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The No-Free-Lunch (NFL) theorem is a celebrated result in learning theory that limits one’s ability
to learn a function with a training data set. With the recent rise of quantum machine learning, it
is natural to ask whether there is a quantum analog of the NFL theorem, which would restrict a
quantum computer’s ability to learn a unitary process with quantum training data. However, in the
quantum setting, the training data can possess entanglement, a strong correlation with no classical
analog. In this work, we show that entangled data sets lead to an apparent violation of the (classical)
NFL theorem. This motivates a reformulation that accounts for the degree of entanglement in the
training set. As our main result, we prove a quantum NFL theorem whereby the fundamental limit
on the learnability of a unitary is reduced by entanglement. We employ Rigetti’s quantum computer
to test both the classical and quantum NFL theorems. Our work establishes that entanglement is a
commodity in quantum machine learning.

Introduction.— There are very few fields of science
and technology that have not been impacted by machine
learning. Yet progress in machine learning has been any-
thing but steady, with periods of stagnation interleaved
with periods of advancement [1]. This reflects the deep
and non-trivial nature of learning theory. In order to
advance the theory, fundamental results needed to be
proven on the trainability, expressibility, and scalability
of learning architectures such as neural networks [2].

One such fundamental result is the No-Free-Lunch
(NFL) theorem [3–7]. At the conceptual level, the theo-
rem states that different optimization procedures essen-
tially perform the same when averaged over many prob-
lem instances and training data sets. At the mathemati-
cal level, the theorem has many alternative formulations,
such as a statement that the average performance over all
problem instances and training sets depends only on the
size of the training data set and not on the optimization
procedure. A consequence of this is that data must be
considered the commodity or currency in machine learn-
ing that ultimately limits performance. Hence, this is
why big data sets are viewed in such high regard.

Industry-built quantum computers of modest size are
now publicly accessible over the cloud [8, 9]. This raises
the intriguing possibility of quantum-assisted machine
learning, a paradigm that researchers suspect could be
more powerful than traditional machine learning [10,
11]. Various architectures for quantum neural networks
(QNNs) have been proposed and implemented [12–20].
Some important results for quantum learning theory have
already been obtained, particularly regarding the train-
ability [21–27] and expressibility [28] of QNNs for varia-
tional quantum algorithms [29–41]. However, the scala-
bility of QNNs (to scales that are classically inaccessible)
remains an interesting open question.

∗ The first two authors contributed equally to this work.

A quantum version of the NFL theorem could play an
important role in understanding the scalability of QNNs.
Recently, Poland et al. [42] made progress along these
lines. They proved a lower bound on the average risk
that depends only on the number of quantum states, t,
used for training. Here, the risk is the probability of in-
correctly learning a unitary process, which is the natural
quantum analog of the classical risk. Their bound tends
to zero only as t approaches the Hilbert-space dimension,
which is exponentially large. This suggests that an ex-
ponentially large training data set is needed to learn a
unitary. One can view this result as a roadblock in the
path towards scaling QNNs, due to the apparent expo-
nential (i.e., inefficient) scaling.

In this work, we consider a more general scenario, de-
picted in Fig. 1. Here, the goal is to learn a unitary
with training data consisting of quantum states; however,
these quantum states can now be entangled to a reference
system. Such entangled states can be easily prepared on
a quantum computer, and hence this scenario has practi-
cal relevance. A special case of this scenario is when the
training data states have no entanglement with the ref-
erence system, corresponding to the scenario in Ref. [42].

Our main result is a quantum NFL theorem that gen-
eralizes the result in Ref. [42] by allowing for an arbitrary
amount of entanglement in the training data. An amaz-
ing feature of our theorem is that our lower bound on the
average risk is reduced as the Schmidt rank r of the en-
tanglement grows. Furthermore the bound goes to zero
when r = d, where d is the Hilbert space dimension, re-
gardless of the number of training data points t. Given
that our bound is tight (i.e., it can be saturated), this
implies that one does not need an exponentially large
training data set in order to learn a unitary. Hence, our
work establishes that both big data and big entanglement
are valuable in quantum machine learning, and that the
currency of entanglement can lead to scalability.

Our work adds to the remarkable literature on entan-
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glement as a resource. In communication theory, pre-
shared entanglement allows one to transmit two bits of
information by sending a single qubit [43]. In fundamen-
tal physics, an observer that is entangled to a system can
guess the outcome of complementary measurements on
that system, and this led researchers to generalize Heisen-
berg’s uncertainty principle to allow for uncertainty re-
duction due to entanglement [44–46]. Our work is anal-
ogous to these examples, albeit in a different context.

We note that in [47], an important problem on learning
an unknown unitary transformation from a finite number
of examples was studied. In particular, [47] proved that
whenever the unknown unitary is randomly drawn from a
group the incoherent strategies achieve the ultimate per-
formances for quantum learning. However, our results
are different from [47] in the sense that we quantify the
generalization error after training perfectly on the train-
ing set.

In what follows, we first discuss the classical NFL the-
orem. We then present our quantum NFL theorem, with
the proof given in the Supplementary Information [48].
Finally, we perform numerical tests of both NFL the-
orems. This includes an implementation on Rigetti’s
quantum computer, which allows us to effectively violate
the classical NFL theorem and also verify our quantum
NFL theorem. We note that the Supplementary Material
provides detailed proofs of all statements that follow.

Results.— In classical supervised machine learning,
No-Free-Lunch (NFL) arises in the setting depicted in
Fig. 1(a). Here the goal is to learn an unknown function
f , where f maps a discrete input set X (of size dX ) to
a discrete output set Y (of size dY). In this setting one
generates from f a training set S in the form of t or-
dered input-output pairs as S = {(xj , yj) : xj ∈ X , yj :=
f(xj) ∈ Y}tj=1. This data is employed to train a hypoth-
esis function hS such that it matches perfectly the action
of f on the training data. The hope is that hS also makes
accurate predictions on unknown, unseen data. However,
as we will see, the NFL theorem provides a constraint on
this.

To quantify how well the hypothesis function performs
in predicting f one defines the risk function Rf (hS) as

Rf (hS) =
∑
x∈X

π(x)P
[
f(x) 6= hS(x)

]
. (1)

Specifically, Rf (hS) is the probability that hS(x) and
f(x) differ across X when x is sampled from the proba-
bility distribution π(x). While there are various mathe-
matical versions of the NFL theorem [3–6], we follow the
treatment in Ref. [6], which lower-bounds the risk when
averaged over training sets S and functions f :

Ef [ES [Rf (hS)]] >

(
1− 1

dY

)(
1− t

dX

)
. (2)

This is an information-theoretic bound (and hence is in-
dependent of the optimization method employed in train-
ing), implying that the average risk is limited by the

FIG. 1. Depiction of the No-Free-Lunch setting. (a)
In classical supervised learning, one employs training data of
size t to train a hypothesis to mimic the action of an unknown
function on domain size d. Here we show input data in the
form of bitstrings fed into a Neural Network (NN) to solve
a binary classification problem. The NFL theorem indicates
that it is the size of training data rather than the choice of op-
timization method that limits the average risk. Namely, small
(large) t leads to big (small) generalization errors on average.
(b) In quantum supervised learning, the goal is to learn a d-
dimensional unitary process with t quantum states serving as
training data. For generality, we allow these states to possibly
be entangled with a reference system, with the Schmidt rank
r quantifying the degree of entanglement. Here we show these
states training a Quantum Neural Network (QNN) to classify
quantum data (Schrodinger’s cat being dead or alive). Our
Quantum NFL theorem indicates that r∗t is the quantity that
limits the average risk, and hence big entanglement (large r)
leads to small generalization errors even when t is small.

size of the training set t, with the bound going to zero
if t = dX . (Henceforth we drop the subscript when
dX = dY = d, as in Fig. 1.)

As the NFL theorem is an information-theoretic result,
the bound depends on the prior knowledge that one has
about the set of maps from which f is chosen. Given
that we will ultimately be interested in unitary maps in
the quantum setting, one can consider classical analogs of
unitaries in the classical setting for a meaningful compar-
ison. Hence, we reformulate the classical NFL theorem
for both stochastic and bistochastic matrices, which are
somewhat analogous to unitaries. In the Supplementary
Information we show that the classical NFL theorem for
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stochastic and bistochastic matrices can be expressed as

Ef [ES [Rf (hS)] >

(
1− t

d

)
F (d, t), (3)

where F (d, t) is the expectation over f of the squared
distance between f(x) the hS(x). In the stochas-
tic case, we analytically find F (d, t) = F (d) =
e2(d−1)

(d+1)dd+1

(
(d− 2)d+1 + 2(d− 1)d

)
. In the bistochastic

case, we simplify the expression of F (d, t) such that it
can be numerically computed. The case of f being a per-
mutation matrix was considered in Ref. [42] and has a
similar form as (3). All of these classical NFL results are
conceptually similar, and dramatically different from the
quantum case as we will see now.

Quantum NFL theorem.— Consider a quantum super-
vised learning task where the goal is to learn an unknown
unitary U that maps a d-dimensional input Hilbert space
HX to a d-dimensional output Hilbert space HY . More-
over, we consider a reference system R, with HR denot-
ing the associated Hilbert space, and we allow access toR
during the training process. We suppose that all training
data states have the same Schmidt rank r ∈ {1, 2, ..., d}
across the cut HX ⊗HR. The training set is given by t
pairs of input-output states SQ = {(|ψj〉, |φj〉) : |ψj〉 ∈
HX ⊗HR, |φj〉 ∈ HY ⊗HR}tj=1. Here, the output states
are given by |φj〉 = (U ⊗ 11R)|ψj〉, where 11R is the iden-
tity over HR. During the training process, we allow for
repeatable access to the states in SQ. Perfect training
corresponds to the condition where the hypothesis uni-
tary VSQ satisfies |〈φ̃j |φj〉| = 1 for all j ∈ {1, ..., t}, where
|φ̃j〉 = (VSQ ⊗ 11R)|ψj〉.

Similar to the classical case, we quantify the accuracy
of the hypothesis VSQ via the quantum risk function:

RU (VSQ) =

∫
dxD2

T (|y〉〈y|, |ỹ〉〈ỹ|), (4)

defined as the average trace distance squared between
the true output |y〉 = U |x〉 and the hypothesis output
|ỹ〉 = VSQ

|x〉, where |x〉 ∈ HX and |y〉, |ỹ〉 ∈ HY . Here,
DT (ρ, σ) =

1
2 ||ρ − σ||1, and the integral is over the uni-

form Haar measure dx on state space. Note that the risk
is quantified on the smaller space HY while the training
is performed on the larger space HY ⊗HR.

Averaging the risk RU (VSQ) over all unitaries U and
training sets SQ leads to our main result:

EU [ESQ [RU (VSQ)] > 1− r2t2 + d+ 1

d(d+ 1)
, (5)

which is a NFL theorem for entanglement-assisted quan-
tum supervised learning. The proof is presented in the
Supplementary Information, where we also show that the
bound in (5) can be stated more generally in that it holds
for all choices of SQ, and hence the average over SQ is
trivial and can be removed from (5). We show below
in our numerical implementions that this bound is tight,

and the inequality in (5) is saturated if the input states in
SQ are linearly independent (see Supplementary Material
for more details).

Our proof for (5) relies on the assumption that the hy-
pothesis unitary VSQ matches the target unitary U per-
fectly on the training set. This condition reduces the
unitary U†VSQ to a simple block diagonal form. We then
employ the Weingarten calculus to calculate the average
over all target uniaries, which reduces to (5). We note
that one does not need to perform tomography of states
for evaluating the cost function. Rather, the overlap be-
tween the true output state and the output of the hy-
pothesis unitary can be efficiently estimated, e.g., using
the SWAP test.

Implications of results.— Let us discuss the implica-
tions of (5). First, consider the case of zero entangle-
ment, r = 1. In this case we recover the main result of
Ref. [42], which states that the average risk is non-zero
when t < d and can only go to zero when t = d. Typi-
cally, d = 2n will be exponentially large in the quantum
setting, with n being the number of qubits, and hence
this implies that an exponential amount of training data
is needed to fully learn an unknown unitary.

At the other extreme, when there is maximal entangle-
ment (r = d), one can see from (5) that only one training
pair is sufficient for the lower bound on the average risk
to reach zero. In the language of quantum information
theory [49], this single training data point corresponds to
the “Choi state” of the target unitary U . More generally,
(5) indicates that the key quantity is r ∗ t. When r ∗ t is
small (large), the bound on the average risk is high (low).
Hence, even moderate amounts of entanglement can im-
prove the performance of quantum machine learning, by
reducing the training data requirements.

The standard goal of quantum algorithms is quantum
speedup, which typically corresponds to complexity scal-
ing polynomially in n, since classical algorithms often
exhibit exponential scaling. Variational quantum algo-
rithms, which train QNNs, are no exception, and any
exponential scaling in such algorithms destroys quantum
speedup. Consequently, the quantum NFL theorem of
Ref. [42], which corresponds to r = 1 in our theorem, ap-
peared to be a roadblock to quantum machine learning,
since it suggested that an exponential amount of train-
ing data was required. Our work, on the other hand,
appears to at least give some hope for quantum speedup
with QNNs, provided that one has access to entangled
training data. With that said, quantum speedup is a
subtle issue, and we emphasize that (5) is derived under
the assumption of perfect training. Hence one must an-
alyze the complexity of training, and barren plateaus in
training landscapes must be avoided in order to retain
quantum speedup (see Discussion for elaboration).

In our implementations below, we compare the quan-
tum and classical NFL theorems. We will argue that we
observe an apparent violation of the classical NFL theo-
rems. While these classical NFL theorems are of course
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FIG. 2. Implementation on Quantum Hardware. Here
we plot the average risk after learning 10 single-qubit uni-
taries on the Rigetti Aspen-4 quantum computer using 10
training sets consisting of t = 1, 2 unentangled r = 1 (blue
squares) and entangled r = 2 (red circles) training states. The
solid lines indicate the corresponding bounds imposed by our
quantum NFL theorem, (5). Note, that while the optimiza-
tions were performed on the quantum computer, the final risk
RU (VSQ) and optimal cost CU (VSQ) (plotted in the inset and
defined in the Supplementary Information) were calculated
classically to allow an accurate (i.e., noiseless) evaluation of
the success of the optimizations. In black we plot the classical
deterministic (dotted) and stochastic (dashed) NFL theorems.

valid under the setting of their formulation, this setting
nevertheless does not allow for entangled data. Hence
the apparent violation is due to the fact that the physical
laws of nature allow for a more general setting than the
assumed setting of these theorems. We also remark that
one could allow for a reference system R in the classical
setting (like we do in the quantum setting). However, ac-
cess to such a system would not change the bounds in the
classical NFL theorems. This is because, in the classical
setting, no correlation between R and X would be possi-
ble under the standard assumption that the joint state is
a pure state. (Training with mixed states is not allowed
since that would correspond to training with multiple
pure states and, arguably, would be cheating.) Hence,
allowing for R in the classical setting is trivial.

Implementations.— The availability of cloud-based
quantum computers offers the possibility of testing the
validity of NFL theorems with truly entangled data sets.
In what follows, we present numerical results for quantum
supervised learning, with the task of learning randomly
generated unitaries, using entangled training states of in-
creasing Schmidt rank. The details of our implementa-
tions are presented in the Supplementary Information.

We first employ Rigetti’s Aspen-4 quantum device [9]
to learn 2×2 unitaries. This involves a hybrid quantum-
classical optimization loop where the quantum computer
evaluates a cost function that quantifies the quality of
the training on SQ, and then the parameters of the hy-
pothesis unitary are adjusted classically to reduce the
cost. Figure 2 shows the average risk versus t, after run-
ning this optimization loop, for training sets consisting
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FIG. 3. Large-Scale Test of NFL Theorems. We plot
the average risk versus t after learning 10 six-qubit unitaries
on a simulator for 100 training sets. Each training set con-
sisted of t = 1, ..., 64 training pairs of rank r = 20, ..., 26. The
markers indicate the optimization results, whereas the solid
lines indicate the bounds imposed by our quantum NFL the-
orem, (5). The simulation error bars are O(10−3) and there-
fore smaller than the size of the markers. In black, we plot
the classical NFL bounds for deterministic (solid), stochastic
(dashed), permutation (dot-dashed), and bistochastic maps.

of t = 1, 2 unentangled (r = 1) and entangled (r = 2)
states. To compare the performance to the fundamental
limits imposed by the NFL theorems, we also plot the
classical bounds for deterministic (2) and stochastic (3)
maps as well as our quantum bound in (5). Good agree-
ment is observed for our quantum bound with the small
discrepancies attributable to imperfect learning (due to
the presence of quantum noise it was not possible to
completely minimize the cost function as shown in the
inset) and finite-size averaging when computing the av-
erage risk. The average risk using a single entangled
training pair (t = 1, r = 2) is substantially lower than
both the average risk using a single unentangled training
pair (t = 1, r = 1) and that allowed by the determinis-
tic and stochastic classical NFL theorems, suggesting an
apparent violation of these classical bounds.

While noise and other constraints limit the size of our
quantum-hardware implementations, we can nevertheless
explore larger systems on a simulator. Figure 3 plots the
average risk when learning 64-dimensional unitaries on a
simulator for t = 1, ..., 64 training states of Schmidt rank
r = 20, ..., 26. Near-perfect agreement between the simu-
lation data and the bound in (5) is observed in all cases.
Furthermore, for r > 1 it is possible to reduce the aver-
age risk below that allowed by four different classical NFL
bounds (which have very similar behavior). We remark
that 2-dimensional permutation and bistochastic matri-
ces can be learned with a single training pair and hence
it was not possible to violate the permutation and bis-
tochastic classical bounds for the previous 2-dimensional
implementation; whereas our 64-dimensional implemen-
tation easily violates these bounds.
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Discussion.— Quantum machine learning is a rela-
tively new field that has already seen one major shift,
from algorithms for the fault-tolerant era to variational
methods for training Quantum Neural Networks (QNNs)
in the near-term era. While several intriguing QNN ar-
chitectures and training strategies have been proposed,
rigorous results are urgently needed, in particular, to un-
derstand whether QNNs will offer a quantum speedup. In
this work, we have contributed a rigorous theorem with
implications for QNN scalability. While it previously ap-
peared that an exponentially large training set would be
required to train a QNN, our quantum No-Free-Lunch
(NFL) theorem shows that entanglement in the train-
ing data can compensate for and remove this exponen-
tial overhead. This suggests that entanglement should be
considered as a valuable resource in reducing the gener-
alization error in quantum machine learning. While our
work provides a glimmer of hope that quantum machine
learning could yield a quantum speedup (i.e., polynomial
scaling), there are still several issues and open questions
that we now discuss.

One potential issue is the complexity of obtaining the
entangled training data in the first place. This complex-
ity will depend on the mode of access to the data. We
note that for the setting where a user has physical access
to the target unitary, then it is advantageous to input
a state entangled with a reference system to the unitary
so that the user can generate input-output training data
with entanglement [40]. This procedure can overall de-
crease the average risk more efficiently in comparison to
the input with no entanglement.

Another potential issue is the complexity of training.
While our quantum NFL theorem assumes perfect train-
ing, it is possible that exponential scaling could be hid-
den in the training difficulty, especially in light of recent
results on barren plateaus (exponentially vanishing gra-

dients) in QNN cost function landscapes [21–23]. While
several promising strategies have been proposed to avoid
barren plateaus in QNNs [24–27], this remains an ac-
tive area of research. We speculate that for cases when
one needs only a polynomial number of shots for training
(i.e., no barren plateau issues), learning a unitary us-
ing an entangled training set is more advantageous than
training sets with no entanglement. Deriving a no-free-
lunch (NFL) theorem that accounts for finite accuracy in
training is an interesting open question that we leave for
future work.

This highlights an important direction for future work.
Naturally, it would be useful to extend the quantum NFL
theorem to the case where one does not achieve perfect
training on the training set. Such imperfect training
could either be the result of shot noise or hardware noise,
or could simply be due to local minima in the landscape.
In this case, the lower bound in (5) would not be satu-
rated, and hence it would be of interest to tighten the
bound to account for imperfect training.
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