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Motivated by efforts to create thin nanoscale metamaterials and understand atomically thin binary
monolayers, we study the finite temperature statistical mechanics of arrays of bistable buckled
dilations embedded in free-standing two-dimensional crystalline membranes that are allowed to
fluctuate in three dimensions. The buckled nodes behave like discrete, but highly compressible,
Ising spins, leading to a phase transition at Tc with singularities in the staggered “magnetization,”
susceptibility, and specific heat, studied via molecular dynamics simulations. Unlike conventional
Ising models, we observe a striking divergence and sign change of the coefficient of thermal expansion
near Tc caused by the coupling of flexural phonons to the buckled spin texture. We argue that a
phenomenological model coupling Ising degrees of freedom to the flexural phonons in a thin elastic
sheet can explain this unusual response.

In recent decades, metamaterials with unique proper-
ties, such as auxetic behavior and extreme stretchabil-
ity, have been realized at the macroscale [1, 2] as well
as the nanoscale [3–7]. More recently, there has been
growing interest in designing mechanical materials with
programmable memory, using multistable buckled mate-
rials [1, 8–12] and origami [13–16].

Buckled configurations have also been found (via either
first-principles simulations or experiments) in atomically
thin materials such as stanene, SnO, PbS, and borophane
polymorphs [17–23], as well as in graphene with topo-
logical defects or substitutional impurities [24–27]. At
the nanoscale, thermal fluctuations can strongly influ-
ence any mechanical memories stored in the material as
the energy barriers between bistable states become com-
parable to the temperature. Furthermore, thermal fluc-
tuations also profoundly change the mechanics of atomi-
cally thin materials at long wavelengths [3, 28–33]. Yet,
few studies exist on the interplay between microstructure
(e.g., defects) and thermal fluctuations in these atomi-
cally thin materials.

We study here the thermal response and phase tran-
sitions of puckered sheets with square arrays of buckled
positive and negative dilational defects using molecular
dynamics simulations. We find that puckered membranes
undergo highly compressible Ising-like phase transitions.
We also observe an anomalous thermal expansion, where
the typically negative coefficient of thermal expansion
briefly becomes positive close to the transition, which we
explain with a theoretical model coupling spin and elastic
degrees of freedom. Creating a highly tunable coefficient
of thermal expansion, spanning both positive and nega-
tive values, is a goal of many metamaterial design efforts,
and we are not aware of any other physically realizable
2D material expected to have this property [34–36]. This
unusual anomaly could, for example, be leveraged to cre-
ate nanoscale device components whose dimensions are
insensitive to thermal changes at a particular operating
temperature.

The model.— Since ab initio molecular dynamics [38]
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FIG. 1. (a) Square lattice model with background sites A
and a single dilation site B. (b) Schematic of normals of two
neighboring triangular plaquettes α, β. (c,d) Height profiles
of relaxed membranes with a single (c) positive and (d) nega-
tive dilation at T = 0. The color represents the height relative
to the zero-plane in units of the lattice spacing a0. The di-
lation nodes are indicated with a larger radius sphere. (e,f)
Top views of membranes with a square array of positive (e)
and negative (f) dilations in a (0, 2) array at T = 0. Both
display a checkerboard configuration characteristic of antifer-
romagnetism at T = 0 when spins are defined as the nodes
that buckle out of plane. Node positions are visualized using
OVITO software [37].

are computationally expensive for studying phase tran-
sitions and atomistic potentials for puckered materials
are not yet developed, we use a coarse-grained discrete
membrane model [39], tuned to approximate an isotropic
elastic sheet in the continuum limit. Nodes are connected
by harmonic springs (Fig. 1(a)) and there is an ener-
getic cost when the normals of neighboring planes are
not aligned (Fig. 1(b)). The total energy, adapted from
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ref. [39], is given by

E =
k

2

∑
〈i,j〉

(|rrri − rrrj | − aij)2 + κ̂
∑
〈α,β〉

(1−nnnα ·nnnβ), (1)

where k is the spring constant, κ̂ is the microscopic bend-
ing rigidity, and aij is the rest length between two con-
nected nodes, i and j. The first sum is over connected
nodes and the second sum is over neighboring triangular
planes. This model (with aij = a0, nodes on a triangular
lattice) has been shown to produce mechanical [25] and
thermal properties [29, 30] as well as height-height corre-
lation functions [40] consistent with simulation results of
2D materials (e.g., graphene and MoS2) using atomistic
potentials [25, 41, 42] (Supplemental Material (SM) Sec.
VII) [43]. Furthermore, anticipating our observations of
critical phenomena, we expect aspects of the behavior of
the system to be insensitive to microscopic details due to
universality.

In this work, the nodes are arranged on a square lattice
and the dilation sites B are embedded into a background
matrix of standard, undilated sites A. The dilations are
modeled by changing the preferred lengths of the bonds
between A and B sites [11], mimicking buckled mono-
layers (e.g., SnO and PbS [18, 21]). The rest lengths
are: aAA = a0, aAA = a0

√
2, aAB = a0(1 + ε), aAB =

a0
√

2(1 + ε+ ε2/2), where ε is the fractional change in
the bond length, and a denotes a diagonal bond. For pris-
tine membranes, the corresponding continuum Young’s
modulus is Y = 4k/3 and the continuum bending rigid-
ity is κ = κ̂ [11]. The continuum size of the dilation is
defined as Ω0 = 4a20ε [11]. We choose microscopic elas-
tic parameters a0 = 1, k = 100, κ̂ = 1, ε = ±0.1. Here
we study membranes with dilations that provide posi-
tive and negative extra area (Ω0 > 0 and Ω0 < 0 re-
spectively) with periodic boundary conditions in x and
y directions. See the SM Sec. IV for details on other
parameter choices. Related tethered membrane models
have been studied before [44–47], but with quenched ran-
dom disorder rather than regular defect arrays.

Mapping buckled structures to Ising spins.—We first
describe the behavior of the model at T = 0. As the
cost of stretching/size of the dilation increases, the sys-
tem crosses a buckling threshold, and a subset of the
nodes will prefer to buckle out of the plane. As shown in
Fig. 1(c) and (d), the relaxed configurations of isolated
buckled positive and negative dilations differ. The posi-
tive dilations create localized, peaked structures, and the
negative dilations lead to saddle-like deformations. This
difference can be understood by considering the angular
deficit/surplus at the dilation vertex in the inextensible
limit—positive dilations have a local angular deficit (dis-
crete positive Gaussian curvature) and negative dilations
have a local angular surplus (discrete negative Gaussian
curvature).

Despite these differences, we can assign Ising spin vari-

ables to dense, square arrays of either positive or negative
dilations. In arrays of positive dilations at T = 0, the di-
lations themselves buckle out of the plane (Fig. 1(e)).
In arrays of negative dilations, the dilations remain in a
single plane at T = 0, and sites on the lattice dual to the
dilation superlattice buckle (Fig. 1(f)). We assign a spin
variable of ±1 to each buckled site depending on whether
the dilation/dual site buckles up or down. At finite tem-
perature, we assign spins using nodes’ positions relative
to the local planes formed by their neighbors to account
for thermal fluctuations. With this mapping, the buck-
led structures shown in Figs. 1(e) and (f) are equivalent
to checkerboard spin configurations, mechanical analogs
of a nearest-neighbor Ising antiferromagnet (AFM). Our
simulations support the conclusion that the AFM state
is the lowest energy state for the buckled positive and
negative dilation arrays that we study. See the SM, Sec.
III and V and [11] for further discussion of the buckling
threshold and the ground states of arrays.

Finite temperature simulations.— As we are interested
in the interplay between microstructure and tempera-
ture, we perform molecular dynamics (MD) simulations
of both pristine membranes and membranes with positive
and negative dilation defects at finite temperature using
HOOMD [48]. The membranes have LN×LN nodes with
LN ranging from 24 to 192. Systems with L2

N nodes have

NI =
L2

N

4 dilations. Temperatures are reported in units
of the bending energy (κ̂ = 1). See the SM Sec. IV and
V for more simulation details.

Magnetic ordering and phase transitions.— The map-
ping between buckled structures and Ising spins suggests
we can observe a “magnetic” phase transition at finite
temperature in our MD simulations. We use the stag-
gered magnetization per spin as the order parameter
mst = 1

NI

∑
i si(−1)xi+yi , where si = ±1 is the spin

on site i, and xi, yi are the site indices on a 2D square
lattice (Fig. 3d,e). Figure 2 shows 〈m2

st〉 for puckered
membranes as a function of T . We see clearly that pro-
nounced AFM order for T < 0.2 rapidly becomes much
smaller for T > 0.2. Snapshots of spin configurations for
several temperatures are shown in Fig. 2 and the SM,
Sec. V. Note that in our model the bond topology re-
mains unchanged across the temperature range studied.

In studies of critical phenomena, it is typical to mea-
sure diverging quantities such as the magnetic suscepti-
bility χ and specific heat C. Following standard meth-
ods [50–52], we calculate the staggered susceptibility as
χ′ = NI

kBT

(
〈m2

st〉 − 〈|mst|〉2
)
. This computationally con-

venient quantity differs from the true susceptibility by a
constant factor above the transition and does not affect
the susceptibility exponents [50, 51]. See the SM, Sec.
VI for details. We also calculate the specific heat per site
as C = 1

NkBT 2 (〈E2〉− 〈E〉2). This measurement uses the
total potential energy, so N includes all sites.
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FIG. 2. Squared staggered magnetization 〈m2
st〉 as a func-

tion of temperature T for LN = 120. Plots for other system
sizes can be found in the SM, Sec. VI. Error bars are calcu-
lated with between 10 and 50 runs, as described in the SM,
Sec. IV. Jackknife method (see, e.g., [49]) is used to estimate
statistical errors. The insets show snapshots of spin config-
urations of membranes with positive dilations (Ω0 > 0) for
T = 0.15, 0.19, 0.25, 0.30. The spin configurations for mem-
branes with negative dilations are similar.

The staggered susceptibility and specific heat of mem-
branes with positive dilations as a function of T for a wide
range of system sizes are shown in Fig. 3. We see that χ′

and C reach maxima at T ' 0.2 and the peaks increase
with system size, a signature of phase transitions in finite
systems. Similar results for membranes with negative di-
lations appear in the SM, Sec. VI. In finite systems, the
correlation length ξ ∼ |T − Tc|−ν cannot exceed the sys-
tem size and thus the diverging quantities will reach a
maximum when ξ ' L. Finite size scaling allows us to
extract critical exponents [50–52].

Upon fitting the data with power law functions, we
measure γ/ν = 1.741 ± 0.062, α/ν = 0.068 ± 0.018 for
Ω0 > 0 and γ/ν = 1.684± 0.061, α/ν = 0.074± 0.016 for
Ω0 < 0. The measurement of γ/ν is consistent with the
rigid 2D Ising model value, 7/4. The value of α/ν, on the
other hand, appears to be approximately four standard
deviations away from 0, the 2D Ising expectation. Al-
though our specific heat data cannot completely exclude
a rigid Ising model logarithmic divergence in the spe-
cific heat, this observation suggests that the universality
class is not 2D Ising. We can plausibly attribute this de-
parture to the long-range interaction between staggered
magnetization and Gaussian curvature that arises in the
phenomenological model introduced in the following sec-
tion. In the SM, Sec. VI, we extract ν and present data
for the exponents α, γ, and β.
Anomalous thermal expansion.— The order-disorder
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FIG. 3. (a) Staggered susceptibility χ′ and (b) specific heat
C as a function of temperature T for different system sizes
for membranes with positive dilations. Plots for peaks as a
function of system size and plots for membranes with negative
dilations can be found in the SM, Sec. VI. (c) Snapshot of
a fluctuating puckered surface close to Tc. (d) Top view of
up/down buckled sites (red/blue) and (e) the corresponding
staggered spin configuration for the surface pictured in (c).

transition has a striking effect on the thermal expansion
of the membrane as a function of temperature. We first
examine the thermal contraction of a pristine membrane
(no dilations) to establish a point of comparison. Ther-
malized membranes have been studied extensively using
MD and Monte Carlo simulations [28–30, 40, 41, 53, 54],
and their negative coefficient of thermal expansion αT
has been calculated analytically [55].

αT =
1

A0

dA

dT
' − kB

4πκ

[
ln

(
lth
a0

)
+

1

η
− 1

2

]
, (2)

where the thermal length lth ≡ π
qth

=
√

16π3κ2

3Y kBT
and η is

a universal scaling exponent describing flexural phonons,
η ≈ 0.8 [55]. In our simulations, we vary T from 0.100 to
0.400, which varies lth from ∼ 3.5a0 to 1.8a0. Figure 4(a)
shows the average projected area divided by the area of
a flat membrane as a function of T . Upon computing
αT = 1

A0

dA
dT , we find excellent agreement with Eq. 2 with

no free parameters (red dashed line in Fig. 4(d)), using
the zero-temperature values of the bending rigidity and
Young’s modulus. The pristine membrane model there-
fore reproduces the negative coefficient of thermal expan-
sion of materials such as graphene [56]. In contrast, pos-
itive thermal expansion has been measured in relatively
thick freestanding transition metal dichalcogenides, pos-
sibly due to a higher bending rigidity suppressing flexural
phonons [42, 57–59].

In contrast, 〈A〉/A0 (and hence αT ) for puckered mem-



4

0.16 0.18 0.2 0.22 0.24
T

0.958

0.96

0.962

0.964

0.966

0.968

0.97

0.972
〈A
〉/
A 0

Pristine membrane

0.982

0.983

0.984

0.985

0.986

Ω0>0

0.1 0.15 0.2 0.25 0.3 0.35
T

-0.16

-0.15

-0.14

-0.13

-0.12

-0.11

-0.1

α
T

Theory  

0.1 0.15 0.2 0.25 0.3 0.35
T

-0.05

0

0.05

0.1

0.15
Ω0>0
Ω0<0

0.16 0.18 0.2 0.22 0.24
T

0.982

0.983

0.984

0.985

0.986

Ω0<0

(a) (b) 

(d)
(e)

(c) 

FIG. 4. Top row: Normalized area 〈A〉/A0 as a function
of T for (a) pristine membranes, (b) membranes with posi-
tive dilations, and (c) membranes with negative dilations for
LN = 120. 〈A〉/A0 decreases with increasing T for pristine
membranes whereas 〈A〉/A0 for puckered membranes shows
non-monotonic behavior. Bottom row: The coefficient of
thermal expansion αT as a function of T for (d) pristine mem-
branes and (e) membranes with dilations. The theoretical
prediction of αT for pristine membranes with no adjustable
fitting parameters matches very well with simulations (red
dashed line). Far below Tc, αT for membranes with dilations
is negative, as for pristine membranes. Close to Tc, αT in-
creases rapidly and reaches a positive value, decreasing again
to a negative value for T well above Tc.

branes shows non-monotonic behavior. Here, the con-
stant factor A0 is the projected area of the lowest en-
ergy state at T = 0, a buckled checkerboard as described
above. We observe that, while there is shrinkage for
T < Tc as for a pristine membrane, the value of αT is less
strongly negative. For T � Tc, α

puckered
T /αpristine

T ∼ 0.5,
suggesting that membranes with ordered puckers stiffen.
This observation is consistent with a theoretical argu-
ment based on [60], treating the buckled dilation tex-
ture as a frozen background metric (SM, Sec. II). The
calculation predicts the existence of an increased bend-

ing rigidity at T = 0, κR ≈ κ
(

1 +
3Y h2

0

32κ

)
, where h0 is

the amplitude of the buckled membrane. Close to the
transition, however, αT increases rapidly and eventually
reaches a positive value. Evidently, the swelling due to
disordered up and down puckers on all length scales near
Tc dominates the entropic shrinkage present in pristine

sheets [55–57].
Phenomenological model.— To better understand the

observed differences between the thermal expansion of
pristine membranes and membranes with dilations, we
introduce a “flexural Ising model,” with an effective free
energy that couples an Ising order parameter to a thin
elastic sheet that is allowed to fluctuate both in and out
of the plane. We assume coarse-graining such that the
short wavelength, impurity-scale phonons are accounted
for by a staggered pucker order parameter mst, which
interacts with a long wavelength nonlinear strain matrix,
uij .

F =

∫
d2x

[
κ

2

(
∇2f

)2
+ µu2ij +

λ

2
u2kk +

K

2
(∇mst)

2

+
r

2
m2

st + um4
st + gm2

stukk

]
, (3)

where uij is related to in-plane displace-
ments uj and out-of-plane displacements f by

uij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi
+ ∂f

∂xi

∂f
∂xj

)
[61]. The term pro-

portional to g is the lowest order contribution allowed
by symmetry coupling the phonon and order parameter
fields. Similar free energies have been used to study flat
compressible 2D Ising models in the limit f = 0 [62, 63].
We also note similarities to free energies used to model
electron-phonon interactions in graphene [64–67].

Upon tracing out the in-plane phonons according to
standard methods [62, 63, 68], Eq. 3 becomes:

Feff =
g2

2A0

(
1

2µ+ λ
− 1

µ+ λ

)(∫
d2xm2

st

)2

+

∫ ′
d2x

[
Y

8

(
PT
ij∂if∂jf

)2

+
gµ

2µ+ λ

(
m2

stP
T
ij∂if∂jf

)]
+

∫
d2x

[
κ

2
(∇2f)2 +

K

2
(∇mst)

2 +
r

2
m2

st

+

(
u− g2

2(2µ+ λ)

)
m4

st

]
, (4)

where PTij is the transverse projection operator and the
primed integral omits q = 0 modes. Equation 4 has three
terms that are not present for either pristine membranes
or the Ising model. The first and final terms, propor-
tional to g2, also appear for flat compressible 2D Ising
models [62, 69]. The term proportional to g, however,
is unique to the flexural Ising model. Since the Lapla-
cian of − 1

2P
T
ij∂if∂jf is the Gaussian curvature S(x)

in the Monge representation [70], this term represents
a long-range interaction between the squared staggered
magnetization and the Gaussian curvature of the form
1
2π

∫
d2x

∫
d2x′m2

st(x)S(x′) ln(|x − x′|). A power count-
ing argument suggests that the coefficient w ≡ gµ

2µ+λ is
a strongly relevant operator. We plan to examine the
behavior of w in more detail in future work.

We can calculate the coefficient of thermal expansion
αT by adding an in-plane pressure, and compare to the
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simulation data in Fig. 4. As shown in Sec. I of the SM,
we find the average change in area

〈δA〉 = −gA0〈m2
st〉

µ+ λ
− A0

2

〈(
∂f

∂xi

)2
〉
, (5)

and coefficient of thermal expansion

αT =
1

A0

dA

dT
= − d

dT

(
g〈m2

st〉
µ+ λ

)
− d

dT

〈
1

2

(
∂f

∂xi

)2
〉
.

(6)
We expect that the microscopic couplings g and µ + λ
depend only weakly on temperature over the tempera-
ture range of interest, provided we are far below the high
temperature crumpling transition. Therefore, the contri-
bution from the first term is sharply peaked around Tc,
given the results in Fig 2. We expect g > 0, as the anti-
ferromagnetic state has a smaller projected area than the
ferromagnetic state at T = 0, consistent with the positive
peak in αT at Tc observed in Fig. 4(e). The second term
is the usual entropic thermal shrinkage, also present for
a pristine membrane [55].

Conclusion.— We observe a phase transition in the
staggered magnetization of a puckered membrane, which
provides a mechanical analog of a highly compressible
antiferromagnetic Ising model. Furthermore, we find
that the order-disorder transition produces an anoma-
lous thermal response for puckered membranes. These
observations suggest a strong coupling between flexural
phonons and the ordering of the spins (buckled sites). We
introduce a phenomenological “flexural Ising model” that
anticipates a competing effect between entropic shrink-
age due to out-of-plane deformations and swelling due to
pucker disorder at the phase transition.

Our findings suggest that bistable buckled structures
change the thermal response of 2D materials, leading to
a tunable coefficient of thermal expansion. The ability to
tune thermal expansion is important for combining dif-
ferent materials, as mismatched thermal expansion can
affect the longevity of integrated materials [71]. Mate-
rials with tunable thermal expansion are rare and often
require precise engineering [34].

Since the phase transition temperature in our model
depends on the elastic constants of the host lattice and
the separation between dilations, one could imagine con-
structing a nanocantilever or nanoactuator out of a puck-
ered membrane designed to be insensitive to thermal ex-
pansion/shrinkage at the temperature at which it must
work (αT = 0 at two temperatures, one above and one
below Tc). Additionally, the mechanism of an inefficient
packing of buckled structures resulting in a global expan-
sion can be applied to macroscale materials with multi-
stable units [10, 12, 35]. Moreover, our work suggests
the possibility of studying novel universality classes in
2D materials with a coupling between spin and both in-

plane and out-of-plane displacements, generalizing past
work on compressible Ising models to include flexural
phonons.
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