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Understanding whether dissipation in an open quantum system is truly quantum is a question
of both fundamental and practical interest. We consider n qubits subject to correlated Markovian
dephasing, and present a sufficient condition for when bath-induced dissipation can generate system
entanglement and hence must be considered quantum. Surprisingly, we find that the presence or
absence of time-reversal symmetry (TRS) plays a crucial role: broken TRS is required for dissipative
entanglement generation. Further, simply having non-zero bath susceptibilities is not enough for the
dissipation to be quantum. Our work also presents an explicit experimental protocol for identifying
truly quantum dephasing dissipation, and lays the groundwork for studying more complex dissipative
systems and finding optimal noise mitigating strategies.

Introduction- Open quantum systems, where a
system of interest interacts with an external envi-
ronment, play a central role in many areas of physics
ranging from quantum information to cosmology.
Their evolution is in general non-unitary [l], be-
ing described by e.g. a quantum master equation or
more general quantum map. A ubiquitous type of
system-environment interaction is dephasing. De-
phasing interactions do not change populations of
energy eigenstates of the system, but rather only
impact coherences, i.e., the off-diagonal elements of
the density matrix in the energy eigenbasis. The role
of dephasing in quantum computation has been ex-
tensively studied (see e.g. [2—1]). Even in this simple
setting, there is a fundamental, surprisingly subtle
question of interest: can the environment-induced
dissipation of the system be attributed to interaction
with a completely classical environment, or does it
necessarily require a truly quantum environment?

Answering this question is of course contingent on
how one defines the line between classical and quan-
tum environments. Several previous works have ex-
amined this issue (see e.g. [5—11]), largely in terms of
possibly representing dissipative quantum dynamics
with an equivalent classical process. In this work,
we take instead an operational and experimentally-
motivated approach, and define a truly quantum en-
vironment to be one that can mediate dissipative
interactions that generate system entanglement. A
necessary requirement for this phenomenon is hav-
ing non-zero bath response susceptibilities [12—14],
manifested in asymmetric-in-frequency environmen-
tal quantum noise spectral densities. We show, sur-
prisingly, that this is not sufficient: bath-mediated
dissipative interactions can only generate system en-
tanglement if they cannot be mimicked using local
measurements and feedforward. We note that an
analogous approach has been suggested to test probe
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FIG. 1. (a) A system of n qubits is coupled to a Marko-
vian dephasing environment. The resulting evolution ob-
tained by tracing out the environment (trg) is a GKSL
master equation (Eq. (1)), and can be decomposed into
driving by effective classical noise dW; with correlations
Re(cij), Hamiltonian Ising interactions h;j;, and dissipa-
tive Ising interactions Im(c;;) (b) The evolution of the
partial transposed (Ta ® 1) state with respect to sub-
system A is again in GKSL form, with different classical
noise dW, whose correlation is now —c;; and with the
role of h;; and Im(c;;) reversed.

whether gravitational interactions are quantum [15—

].

We focus in this work on setup where a set
of qubits are coupled to a generalized Markovian
dephasing environment (as described by a Lind-
blad master equation). We show that the presence
or absence of environmental time-reversal symme-
try (TRS) is crucial in determining whether bath-
induced dissipation is classical. In the presence of
TRS, this dissipation is always equivalent to driv-
ing by classical noise, whereas without TRS this
is no longer necessarily true. We provide a con-
dition based on Peres-Horodecki criterion [19, 20]



that allows one to identify truly quantum dephas-
ing dissipation. Our work provides a new approach
to identifying truly quantum dissipative behaviour,
and also provides a sensitive method for detecting
broken TRS in dephasing environments.

Setup— Consider a multi-qubit system, whose
dephasmg interaction with a stationary environ-

ment is Hi,, = Z Z ® Bl, where ZZ is the Pauli

6. = |0) (0] — |1) (1] operator on qubit i, and B;
is a Hermitian environment operator. Throughout
the paper, we transform to the intraction picture
with respect to the internal Hamiltonians of the
system (S) and environment (E), Hs + Hg, where
Bi(t) =
In the Markovian limit, the evolu-
tion of the system undergoing such correlated de-
phasing is described by the Gorini- Kossakowskl—
Sudarshan-Lindblad (GKSL) equation E = L(p),
with the Liouvillian given by

the environment operators are given by
eiHEtBie_iHEt.

N A A 1 ~ A
L(p) = —i[Hys, pl + > cij (ZiﬁZj - Q{ZiZj7ﬁ}> :
i
(1)
Here Hig = 3 Z h” ; is the so-called Lamb
shift Hamiltonian (See Fig. 1a), and describes Hamil-
tonian Ising interactions mediated by the bath. The
remaining terms describe bath-induced system dis-
sipation, and cause the net evolution to be non-
unitary. The evolution generated by this equation
is completely positive (CP) if and only if the matrix
C = (¢;j) is positive semi-definite (PSD) [21].

Our central goal is to understand whether the
bath-induced dissipation is classical or quantum; we
thus set h;; = 0 in what follows. It is tempting
to think of the remaining dissipative evolution as al-
ways being equivalent to driving by external classical
noise. This is not true however if Im C # 0: as we
show below, the imaginary part of C encodes dissi-
pative bath-mediated interactions that are distinct
from classical noise, and cannot be mimicked by a
Hamiltonian Ising interaction. Further, the presence
of these interactions is necessary but not sufficient to
make the dissipation quantum, i.e. capable of gener-
ating system entanglement. A

Consider first Eq. (1) with a real C and Hyg =
0. Such an evolution can always be emulated by
(correlated) classical white noise [22]. Specifically,
consider a system evolving under the Hamiltonian
H.=Y,b;i(t)Z;, where b;(t) describe classical Gaus-
sian fluctuations with (b;(¢)) = 0. In the white
noise limit, where (b;(t)b;(t)) = ¢;;0(t — '), the
average evolution of the system (over the fluctua-
tions) reproduces the master equation of interest,

with C' corresponding to the covariance matrix of
noise b;(t) [23, 24]. Note that because this evolution
can always be emulated by a local time-dependent
Hamiltonian, it cannot create entanglement in the
system.

Interpretation of complexr C— As shown above,
driving a system with classical noise will never gen-
erate a non-zero Im(C'). To understand the phys-
ical origin of Im(C) # 0, we revisit the general
microscopic quantum bath model and ﬁint. Mak-
ing use of the standard Born-Markov approxima-
tion [1], we can relate Im(C') to spatial asymmetries
in the environment’s response properties: Im(c;) =
3 (Re[x;jk(w = 0)] —Re[xx; (w = 0)]). Here, xx(w) =
—i [ dte™([B;(t), B(0)]) are standard linear re-
sponse susceptibilities, which describe how a bath
operator expectation value (Bj (t)) changes due to

a weak perturbation that couples to B [12]. In
contrast, Re(C') is not related to bath response;
for a generic quantum bath, Re(C) are given by
the symmetrized quantum noise spectra, which play
the role of classical noise [12]. It is important to
note that if the bath Hamiltonian fIE has time re-
versal symmetry (TRS) and the bath operators all
transform under TRS with the same parity, we may
invoke Onsager-type recriprocity relations to show
that Im(c;;) = 0 [25]. Conversely, for environments
with broken TRS, which is typically the case for
driven-dissipative environments, there is no funda-
mental reason to expect that Im(C') should vanish.

An alternate way to understand the bath-induced
dissipation and Im(C') is to realize that it also de-
scribes a situation where there is no environment,
but where the system evolves because of continuous
measurement and feed-forward [26]. We first write
the dissipative part of Eq. (1) as

Ediss(ﬁ) = Z% <i/k,5i’;rc - ;{i’lzikvﬁ}) ’ (2)
k

where 7y, and Lk are found by diagonalizing C [1].
Further, each Lk can be written as Lk = Ak +
sz where Ak, Bk are Hermitian system operators.
While such dissipators arise in many contexts [206—

], we focus on the connection to continuous mea-
surement and feedforward of Ref. [30] As shown in
the Supplementary Material (SM) [24], each term
k in Eq. (2) describes unconditional system evolu-
tion under a two-way measurement and feedforward
scheme. One half of this scheme is a weak continu-
ous measurement of Ay [26], with the measurement
record used to set the amplitude of a drive applied to
—Bj. The other half is the reverse process, i.e. mea-



suring By, and feed-forwarding the result to drive
Ag.

This equivalence immediately lets us make gen-
eral statements on the properties of the dissipative
evolution. In general, the measurement and feed-
forward realization involves nonlocal operations, in-
dicating that a complex C' might create system en-
tanglement. However, there are notable exceptions.
First, emulating a purely real C' in this way does not
have any feed-forward driving. In this case, measure-
ment results are discarded, and the evolution is just
due to measurement backaction (which is equivalent
to classical noise). No entanglement is generated.
Even if Im(C) # 0, the measurements and feedfor-
ward could all be purely local processes. Again, in
this case no entanglement generation is possible, and
the environment dissipation would be categorized as
being classical.

We also comment on a third way to realize a re-
stricted class of processes with a complex C' using
classically-stochastic time-dependent system Hamil-
tonians [8, 31]. Suppose our system is coupled to
classical noise whose time integral is a Poisson pro-
cess with the rate v. Averaging over this noise leads
to a term V(IA/LﬁIA/k—ﬁ) in the master equation, where
Ly is a unitary operator reflecting the coupling of
the noise to the system. Combined with the previ-
ously discussed classical white-noise processes that
generate Hermitian L, we now have an approach
for realizing any master equation with Hermitian or
unitary Lindblad operators [, 31]. In our case, a
process that can be expressed in this way can have
non-zero Im(C'), but can never generate system en-
tanglement. The reverse statement is however, sur-
prisingly, not true: there exist master equations with
non-zero Im{C'} that are not equivalent to the above
classical noise model, but nonetheless are unable to
generate entanglement (see SM [24]).

Entanglement generation— We have defined the
environment-induced dissipation in (1) as being
quantum if it can generate entanglement within
the system. To study this condition quantitatively,
we now employ the Peres-Horodecki (PH) crite-
rion [19, 20]. It ensures that a state whose par-
tial transpose has a negative eigenvalue is entangled.
Thus, to see if environmental dissipation can create
entanglement, we could in principle evolve arbitrary
initial product states, and check whether the PH
condition is violated for any t > 0. We do not re-
quire steady-state entanglement generation (unlike
e.g. reservoir engineering protocols [32]). This would
appear to be a formidable task. Fortunately, we
can greatly simplify this problem. First, we find

the exact evolution of the partial transposed state
of the system with respect to a chosen subsystem A,
ie., pT4 = (Ta ® 1)(p) (see Fig. 1b). Surprisingly,
the evolution d;; = L(p™) is still in the GKSL
form E( a) = —Z[HPT, PTA] + Laiss(p74) [24], with
Hp = 5 Z” ”ZZ and

Laiss(p™) = &;(Zip™ Z; —

In this partial transposed equation of motion, the
coefficients (for ¢ < j) of the Hamiltonian and the
dissipator are given by

(hij, ¢ij) =
(Im(c;5), —Re(cij) +thiyj) i€ Aand j ¢ A
(=hij, cji) i€Aand jeE A,
(hij, cij) otherwise

(4)

The coefficients for 7 > j can be inferred from the
symmetries clj = c . and h” = hﬂ

Note that Hpr is Hermitian, hence the only way
that £ can generate non-positive states is through
the dissipative part Lgiss specified by C. This is in
general possible, as C' is Hermitian, but not neces-
sarily PSD. If our original master equation had a
non-zero Ising Hamiltonian h;; # 0, we see clearly

from Eq. (4) that C could be non-PSD. This simply
reflects that fact that Hamiltonian Ising interactions
can create entanglement. We are however interested
in the effects of the dissipative evolution alone, i.e.
hij = 0. As we will see, in this case too C' can fail to
be positive. Note there is a small subtlety here: to
show the possibility of entanglement generation, we
need to show that the evolution generated by Lagiss
is not positive. However, a negative eigenvalue of C
only implies in general that the evolution is not com-
pletely positive (CP) [33]. Luckily in our case we can
show that these two notions coincide (see SM [24]).

To summarize, we have found a sufficient condi-
tion for an environment to be entangling and hence
be truly quantum. To check this condition, we need
to find C using the recipe in Eq. (4) and examine its
eigenvalues for all the possible choices of subsystem
A. If there exist a negative eigenvalue in any of these
cases, it indicates that the dissipative evolution in
entangling. We note that, however, the absence of a
negative eigenvalue does not rule out entanglement
generation for n > 2, as there are entangled states
with a positive partial transpose [34].

Case studies— To provide further intuition, we
now analyze three special cases of Markovian cor-



related dephasing on n qubits. Let {e;}72) de-
note the standard basis of C". Additionally, de-
fine the Fourier basis {f;}}_), such that f, =

ﬁ E;:ol wte;j, where w = exp(2mi/n).
first example, consider a purely real correlation ma-

As our

trix C1) = fof(;r whose entries are 05]1_) = 1/n for all
7’s and j’s. As mentioned earlier, this process can
always be emulated by classically correlated fluctu-
ations of o, terms in the Hamiltonian and is not
entangling. Using our procedure, C") stays PSD
under any bipartition. This is because for any real
C, Eq. (4) is equivalent to mapping e; — —e; for
all i’s in one of the partitions. This is a unitary
transformation and does not change the eigenvalues
of the originally PSD matrix C.

Next, we consider a correlation matrix C(?), whose
elements above (below) the diagonal are all ¢ (—i).
The diagonal elements are all set equal to a con-
stant v = n — 1, chosen so that C® is PSD. This
C' matrix corresponds to an environment with bro-
ken TRS and with vanishing classical noise correla-
tions (a situation where one might expect the bath
to be maximally quantum). For concreteness, we
take subsystem A to be the first m of our n qubits.
Under Eq. (4), C® is a block diagonal matrix. Tt is
obtained from C'®) by setting the off-diagonal blocks
to zero, i.e., 51('32') =0ificA(i¢ A and j ¢ A
(j € A), and transposing the block corresponding to
A. Because the original matrix C?) is PSD and not-
ing that principal submatrices of a PSD matrix are
also PSD [35], we conclude that C®) is PSD. We note
that the dynamics corresponding to C®@ can be fully
realized using measurement and feedforward that is
local with respect to the A/B bipartition. Hence,
despite not being equivalent to classical noise, this
environment cannot generate system entanglement,
and would be deemed classical under our classifica-
tion.

Finally, we analyze a rank-1 complex correlation
matrix C®) that is impossible to emulate with a lo-
cal measurement and feed-forward strategy. Specif-
ically, we choose C(3) = flff. For n > 3, we have
Im(C®)) # 0, corresponding to a bath with broken
TRS that mediates non-zero dissipative interactions.
To show that the corresponding evolution is capable
of generating entanglement, it suffices to find one bi-
partition such that C® has a negative eigenvalue.
Choosing the first qubit as one of the partitions, re-
sults in a rank-3 C®). As shown in SM [24], the
low-rank nature of C®) allows us to analytically cal-
culate |C®)|, = 22 (the pseudo-determinant of

('), which implies that C® has at least one nega-
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FIG. 2. The distribution of the minimum eigenvalue of
C for 10° random three-qubit dephasing environments.
The solid purple curve (right axis) shows the fraction
(over bins of size 0.02) of samples where C has a negative
eigenvalue (entangling). A C' matrix with purely real or
purely imaginary off-diagonals is not entangling.

tive eigenvalue for all n > 2. Note that in general
the evolution of an initial product state will at most
result in transient entanglement [36] (but no steady-
state entanglement) (see SM [24]).

Random environments— The above examples sug-
gest that both the imaginary and the real parts of
the off-diagonals of C' are necessary to create entan-
glement. This expectation is corroborated by ex-
amining three-qubit random Liouvillians with C' =
ww', where w is drawn from a complex Ginibre en-
semble [37] (see SM [24] for details). Analogous
ensembles of random Liouvillians have been con-
sidered previously, in a different context, to under-
stand spectral properties of random open quantum
systems [38]. Interestingly, the results reported in
Ref. [38] show no sensitivity to the choice of real
and complex ensembles, whereas in our work the
latter corresponds to broken TRS, which is neces-
sary for entanglement generation. In Fig. 2, we ob-
serve that Amin, the minimum eigenvalue of C' [39],
is non-negative when C'is purely real (|[Im(C)||¢,, =
0), or has a purely imaginary off-diagonal part
(IIRe(C) — diag(C)|l,, = 0). However, when the
norm of the imaginary and real off-diagonal parts
are comparable, the fraction, f, of the samples that
are entangling (Apin < 0), is maximized.

Our simple examples also raise another question:
can dissipative interactions only generate entangle-
ment if C' is a low rank matrix? Physically, this
corresponds to a situation where the bath couples
to the system via only a small number of delocalized
system operators. To answer this question we again
consider random C' = ww’ and vary system size. We
examine the minimum eigenvalue of C' acting on the
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FIG. 3. Typicality of entangling Cs. The distribution
of the minimum eigenvalue Amin of C for 10° random
C’s as a function of ‘cr(C’Q)/tr(C)2 for (a) n = 4, (b)
n =16, and (c) n = 64 qubits. To obtain C, we choose
the first qubit as a subsystem. Entangling C’s become
more common as the system size increases.

partial-transposed state of the system with respect
to the first qubit. To %{uantlfy the rank of C, we in-
troduce tr(C?)/tr(C)” that measures variance of C
eigenvalues. We observe that the entangling behav-
ior is not a property of rank-1 matrices (for which
tr(C?)/tr(C)* = 1), and is common in the ensem-
ble of random C’s we considered (see Fig. 3). Note
that the minimum eigenvalue of C in this case scales
inversely with n [40]. Hence, the transformation to
C' is more likely to create a negative eigenvalue (see
SM [24]).

Ezxperimental implementation- When combined
with the ability to measure C, our results can serve
as a probe for fundamental symmetries and the na-
ture of the environment. The evolution generated
by the Lindbladian £ in Eq. (1) can be decomposed
into a decaying part from Re(C), and a phase evo-
lution from Im(C) and Hyg [11]. Ref. [11] presents
a compressed sensing protocol that uses randomized
measurement to extract both the real and imagi-
nary part of ¢;; and also the Lamb shift terms h;;.
Here, we present a less efficient but simpler scheme.
Our measurement protocol relies on preparing and
measuring Bell states |¢;;) = %(|O>l 10), +1(1), 1))
on pairs of qubits with j > 4 (the omitted qubits
are assumed to be in the |0) state). Let p(t) de-
note the state of the system after some time ¢ that
is initially prepared in |¢;;). The matrix element
(O[; 0[; A(¢) [1); |1} evolves as \}5 exp[(iQ;; — I'y;)t].
Therefore by measuring this matrix element at dif-
ferent times and finding its decay rate and oscilla-
tion frequency we can find both €2;; and I';;. The
real part of ¢;; can then be directly extracted from
I';j = 2(cii+cjj+cij+cji) as shown in [12]. The anal-

ysis of §;;, however, is more subtle. First, unlike I';;,
;; contains linear contributions from Im(cgm)’s,
where k,m are not just restricted to {i,j}. There-
fore, we need to solve a linear system to find Im(C).
Secondly, there might be other sources of phase evo-
lution in addition to Im(C), e.g., the Lamb shift
term, in the experiment. In particular, it is impos-
sible to distinguish Lamb shift terms from Im(C)
using only the above measurements.

However, performing an additional set of measure-
ments using [¢i;) = (®_1 1)) @ 7(10); + 1))
with j > ¢, and where qubits with omitted index are
in |0), provides enough information to distinguish
him’s contributions from Im(cgy,)’s [24]. Determin-
ing the nature of such coherent phase errors is also
helpful in a broader context. In the context of error
mitigation, where correlated noise processes severely
impact the performance of the device [2, 43-45], it is
important to correctly identify the source of noise to
combat it. For example, coherent phase errors origi-
nating from parasitic ZZ couplings (see e.g., [16, 47])
can be simply canceled by an offset Hamiltonian,
whereas a simple offset cannot help with the errors
coming from Im(C).

Discussion— Our study reveals that the presence
or absence of TRS has a profound effect on de-
phasing dissipation, even in the Markovian limit:
broken TRS is needed for the dissipation to be
entanglement-generating (and hence quantum). Our
work thus provides a concrete experimental proto-
col for detecting the presence of broken environmen-
tal TRS. Note that to check entanglement genera-
tion between all possible bipartitions, our protocol
requires a time that scales exponentially with the
system size. It is intriguing to ask whether this is
a fundamental limitation, or whether more efficient
schemes are possible. It would be extremely interest-
ing to apply our ideas to systems with nonlinear and
nonlocal coupling to an environment and going be-
yond the Markovian limit, and more generally study
the role of TRS in more general kinds of dissipative
dynamics (e.g. baths that couple transversely to the
qubits).
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