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Classical electromagnetism is linear. However, fields can polarize the vacuum Dirac sea, causing
quantum nonlinear electromagnetic phenomena, e.g., scattering and splitting of photons, that oc-
cur only in very strong fields found in neutron stars or heavy ion colliders. We show that strong
nonlinearity arises in Dirac materials at much lower fields ∼ 1 T, allowing us to explore the non-
perturbative, extremely high field limit of quantum electrodynamics in solids. We explain recent
experiments in a unified framework and predict a new class of nonlinear magneto-electric effects, in-
cluding a magnetic enhancement of dielectric constant of insulators and a strong electric modulation
of magnetization. We propose experiments and discuss the applications in novel materials.

Classical electromagnetism is linear and hence sup-
ports the principle of superposition. It has been pointed
out by Heisenberg and Euler in 1936 that due to quan-
tum mechanical effects and the presence of the Dirac
sea, linearity ceases to hold in strong fields [1]. Quan-
tum electrodynamics (QED) is therefore nonlinear as the
electromagnetic field polarizes the Dirac sea as though it
is a material medium. This effect becomes significant
at electric and magnetic fields E⋆ ≃ 1.3 × 1016 V/cm,
B⋆ ≃ 4.4 × 109 T, at which the Zeeman splitting and
electric potential over the Compton wavelength become
comparable to the electron rest energy. These are the so
called Schwinger critical values [2] and they are enormous
on the laboratory scale. Such fields exist only in exotic
environments e.g. neutron stars [3] and heavy ion collid-
ers [4]. Nevertheless, some low-order nonlinear QED ef-
fects, such as scattering or splitting of photons have been
observed in the laboratory [5, 6], and probing strong field
effects is an active area of research [7].

Dirac materials have been known for decades [8–10].
Nevertheless, their recently understood topological prop-
erties and surface excitations have led to a surge of inter-
est [11–16]. The nonlinear electromagnetic response
of Dirac materials have been studied [16–23] due to
their transport properties (e.g. rectification) and pos-
sible applications in photovoltaics. In this letter, rather
than transport, we study dielectric and magnetization
response of the three-dimensional (3D) Dirac insulators
and semimetals due to the Dirac vacuum, i.e. filled va-
lence band. We include nonlinear contributions to all
orders by nonperturbatively analyzing the Heisenberg-
Euler action [1, 24–27], going both beyond known results
of QED and the general framework in condensed matter
physics [28]. In known Dirac materials, we find the typi-
cal values of Schwinger fields, E⋆ ∼ 105V/cm, B⋆ ∼ 1T,
are easily accessible, providing a platform to explore the
strong field regime of QED and to observe quantum non-
linear electromagnetic effects in the laboratory.

The nonlinear effects contribute to the experimentally

FIG. 1: Diagrammatic representation of the
Heisenberg-Euler action δL1 + δLHE (Eqs. (6) and (9)).
The dashed line corresponds to the constant external
electromagnetic fields B,E and the solid line is the

Green function of a Dirac sea electron.

observed high-field magnetization in the recent work on
the Weyl semimetal TaAs [29] and the Dirac semimetal
Bi [30], but the importance of this observation and its
origin in the Heisenberg-Euler effect has not been rec-
ognized. In the present work we demonstrate this con-
nection and show that the data [29, 30] agree with our
predictions. More importantly, we predict a new class
of magneto-electric effects. The most significant is the
magnetic field tunable, very large enhancement of the di-
electric constant, reaching up to δǫr ∼ 10 per every 1 T
of the applied magnetic field. We also predict an elec-
tric field modulated magnetization. Both these effects
are highly anisotropic, that is, they depend on relative
orientation of E and B-fields and their crystallographic
orientation.
In a material, the classical Lagrangian of the electro-

magnetic field is [31]

Lcl =
1

8π
(ET ǫE −BTµ−1B). (1)

One of our principal results is the quantum 1-loop, non-
linear, nonperturbative contribution to the Lagrangian

δLHE → ∆

24π2λ3
D

[

(b · e)2|b|−1 + |b|2 ln |b|
]

, (2)

in a strong B, and weak E-field (See further below and
also Sec. S6 of the supplement [32] Here, the dimension-
less vectors e and b depend on the fine structure constant
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2∆ [meV] αD/α E⋆ [V/cm] B⋆ [mT]

QED (∆ = mec
2) 109 [34, 35] 1 1.3 × 1016 4.4 × 1012

Pb0.5Sn0.5Te 63 [36] 580 2.9 × 104 5.6 × 103

Bi0.9Sb0.1 15.5 [37, 38] 188 571 36

TaAs 0 357 0 0

TABLE I: Comparison of parameters including the
band gap (2∆) [39], effective fine structure constant

αD = e2

~v as the ratio αD/α = c/v, and the Schwinger
fields in Eq. (4).

αD = e2/~v of the Dirac material:

e(αD) =
UE

E⋆(αD)
, b(αD) =

U
−1B

B⋆(αD)
, (3)

and the critical ‘Schwinger’ electric E⋆(αD) and magnetic
B⋆(αD) fields in the material are defined by

E2
⋆(αD) =

v2

c2
B2

⋆(αD) =
∆

αDλ3
D

=

(

∆2

e~v

)2

. (4)

Eqs. (2), (3) and (4) account for the anisotropy of real
materials [33], for which the velocity tensor is a 3 × 3
symmetric matrix [10] V = vU , with det(U ) = 1. The
term UE and U

−1B, are linear transformations of E

and B respectively (See Supplement Sec. S1 [32]).
We have defined the symbols in Eqs.(3),(4) according

to convention in QED. The “Dirac wavelength” λD = ~v
∆

and the “Dirac magneton” µD = e~v2

2∆c replace the Comp-
ton wavelength and the Bohr magneton respectively.
When the fields reach the ‘Schwinger scale’, Zeeman
splitting and the potential difference at λD are equal to
the half of the Dirac band-gap:

2µDB⋆ = λDeE⋆ = ∆, (5)

and the nonlinearity becomes relevant. In Table I we list
material parameters considered in this work. For more
details see Sec. S2 and Table S1 of the Supplement [32].
The quantum contribution to the Lagrangian can be

viewed as the sum of the infinite chain of 1-loop di-
agrams in Fig.1 that represent the polarization of the
Dirac sea of electrons by external electric and magnetic
fields. In this work we consider only non-magnetic crys-
tals with inversion symmetry [40] [41] and assume the
static/quasistatic approximation, ω, kv ≪ ∆, where ω
and k are the frequency and the wave number of the ex-
ternal fields. Therefore our diagrams, Fig.1, have only
even numbers of external E-lines and B-lines. Besides di-
agrams in Fig.1, there are also multi-loop diagrams sup-
pressed by a factor of αD/ǫ ∼ 0.03 per each additional
loop, where ǫ is the large dielectric constant mainly due
to the lattice and intra-ionic polarization. For the dis-
cussion of the suppression of the multi-loop diagrams in

the context of phenomena considered here, see Sec. S3 in
the supplement [32] and also Refs. [42, 43]
In Fig. 1, the first diagram quadratic in external fields

is ultraviolet divergent and is equal to [24, 39]

δL1 =
∆

12π2λ3
D

ln

(

Λ

∆

)

(

|e|2 − |b|2
)

. (6)

Here the subscript ‘1’ indicates contribution from the first
diagram in Fig.1 and Λ ∼ v ~π

a ∼ 1 eV is the ultravio-
let cut-off energy, where a being the lattice spacing. In
QED this diagram describes the electric permittivity and
magnetic permeability of vacuum and thus it is included
into the definitions of the electric charge and electromag-
netic fields. As a result, δL1 does not appear explicitly
in QED. However, for Dirac materials δL1 is an explicit
contribution that has to be added to the classical La-
grangian Eq. (1). Indeed, this is the contribution of the
Dirac sea (valence band) to the dielectric constant and
magnetic susceptibility.
Equating (E2 − B2)/(8π) + δL1 to the classical La-

grangian (1), we find the linear dielectric constant ǫD
and the linear magnetic susceptibility χD (µ = 1+4πχ):

ǫD = 1+
2αD

3π
ln

(

Λ

∆

)

U
2, ǫD ∼ 3, (7)

χD = − αD

6π2

v2

c2
ln

(

Λ

∆

)

U
−2, χD ∼ −10−6. (8)

where estimates are given for the diagonalized tensors.
Eqs. (7) and (8) define the Dirac contributions to

the total dielectric and magnetic susceptibilities. The
contribution (7) is relatively small compared to the to-
tal relative permittivity ǫ in Eq. (1), typically ǫ ∼ 100,
which is primarily due to the ionic (lattice) and intra-
ionic contributions (See Supplement Table S2). The mag-
netic response (8) constitutes a significant part of the
diamagnetic susceptibility, which also has contributions
from lower bands and core electrons. For Bismuth, the
Dirac valence band contribution (8) has been previously
considered in Ref. [44].
We describe now the nonlinear effects. The diagrams

in Fig.1
beyond the first one (n ≥ 2) are convergent at arbi-

trarily large |e|, |b| [45] and are re-summed exactly [46]
to yield the 1-loop, nonperturbative Heisenberg-Euler ac-
tion

δLHE =

∞
∑

n=2

δLn ≡ −∆

8π2λ3
D

∫ ∞

0

dηe−η

η

×
[

A− cot(ηA−)A+ cot(ηA+)−
1

η2
+

1

3
(A2

− +A2
+)

]

,

A∓ = − i

2

[

√

(b+ ie)2 ∓
√

(b− ie)2
]

, (9)

which accounts for crystal anisotropy, cf., Eq. (3), as
well as the strong field behavior. The imaginary part of
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(a)
(b) (c)

FIG. 2: a) Nonlinear diamagnetic susceptibility χref − χ versus magnetic field, χref = χ(50 T) in Bi and
χref = χ(30 T) in TaAs. In TaAs (blue) the field is along the crystal c-direction and in Bi there are two directions,
binary (red) and bisectrix (green). The points represent numerical differentiation of TaAs and Bi magnetization
data from Refs. [29] and [30] respectively. The experimental points are connected by dashed lines for guidance.
Solid lines represent our theory. The red solid line is our prediction for Bi0.9Sb0.1. b) Predicted variation of the

dielectric constant in magnetic field, for parallel (perpendicular) field configurations shown by solid (dashed) lines.
c) Predicted electric field modulated magnetization as a function of applied magnetic field, along the magnetic field

direction at E = 0.3E⋆.

Eq.(9), obtained via its analytic continuation, captures
the electric breakdown, which can be avoided in weak
electric fields |e| < 1 (E < E∗ ). Then, Eq. (9) can be
expanded in powers of e. However, the magnetic field
can be much larger than B⋆, leading to the asymptotic
expression Eq. (2) (See Supplement Sec. S6). At weak
magnetic fields, |e|, |b| ≪ 1, Eq. (9) reduces to the 2nd
diagram in Fig.1,

δL2 =
∆

360π2λ3
D

[

(

|e|2 − |b|2
)2

+ 7 (e · b)2
]

. (10)

At E = 0, the nonlinear magnetic susceptibility is

δχ =
∂2δLHE

∂B∂B
= U

−2 αD

12π2

v2

c2
F (|b|);

F (|b|) = 2

5
|b|2, ‖b| ≪ 1

F (|b|) = ln |b|, |b| ≫ 1. (11)

The dimensionless function F (|b|) in the full range of
magnetic fields obtained by numerical integration of
Eq. (9) is shown in Supplement Fig. S2. Strong and weak
field limits of F follow from the actions given by Eqs.(2)
and (10) respectively.
The total magnetic susceptibility of the Dirac valence

band is the sum of the linear susceptibility, Eq.(8) and
the nonlinear contribution, χ = χD+δχ. When |b| ≫ 1
we have

χ = −U
−2 αD

12π2

v2

c2
ln

(

cΛ2

e|U−1B|~v2

)

. (12)

Here χ depends on B but not on ∆, and is well-defined
in the limit ∆ = 0, as in the Weyl semimetal TaAs [29].
According to Eqs.(11),(12) the magnetic susceptibility

is nonlinear, i.e. it depends on magnetic field. Remark-
ably, this Dirac nonlinearity has been recently observed,
but its connection to nonlinear electrodynamics was not
identified. Here we show its origin in the Heisenberg-
Euler effect. The magnetization of Weyl semimetal TaAs
has been measured up to B = 30 T, Ref. [29], and magne-
tization of Dirac semimetal Bi has been measured up to
B = 60 T, Ref. [30]. In Zhang et al. [29] the valence band
contribution to magnetization at E = 0 was considered
[47], and in the high magnetic field limit, the magneti-
zation quasi-linear in the applied B-field is investigated.
Here we study the universal nonlinear susceptibility and
eliminate all uncertainties such as the choice of ultravi-
olet cut-off Λ, subleading terms and contributions from
other bands or core electrons.
Both TaAs and Bi have nonzero chemical potential and

hence have conduction electrons. Therefore at weak mag-
netic fields both compounds show magnetic oscillations.
The conduction electrons freeze and the oscillations dis-
appear at B > 5T in Bi [30] and B > 10 − 13T in
TaAs [29]. In these ranges of B, we can compare the
data with our predictions. In Fig. 2a the points show
magnetic susceptibilities of TaAs (c-direction) and Bi (bi-
nary and bisector directions). The points have signifi-
cant spread as they are obtained by numerical differenti-
ation of experimental magnetizations from Refs. [29, 30].
To focus on the nonlinearity, we plot χref − χ, where
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χref = χ(B = 30T ) for TaAs and χref = χ(B = 50T )
for Bi. Solid curves present our theoretical predictions,
which is manifestly consistent with the data. For dis-
cussion of material specific details, anisotropy etc., see
Supplement Sec. S8. Interestingly, Bi0.9Sb0.1 alloy has
the band structure very close to that of Bi, but with no
conduction electrons [37, 38], and could be an ideal test
platform for our theory. The susceptibility of this com-
pound has not been measured yet, and the solid red curve
in Fig. 2a shows our theoretical prediction.

We now consider novel magneto-electric effects. The
nonlinear dielectric constant is

δǫD = 4π
∂2δLHE

∂E∂E
= U

2αD

3π
Gi(|b|); (13)

|b| ≪ 1 : G||(|b|) =
1

3
|b|2 , G⊥(|b|) = − 2

15
|b|2

|b| ≫ 1 : G||(|b|) = |b| , G⊥(|b|) = − ln(|b|).

Here the index i = ||,⊥ shows the relative orientation of
e,b [48]. Dimensionless functions Gi(|b|) in the whole
range of b obtained by numerical integration of (9) are
plotted in Supplement Fig. S2. Its strong and weak field
limits define actions given by Eqs.(2) and (10) respec-
tively. The dependence of the dielectric constant on the
applied magnetic field is a novel magneto-electric effect.
For b ‖ e the contribution δǫD is positive and can be
very large, while for b ⊥ e the contribution δǫD is neg-
ative. The expressions for arbitrary angle between b, e,
and the relation to the angle between applied fields B

and E, which is generally different due to properties of
the anisotropy transformation are given in Sec. S7. Fur-
thermore, according to (1), (10) there is a nonlinear con-
tribution quadratic in the electric field,

δǫD(E) = U
2 2αD

15π
|e|2, |b| = 0, (14)

which is suppressed by |e|2/|b| when |b| ≫ 1. Notably,
at |e|, |b| ≪ 1, contributions (13) and (14) add up.

The magnetic field induced variation of the dielectric
constant in Eq.(13) scales as δǫD ∝ 1/B⋆ ∝ ∆−2. Thus,
the effect is most significant in a small band-gap Dirac in-
sulators. In Fig. 2b we plot our predictions for Bi0.9Sb0.1.
For e||b the effect is enormous, δǫD ∼ 10/Tesla. For
E ⊥ B the effect is smaller and has the negative sign.
In the same Fig. 2b we also plot predictions for δǫD in
Pb0.5Sn0.5Te. This compound has larger gap and there-
fore the effect is smaller, but still observable.

One more novel magneto-electric effect is the depen-
dence of magnetization, on the applied electric field. The
electric field dependent magnetization M (e) = ∂δL

∂B , in

units of “Dirac magnetons” per “Dirac volume”, reads

4πM (e) =
U

−1
b

|b|
µD

3πλ3
D

|e|2Di(|b|) (15)

|b| ≪ 1 : D||(|b|) =
2

3
|b| , D⊥(|b|) = − 4

15
|b|

|b| ≫ 1 : D||(|b|) = 1 , D⊥(|b|) = − 1

|b| .

The direction of the magnetization (15) in a Dirac crys-
tal is defined by the vector b and depends on crystal
anisotropy as described by Eq. (3). Dimensionless func-
tions Di(|b|) in the whole range of b obtained by numer-
ical integration of (9) are plotted in Fig.S2 in Supple-
mentary material. For b ‖ e the magnetization is large
and paramagnetic, while for b ⊥ e the magnetization is
diamagnetic [48]. Magnetization (15) is quadratic in the
applied electric field and as a function of magnetic field,
saturates when |b| ≫ 1.

To enhance the magnetization in Eq. (15) one needs
the electric field as strong as possible. However, the field
is limited by the dielectric strength, Ed of the material,
beyond which dielectric breakdown occurs. The break-
down probability (rate of Zener tunneling by electric field
per unit volume) is obtained from Eq. (9) [25] and found
to be P ∝ |e|2e−π/|e| (See Sec. S4). The most impor-
tant here is the exponential dependence, which univer-
sally applies to both the Dirac spectrum and quadratic
dispersion. Thus, one expects that Ed, is proportional to
E⋆. Taking two band insulators, diamond (2∆ ≈ 5.5eV,
Ed ≈ 107 V/cm), and silicon (2∆ ≈ 1.14 eV, Ed ≈ 3×105

V/cm), as reference materials, we observe that the dielec-
tric strength scales as Ed ∝ ∆2. Therefore Ed is a fixed
fraction of E⋆. Significant E-dependent magnetic effects
Eq. (15) can then be observed for |e| = 0.1-0.3 [49]. Fur-
thermore, as usual in solids, setups with huge built-in
electric fields in the insulating regime can be explored
[50].

For a fixed e = E/E⋆, the electric field modulated
magnetization in Eq. 15 obeys M (e) ∝ B⋆ ∝ ∆2, so ma-
terials with large gap are preferable, unlike in the depen-
dence of dielectric constant on magnetic field. In Fig. 2c
we plot the predicted magnetization for Pb0.5Sn0.5Te
versus magnetic field at E = 104 V/cm, which corre-
sponds to e ≈ 0.3. For the both fields, e and b, parallel
to the c-axis, the electric field driven magnetization is
4πM (e) ≈ 0.2 µT at B = 1T . When E ⊥ B, the mag-
netization changes sign, see Fig. 2c. In the same figure
we also plot the magnetization in Bi0.9Sb0.1 for e ≈ 0.3.
Here the effect is smaller due to the smaller Dirac gap.

The electric field driven magnetization in Bi0.9Sb0.1
(4πM (e) ∼ 10−8T) and in Pb0.5Sn0.5Te (4πM (e) ∼ 2 ×
10−7T) can be feasibly detected in lock-in experiments,
in an applied electric field having a constant and an AC
component (with frequency ω). The induced magnetiza-
tion is then characterized by contributions modulated at
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frequencies ω and 2ω. Of course, the condition ~ω ≪ 2∆
is assumed fulfilled. Experiments on observation of M (e)

could also take advantage of the SQUID magnetometry,
sensitive to magnetization as low as 10−15 T/

√
Hz [51],

much lower than the predicted values.

In conclusion, Based on the Heisenberg-Euler theory of
the physical vacuum we develop the theory of nonlinear
electromagnetic effects in Dirac materials. We explain
the results of two recent experiments on nonlinear contri-
bution to magnetization of Dirac materials. We predict
two novel magneto-electric effects and discuss possible

experiments and materials for their observation.
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