of temperature T is computed from Monte Carlo sim-
ulations on H in Eq. (23)98,99. We consider |U | = 3, 4, 5
with |t| = 6 in a system with 6 × 6 unit cells. The crossing
of Ds with the dashed line 2T/π indicates the Berezinskii-
Kosterlitz-Thouless superconducting transition. The yellow
star/ blue cross indicate the mean-field Ds(T = 0) obtained
from a multi-band/ isolated flat band calculation (Eq. (10)).
The gray hexagon shows the RSI bound on Ds(T = 0).

We can compare the results of our Monte Carlo simula-
tions to the zero temperature predictions of BCS theory.
In particular, we recall in Ref. 60 that the BCS wavefunc-
tion is an exact zero-temperature ground state of the at-
tractive Hubbard model projected into the flat bands51,
as follows from the equal weight of the flat band’s Wan-
nier function over all orbitals in the unit cell42. The
blue cross in Fig. 3 shows the result of the analytical
mean-field calculation after projection into the flat band.
Alternatively, we solve the multi-band mean-field the-
ory numerically in Ref. 60. The result is shown with
the yellow star in Fig. 3. The agreement between our
finite-temperature Monte Carlo simulations and the zero
temperature mean-field calculations justify the use of the
BCS result in Eq. (1), showing that our lower bounds
successfully describe the many-body physics.

Discussion. We have shown that the RSIs characteriz-
ing the quantum geometry have a profound influence on
the interacting groundstate when the flat bands are par-
tially filled. Our lower bound for the superfluid weight
is nontrivial in OWCs where the Wannier charge cen-
ters are obstructed from the atoms. Our bounds are not
saturated by the Hamiltonian in Eq. (7), but we hope
that future work can improve these bounds to be tight.
Our RSI bounds also apply to OWCs with corner states,
as well as stable and fragile topological phases102,103.
Conceptually, the gauge-invariant expression Eq. (14) in
terms of the correlation function shows that long-ranged
Wannier functions are not essential to the lower bound.
Any Wannier function which is supported over multi-
ple unit cells44,57, as can be enforced by symmetry in
a OWC state, produces a quantized RSI lower bound.
Our derivation is general for arbitrary bands and arbi-
trary symmetries. Although we studied the problem in
2D, our method is generalizable to 3D where flat band
OWCs have been exhaustively identified56.
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moiré materials. Nature Reviews Materials, 6(3):201–206,
March 2021. ISSN 2058-8437. doi:10.1038/s41578-021-
00284-1.

41 Haidong Tian, Shi Che, Tianyi Xu, Patrick Cheung,
Kenji Watanabe, Takashi Taniguchi, Mohit Randeria,
Fan Zhang, Chun Ning Lau, and Marc W. Bockrath.
Evidence for Flat Band Dirac Superconductor Origi-
nating from Quantum Geometry. arXiv e-prints, art.
arXiv:2112.13401, December 2021.

42 Aleksi Julku, Sebastiano Peotta, Tuomas I. Vanhala,
Dong-Hee Kim, and Päivi Törmä. Geometric Ori-
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47 P. Törmä, L. Liang, and S. Peotta. Quantum metric

and effective mass of a two-body bound state in a flat
band. Phys. Rev. B, 98(22):220511, December 2018. doi:
10.1103/PhysRevB.98.220511.

48 Zhiqiang Wang, Gaurav Chaudhary, Qijin Chen,
and K. Levin. Quantum geometric contributions
to the bkt transition: Beyond mean field the-
ory. Phys. Rev. B, 102:184504, Nov 2020. doi:
10.1103/PhysRevB.102.184504. URL https://link.

aps.org/doi/10.1103/PhysRevB.102.184504.
49 Nishchhal Verma, Tamaghna Hazra, and Mohit Randeria.

Optical spectral weight, phase stiffness, and Tc bounds for
trivial and topological flat band superconductors. Pro-
ceedings of the National Academy of Science, 118(34):
2106744118, August 2021. doi:10.1073/pnas.2106744118.

50 Fang Xie, Zhida Song, Biao Lian, and B. Andrei Bernevig.
Topology-bounded superfluid weight in twisted bilayer
graphene. Phys. Rev. Lett., 124:167002, Apr 2020. doi:
10.1103/PhysRevLett.124.167002. URL https://link.

aps.org/doi/10.1103/PhysRevLett.124.167002.
51 Murad Tovmasyan, Sebastiano Peotta, Päivi Törmä, and
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tum geometry and flat band bose-einstein condensa-
tion. Phys. Rev. Lett., 127:170404, Oct 2021. doi:
10.1103/PhysRevLett.127.170404. URL https://link.

aps.org/doi/10.1103/PhysRevLett.127.170404.
67 Ran Cheng. Quantum Geometric Tensor (Fubini-Study

Metric) in Simple Quantum System: A pedagogical Intro-
duction. arXiv e-prints, art. arXiv:1012.1337, December
2010.

68 Bruno Mera, Anwei Zhang, and Nathan Goldman. Re-
lating the topology of Dirac Hamiltonians to quantum
geometry: When the quantum metric dictates Chern
numbers and winding numbers. arXiv e-prints, art.
arXiv:2106.00800, June 2021.

69 Enrico Rossi. Quantum Metric and Correlated States
in Two-dimensional Systems. arXiv e-prints, art.
arXiv:2108.11478, August 2021.

70 Fengcheng Wu and S. Das Sarma. Quantum ge-
ometry and stability of moiré flatband ferromag-
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terials. Phys. Rev. B, 104:064306, Aug 2021. doi:
10.1103/PhysRevB.104.064306. URL https://link.

aps.org/doi/10.1103/PhysRevB.104.064306.
79 Junyeong Ahn, Guang-Yu Guo, Naoto Nagaosa, and

Ashvin Vishwanath. Riemannian Geometry of Resonant
Optical Responses. arXiv e-prints, art. arXiv:2103.01241,
March 2021.

80 Yang Gao, Shengyuan A. Yang, and Qian Niu. Field In-
duced Positional Shift of Bloch Electrons and Its Dynam-
ical Implications. Phys. Rev. Lett., 112(16):166601, April
2014. doi:10.1103/PhysRevLett.112.166601.

81 J Orenstein, JE Moore, T Morimoto, DH Torchinsky,
JW Harter, and D Hsieh. Topology and symmetry of
quantum materials via nonlinear optical responses. An-
nual Review of Condensed Matter Physics, 12:247–272,
2021.

82 Nitesh Kumar, Satya N Guin, Kaustuv Manna, Chandra
Shekhar, and Claudia Felser. Topological quantum mate-
rials from the viewpoint of chemistry. Chemical Reviews,
121(5):2780–2815, 2020.

83 J. Anandan and Y. Aharonov. Geometry of quantum evo-
lution. Phys. Rev. Lett., 65:1697–1700, Oct 1990. doi:
10.1103/PhysRevLett.65.1697. URL https://link.aps.

org/doi/10.1103/PhysRevLett.65.1697.
84 Note that the off-diagonal g12 term do not appear in the

trace, but this term is only relevant in highly anisotropic
systems.

85 Jennifer Cano, Barry Bradlyn, Zhijun Wang, L. Elcoro,
M. G. Vergniory, C. Felser, M. I. Aroyo, and B. Andrei
Bernevig. Building blocks of topological quantum chem-
istry: Elementary band representations. Phys. Rev. B, 97
(3):035139, Jan 2018. doi:10.1103/PhysRevB.97.035139.

86 J. Zak. Band representations and symmetry types of
bands in solids. Phys. Rev. B, 23:2824–2835, Mar
1981. doi:10.1103/PhysRevB.23.2824. URL https://

link.aps.org/doi/10.1103/PhysRevB.23.2824.
87 MI Aroyo, JM Perez-Mato, Cesar Capillas, Eli Kroumova,

Svetoslav Ivantchev, Gotzon Madariaga, Asen Kirov,

and Hans Wondratschek. Bilbao crystallographic server:
I. databases and crystallographic computing programs.
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 221:15–
27, 01 2006. doi:10.1524/zkri.2006.221.1.15.

88 Mois I. Aroyo, Asen Kirov, Cesar Capillas, J. M.
Perez-Mato, and Hans Wondratschek. Bilbao Crys-
tallographic Server. II. Representations of crystallo-
graphic point groups and space groups. Acta Crystal-
lographica Section A, 62(2):115–128, Mar 2006. doi:
10.1107/S0108767305040286.

89 M. G. Vergniory, L. Elcoro, Zhijun Wang, Jennifer Cano,
C. Felser, M. I. Aroyo, B. Andrei Bernevig, and Barry
Bradlyn. Graph theory data for topological quantum
chemistry. Phys. Rev. E, 96:023310, Aug 2017. doi:
10.1103/PhysRevE.96.023310.

90 A. Alexandradinata, Xi Dai, and B. Andrei Bernevig.
Wilson-Loop Characterization of Inversion-Symmetric
Topological Insulators. Phys. Rev., B89(15):155114, 2014.
doi:10.1103/PhysRevB.89.155114.

91 W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in
polyacetylene. Phys. Rev. Lett., 42:1698–1701, Jun 1979.
doi:10.1103/PhysRevLett.42.1698. URL https://link.

aps.org/doi/10.1103/PhysRevLett.42.1698.
92 Titus Neupert and Frank Schindler. Lecture Notes on

Topological Crystalline Insulators. arXiv e-prints, art.
arXiv:1810.03484, October 2018.

93 Frank Schindler. Dirac equation perspective on higher-
order topological insulators. Journal of Applied Physics,
128(22):221102, December 2020. doi:10.1063/5.0035850.

94 B. Andrei Bernevig and Taylor L. Hughes. Topological
Insulators and Topological Superconductors. Princeton
University Press, student edition edition, 2013. ISBN
9780691151755.

95 Henry Wolkowicz and George PH Styan. Bounds for
eigenvalues using traces. Linear algebra and its applica-
tions, 29:471–506, 1980.

96 R. Blankenbecler, D. J. Scalapino, and R. L. Sugar.
Monte carlo calculations of coupled boson-fermion sys-
tems. i. Phys. Rev. D, 24:2278–2286, Oct 1981. doi:
10.1103/PhysRevD.24.2278. URL https://link.aps.

org/doi/10.1103/PhysRevD.24.2278.
97 Martin Bercx, Florian Goth, Johannes S. Hofmann, and

Fakher F. Assaad. The ALF (Algorithms for Lattice
Fermions) project release 1.0. Documentation for the aux-
iliary field quantum Monte Carlo code. SciPost Phys.,
3:013, 2017. doi:10.21468/SciPostPhys.3.2.013. URL
https://scipost.org/10.21468/SciPostPhys.3.2.013.

98 D. J. Scalapino, S. R. White, and S. C. Zhang. Su-
perfluid density and the drude weight of the hubbard
model. Phys. Rev. Lett., 68:2830–2833, May 1992. doi:
10.1103/PhysRevLett.68.2830. URL https://link.aps.

org/doi/10.1103/PhysRevLett.68.2830.
99 Douglas J. Scalapino, Steven R. White, and Shoucheng

Zhang. Insulator, metal, or superconductor: The cri-
teria. Phys. Rev. B, 47:7995–8007, Apr 1993. doi:
10.1103/PhysRevB.47.7995. URL https://link.aps.

org/doi/10.1103/PhysRevB.47.7995.
100 Johannes S. Hofmann, Erez Berg, and Deban-

jan Chowdhury. Superconductivity, pseudogap,
and phase separation in topological flat bands.
Phys. Rev. B, 102:201112(R), Nov 2020. doi:
10.1103/PhysRevB.102.201112. URL https:

//link.aps.org/doi/10.1103/PhysRevB.102.201112.

http://dx.doi.org/10.1103/PhysRevB.87.245103
http://dx.doi.org/10.1103/PhysRevB.87.245103
https://link.aps.org/doi/10.1103/PhysRevB.87.245103
https://link.aps.org/doi/10.1103/PhysRevB.87.245103
http://dx.doi.org/10.1103/PhysRevA.103.053311
https://link.aps.org/doi/10.1103/PhysRevA.103.053311
https://link.aps.org/doi/10.1103/PhysRevA.103.053311
http://dx.doi.org/10.1103/PhysRevLett.115.216806
http://dx.doi.org/10.1103/PhysRevB.96.064511
http://dx.doi.org/10.1103/PhysRevB.104.064306
http://dx.doi.org/10.1103/PhysRevB.104.064306
https://link.aps.org/doi/10.1103/PhysRevB.104.064306
https://link.aps.org/doi/10.1103/PhysRevB.104.064306
http://dx.doi.org/10.1103/PhysRevLett.112.166601
http://dx.doi.org/10.1103/PhysRevLett.65.1697
http://dx.doi.org/10.1103/PhysRevLett.65.1697
https://link.aps.org/doi/10.1103/PhysRevLett.65.1697
https://link.aps.org/doi/10.1103/PhysRevLett.65.1697
http://dx.doi.org/10.1103/PhysRevB.97.035139
http://dx.doi.org/10.1103/PhysRevB.23.2824
https://link.aps.org/doi/10.1103/PhysRevB.23.2824
https://link.aps.org/doi/10.1103/PhysRevB.23.2824
http://dx.doi.org/10.1524/zkri.2006.221.1.15
http://dx.doi.org/10.1107/S0108767305040286
http://dx.doi.org/10.1107/S0108767305040286
http://dx.doi.org/10.1103/PhysRevE.96.023310
http://dx.doi.org/10.1103/PhysRevE.96.023310
http://dx.doi.org/10.1103/PhysRevB.89.155114
http://dx.doi.org/10.1103/PhysRevLett.42.1698
https://link.aps.org/doi/10.1103/PhysRevLett.42.1698
https://link.aps.org/doi/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1063/5.0035850
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
https://link.aps.org/doi/10.1103/PhysRevD.24.2278
https://link.aps.org/doi/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.21468/SciPostPhys.3.2.013
https://scipost.org/10.21468/SciPostPhys.3.2.013
http://dx.doi.org/10.1103/PhysRevLett.68.2830
http://dx.doi.org/10.1103/PhysRevLett.68.2830
https://link.aps.org/doi/10.1103/PhysRevLett.68.2830
https://link.aps.org/doi/10.1103/PhysRevLett.68.2830
http://dx.doi.org/10.1103/PhysRevB.47.7995
http://dx.doi.org/10.1103/PhysRevB.47.7995
https://link.aps.org/doi/10.1103/PhysRevB.47.7995
https://link.aps.org/doi/10.1103/PhysRevB.47.7995
http://dx.doi.org/10.1103/PhysRevB.102.201112
http://dx.doi.org/10.1103/PhysRevB.102.201112
https://link.aps.org/doi/10.1103/PhysRevB.102.201112
https://link.aps.org/doi/10.1103/PhysRevB.102.201112


9

101 Johannes S. Hofmann, Erez Berg, and Debanjan
Chowdhury. Superconductivity, pseudogap, and
phase separation in topological flat bands. Phys.
Rev. B, 102(20):201112, November 2020. doi:
10.1103/PhysRevB.102.201112.

102 Wladimir A. Benalcazar, B. Andrei Bernevig, and Tay-
lor L. Hughes. Electric multipole moments, topological

multipole moment pumping, and chiral hinge states in
crystalline insulators. Phys. Rev. B, 96(24):245115, Dec
2017. doi:10.1103/PhysRevB.96.245115.

103 Wladimir A. Benalcazar, B. Andrei Bernevig, and
Taylor L. Hughes. Quantized electric multipole in-
sulators. Science, 357(6346):61–66, Jul 2017. doi:
10.1126/science.aah6442.

http://dx.doi.org/10.1103/PhysRevB.102.201112
http://dx.doi.org/10.1103/PhysRevB.102.201112
http://dx.doi.org/10.1103/PhysRevB.96.245115
http://dx.doi.org/10.1126/science.aah6442
http://dx.doi.org/10.1126/science.aah6442

	Superfluid Weight Bounds from Symmetry and Quantum Geometry in Flat Bands
	Abstract
	Acknowledgments


