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Abstract

In order to leverage the full power of quantum noise squeezing with unavoidable decoherence, a complete

understanding of the degradation in the purity of squeezed light is demanded. By implementing machine

learning architecture with a convolutional neural network, we illustrate a fast, robust, and precise quantum

state tomography for continuous variables, through the experimentally measured data generated from the

balanced homodyne detectors. Compared with the maximum likelihood estimation method, which suffers

from time-consuming and over-fitting problems, a well-trained machine fed with squeezed vacuum and

squeezed thermal states can complete the task of reconstruction of the density matrix in less than one

second. Moreover, the resulting fidelity remains as high as 0.99 even when the anti-squeezing level is

higher than 20 dB. Compared with the phase noise and loss mechanisms coupled from the environment and

surrounding vacuum, experimentally, the degradation information is unveiled with machine learning for low

and high noisy scenarios, i.e., with the anti-squeezing levels at 12 dB and 18 dB, respectively. Our neural

network enhanced quantum state tomography provides the metrics to give physical descriptions of every

feature observed in the quantum state with a single-scan measurement just by varing the local oscillator

phase from 0 to 2π and paves a way of exploring large-scale quantum systems in real-time.
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Introduction.—With the intrinsic nature of multimode, continuous variable states have provided

a powerful platform for generating large entangled networks [1–6]. In the family of continu-

ous variables, squeezed states, even with the fundamental limit on the quantum fluctuations set

by Heisenbergs uncertainty relation, remarkably exhibit completely different characteristics from

discrete variables in the quantum world [7–9]. Now, as true applications, squeezed states have

been used in quantum metrology [10–13], advanced gravitational wave detectors [14–20], gen-

eration of macroscopical states with a large photon number [21–23], and quantum information

manipulation utilizing continuous variables [24, 25].

Even though up to 15 dB squeezing has been demonstrated as the state-of-the-art technology,

any quantum system is unavoidably subject to a number of dissipative processes, causing 18-24 dB

anti-squeezing accompanied [26]. Instead of dealing with pure states, the degradations in squeez-

ing from loss and phase noise fluctuations limit the practical applications, resulting in tackling

mixed states. The imperfection in purity is not only the obstacle for any quantum metrology with

squeezed states, but also the restriction in generating larger-size Schrödinger’s cat states. To access

the non-classical power for quantum technologies, we need to have the ability to fully and precisely

characterize the quantum features in a large Hilbert space. Utilizing multiple phase-sensitive mea-

surements through homodyne detectors, quantum state tomography (QST) enables us to extract

the complete information about the state of the system statistically [27, 28]. Nowadays, QST has

been implemented in a variety of quantum systems, including quantum optics [29, 30], ultracold

atoms [31, 32], ions [33, 34], and superconducting circuit-QED devices [35].

One of the most popular methods to implement QST is the maximum likelihood estimation

(MLE) method, by estimating the closest probability distribution to the data for any arbitrary

quantum states [36]. However, the required amount of measurements to reconstruct the quantum

state in multiple bases increases exponentially with the number of involved modes. Albeit deal-

ing with Gaussian quantum states, the MLE algorithm becomes computationally too heavy and

intractable when the squeezing level increases. Moreover, MLE also suffers from the over-fitting

problem when the number of bases grows. To make QST more accessible, several alternative al-

gorithms are proposed by assuming some physical restrictions imposed upon the state in question,

such as the permutationally invariant tomography [37], quantum compressed sensing [38], tensor

networks [39, 40], and generative models [41]. Instead, with the capability to find the best fit

to arbitrarily complicated data patterns with a limited number of parameters available, machine

learning approaches are widely applied in many sub-fields in physics, from black hole detection,

2



topological codes, phase transition, to quantum physics [42, 43]. For QST, the restricted Boltz-

mann machine has been applied to reduce the over-fitting problem in MLE [44].

In dealing with Gaussian states, methodologies based on covariance matrix or nullifiers are

well-developed [45–47]. For the covariance method based on the homodyne measurements, at

least three measurements must be performed at a fixed (but different) LO phase, in order to es-

timate the variances. Moreover, the assumption of pure squeezed part in the generated squeezed

state is only valid for low squeezing levels. Nevertheless, information in different LO phases is

missing due to the selected measurements only at three LO phases. When the squeezing level is

higher than 5 dB, more and more non-pure squeezed parts become dominant, making these known

methodologies inaccurate. Nowadays, higher than 10 dB squeezing levels are in the schedule for

the advanced gravitational wave detectors [48, 49]. Even though for the non-ideal case, one can

also apply the nullifiers to represent the actual noises in the operations by additional feedforward

operations. A single-scan measurement to extract the degradation in quantum states is still miss-

ing.

Machine-learning QST.—Along this direction, based on the machine learning protocol, in par-

ticular with the convolutional neural network (CNN), we experimentally implement the quantum

homodyne tomography for continuous variables and illustrate a fast, robust, and precise QST for

FIG. 1. Degradation in squeezed states. Ideally, the squeezing and anti-squeezing levels should locate along

the Blue-dashed line. However, as shown with the typical experimental data, marked in Black dots, there

exists a discrepancy between the measured squeezing and anti-squeezing levels. By taking the loss and

phase noise into account, based on Eqs. (1-2), the optimal fitting curve is depicted in Green-color, with the

corresponding standard deviation shown by the shadowed region.
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FIG. 2. Schematic of our precise and robust neural network enhanced quantum state tomography. The noisy

data of quadrature sequence obtained by quantum homodyne tomography in a single-scan of LO phase from

0 to 2π, are fed to the convolutional layers, with the shortcut and average pooling in the architecture. Then,

after flattening and normalization, the predicted matrices are inverted to reconstruct the density matrices in

truncation.

squeezed states. As the time sequence data obtained in the optical homodyne measurements share

the similarity to the voice (sound) pattern recognition, it motivates us to apply the CNN architec-

ture. With the aim of realizing a fast QST, such a supervised CNN trained by the prior knowledge

in squeezed states enables us to build a specific machine-learning for certain kinds of problems.

More than two million data sets are fed into our machine with a variety of squeezed and thermal

states in different squeezing levels, quadrature angles, and reservoir temperatures. When well-

trained (typically in less than one hour), the execution time for our machine-learning enhanced

QST takes the average cost time 38.1 milliseconds (by averaging 100 times) in a standard GPU

server. Compared with the time-consuming MLE method, demonstrations on the reconstruction

of the Wigner function and the corresponding density matrix are illustrated for squeezed vacuum

states in less than one second (as 1 Hz scanning frequency is applied in a single-scan), keeping

the fidelity up to 0.99 even taking 20 dB anti-squeezing level into consideration. Experimentally,

the purity in squeezed vacuum states is evaluated directly for high squeezing levels (close to 10

dB squeezing level), but with low noisy and high noisy conditions, i.e., with the anti-squeezing

levels at 12 dB and 18 dB, respectively. By extracting the purity of quantum states with the help

of machine learning, a full understanding of the degradation in the state decoherence can also be

unveiled in a single-scan measurement, paving the road toward a real-time QST to give physical
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descriptions of every feature observed in the quantum noise.

Experiments.—First of all, in Fig. 1, we show the degradation curve in typical squeezed state ex-

periments, illustrated with the measured squeezing and anti-squeezing levels in the unit of decibel

(dB). Here, our squeezed vacuum states are generated through a bow-tie optical parametric oscil-

lator cavity with a periodically poled KTiOPO4 (PPKTP) inside, operated below the threshold at

the wavelength 1064 nm [50]. By injecting the AC signal of our homemade balanced homodyne

detection, with the common-mode rejection ratio (CMRR) more than 80 dB, the spectrum analyzer

records the squeezing and anti-squeezing levels by scanning the phase of the local oscillator. It

is remarked that the value of CMRR not only tells how well the balanced signals from the two

photodiodes can be suppressed, but also calibrates the measured values in squeezing levels [51].

Here, our measurements are collected by the spectrum analyzer at zero span mode. The phase of

LO is scanned with a 1 Hz triangle wavefunction. Specifically, at 2.5 MHz, four experimental data

are marked with the measured (squeezing:anti-squeezing) levels in dB: A (3.76: 3.89) at the pump

power 5 mW, B (7.39:12.16) at 55 mW, C (7.91: 18.56) at 77 mW, and D (9.38:19.69) at 80 mW,

respectively.

Ideally, without any degradation, the squeezing and anti-squeezing levels should be the same,

located along the Blue-dashed line in Fig. 1. However, the phase noise and loss mechanisms

coupled from the environment and surrounding vacuum set the limit on the measured squeezing

level. These selected data represent nearly ideal squeezing (marker A), high squeezing level but

with low degradation (marker B) and with high degradation (marker C); along with the highest

squeezing level achieved (marker D with 9.38 dB in squeezing level).

By taking the optical loss (denoted as L) and phase noise (denoted as θ) into account, the

measured squeezing V sq and anti-squeezing V as levels can be modeled as

V sq = (1− L)[V sq
id × cos2 θ + V as

id × sin2 θ] + L, (1)

V as = (1− L)[V as
id × cos2 θ + V sq

id × sin2 θ] + L, (2)

where V sq
id and V as

id are the squeezing and anti-squeezing levels in the ideal case. In Fig. 1, we also

show the optimal fitting curve obtained by the orthogonal distance regression in Green-color, with

the corresponding standard deviation (one-sigma variance) shown by the shadowed region.

Benchmarking of CNN-QST.—Even though by fitting several measured squeezing and anti-

squeezing data one can estimate the degradation in squeezing empirically, the full information

about the density matrix and the purity of quantum states needs to be reconstructed precisely
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FIG. 3. Comparison in the average fidelity for the predicted density matrix obtained by maximum likelihood

estimation (MLE) and convolution neural network (CNN) as a function of (a) the number of quadrature data

points, and (b) the squeezing level. Here, 5, 000 simulated datasets are prepared for the comparison, but in

(a) with different squeezing levels from 8 to 14 dB; while in (b), the number of data points in the quadrature

sequence from 0 to 2π for the LO phase is fixed to 2, 048. The shadow regions represent the standard

deviation in the average fidelity.

and fast. To generate QST for continuous variables, keeping the fidelity high and avoiding non-

physical states are the critical issues in training our neural network enhanced tomography scheme.

In training the reconstruction model, we use a uniform distribution to sample the value of LO

angle, with 2, 048 sampling points fed from the experimental datasets (5, 000, 000 data points). As

shown in Fig. 2, details about our machine learning architecture (including the hyper-parameters)

and the reconstruction of the Wigner function, as well as the corresponding density matrix, are
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given in Supplemental Material.

To illustrate that our neural network enhanced QST indeed keeps the fidelity in the predicted

density matrix, in Fig. 3, the average fidelity obtained by MLE and CNN are compared as a

function of (a) the number of quadrature squence data points and (b) the squeezing levels (dB).

Here, the fidelity is defined as |tr(
√√

ρ σ
√
ρ)|2, with the given simulated input data ρ and the

predicted density matrix σ obtained by MLE and CNN, respectively. The average is done with

5, 000 simulated datasets. As one can see in Fig. 3(a), when the number of quadrature points

increases, from 256 to 2, 048, the resulting average fidelity increases even when we consider higher

squeezing levels, i.e., 8 to 14 dB. Nevertheless, only with a small number of data points such as

256, the output fidelity obtained by CNN can be much higher than 0.95, compared to only 0.7 by

MLE. Moreover, even the data point increases to 2, 048, MLE only gives the average fidelity up to

0.91, which is still much lower than 0.99 obtained by CNN.

On the other hand, when the data points are fixed to 2, 048, the superiority in CNN over MLE

can also be clearly seen in Fig. 3(b), in particular at a higher squeezing level. Now, as the squeez-

ing level increases, the dimension in the reconstructed Hilbert space exponentially grows. As a

result, the average fidelity obtained by MLE decreases very quickly from 0.99 at a low (1 dB)

squeezing level to 0.94 at a high (10 dB) squeezing level. On the contrary, our well-trained ma-

chine learning can keep the output fidelity as high as 0.99 even when 10 dB squeezing is tested.

Extracting the degradation information.—In addition to the reconstructed Wigner function and the

corresponding density matrix, the degradation information in squeezing can be extracted directly

from the predicted density matrix by calculating the purity of quantum state, i.e., p ≡ tr(ρ2). The

performance of our machine-learning QST is compared with the one obtained by the covariance

matrix, denoted as the Exp-fitting curve in Fig. 4, as well as the one obtained by MLE, on the

purity of squeezed states through the predicted density matrix. In addition to exhibiting the same

trend in the degradation of purity, as one can see, at high squeezing levels, MLE over-estimates the

purity of quantum states due to the over-fitting problem. On the contrary, the empirical formula

under-estimates the purity due to the lack of thermal reservoir information.

Furthermore, we can directly apply the singular value decomposition to the predicted den-

sity matrix and extract the dominant terms, i.e., ρexp = σ1 ρ
sq + σnon ρ

non, where σnon ρnon =∑
i ci ρ

sq
th,i +

∑
i di ρth,i denotes the summation of all the contributed squeezed thermal states ρsqth,i

and non-squeezed thermal states ρth,i, with the corresponding singular values ci and di, respec-

tively [54–56]. Here, the experimentally reconstructed density matrix ρexp is a mixed state but can

7



0 5 10 15 20
Anti-squeezing level (dB)

0

0.2

0.4

0.6

0.8

1

P
u

ri
ty

MLE
CNN
Exp-fitting

A

B

C D

FIG. 4. The purity of squeezed states is plotted as a function of the measured anti-squeezing level. The

experimental data marked in Fig. 1 are analyzed with MLE and CNN, plotted in Red- and Blue-colors,

respectively. The fitting results based on Eqs. (1-2) are depicted in Green-curve, with the corresponding

standard deviation shown in the shadow region. Here, at high squeezing levels, MLE over-estimates the

purity of the quantum states in QST; while the empirical formula under-estimates the purity.

be decomposed to the incoherent sum of pure squeezed state ρsq, squeezed thermal states ρsqth,i, and

thermal states ρth,i. Note that there are many terms from the squeezed thermal states and thermal

states. For the four selected experimental data, we have σ1 = 0.9764, σnon = 0.0236 for the nearly

idea squeezing (marker A); σ1 = 0.8568, σnon = 0.1432 and σ1 = 0.7109, σnon = 0.289 for the

high squeezing level but with low (marker B) and high (marker C) degradations, respectively. As

for the highest squeezing level (markers D), we have σ1 = 0.5142, σnon = 0.4858.

To precisely identify the pure squeezed and noisy parts, in Fig. 5, with the help of ma-

chine learning, we can directly extract the three largest singular values corresponding to the

coefficients in ideal (pure) squeezed state, the squeezed thermal state, and thermal state, i.e.,

ρexp = σ1 ρ
sq + c1 ρ

sq
th + d1 ρth. Now, as shown in Fig. 5, it clearly illustrates that in addition

to the pure squeezed states with the coefficient σ1, there are two dominant terms in the degrada-

tion: from the contributions of thermal and squeezed thermal states. As expected, the thermal

part, described by the coefficient d1 in Blue-color, remains almost constant. It manifests the lossy

effect due to the environment. It is a common belief that as long as the system is stable, the loss

and phase noises can be measured by injecting classical laser light and be estimated. On the con-

trary, when the pump power increases, many additional effects, such as the heating in crystals,
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FIG. 5. With the help of machine learning, we can directly extract the degradation information from the

obtained density matrix. Here, the three most significant singular values correspond to the coefficients in

ideal (pure) squeezed state, the squeezed thermal state, and thermal state, i.e., ρ = σ1 ρ
sq + c1 ρ

sq
th + d1 ρth,

respectively.

shift of resonance frequency, and/or other nonlinear mechanisms, occur, resulting in the increment

in loss (see the Blue-color curve in our Fig. 5. Moreover, the other degradation effect from the

squeezed thermal states, described by the coefficient c1 in Green-color, increases as the (anti-)

squeezing increases. It is this unexpected squeezed thermal state that causes severe degradation at

higher squeezing levels [57, 58], which demonstrates the advantages of applying machine learning

to QST. We want to remark that it is still unclear how to link the thermal states and/or squeezed

thermal states to phase noise in a quantitative way. However, with this identification, one should

be able to suppress and/or control the degradation at higher squeezing levels, which should be

immediately applied to the applications for the gravitational wave detectors and quantum photonic

computing.

Conclusion.—In conclusion, a neural network enhanced quantum state tomography is imple-

mented experimentally for continuous variables. In particular, our well-trained machine fed with

squeezed vacuum and squeezed thermal states not only completes the task of the reconstruction of

the Wigner function in less than one second, but also keeps the high fidelity in the predict density

matrix. Compared to the over-estimation by MLE and under-estimation by empirically fitting at

high squeezing levels, the purity of squeezed states at squeezing level close to 10 dB is demon-

strated experimentally, along with low and high anti-squeezing levels. Such a fast, robust, and
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precise quantum state tomography enables us to extract the degradation information in squeezing

only with a single scan measurement. Our experimental implementations also act as the crucial

diagnostic toolbox for the applications with squeezed states, including the advanced gravitational

wave detectors, quantum metrology, macroscopic quantum state generation, and quantum infor-

mation process.

Recently, taking advantages of this machine learning-based QST, not only the (static) Wigner

distribution, but also the associated (dynamic) Wigner current are reconstructed experimen-

tally [59]. In addition to the squeezed states illustrated here, similar concepts demonstrated in

our well-trained machine can be readily applied to a specific family of continuous variables,

such as non-Gaussian states. Of course, different training (learning) processes should be applied

in dealing with single-photon states, Cat states, and GKP states. As illustrated in this work,

a supervised machine-learning, such as the CNN used here, provides a good starting point for

implementing QST with machine learning. In addition to CNN, with a better kernel developed

in machine-learnings, it is possible to use less training data with a variety of machine learning

architectures. For example, by applying the reinforce learning [60] or generative adversarial net-

work (GAN) [61], quantum machine learning is expected to provide an efficient and robust way

to explore the quantum world.
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