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Capturing non-Markovian dynamics of open quantum systems is generally a challenging problem,
especially for strongly-interacting many-body systems. In this work, we combine recently developed
non-Markovian quantum state diffusion techniques with tensor network methods to address this
challenge. As a first example, we explore a Hubbard-Holstein model with dissipative phonon modes,
where this new approach allows us to quantitatively assess how correlations spread in the presence
of non-Markovian dissipation in a 1D many-body system. We find regimes where correlation growth
can be enhanced by these effects, offering new routes for dissipatively enhancing transport and
correlation spreading, relevant for both solid state and cold atom experiments.

Introduction. In open quantum system dynamics, it
is becoming increasingly crucial to consider the effects
of non-Markovian dissipation, i.e., dissipation into a
spectrally-structured environment which remembers past
interactions with the system [1], as demonstrated in
many recent quantum devices which are non-Markovian
in nature [2–4]. While there has been great progress
in treating these features computationally [5–11], there
has so far been difficulty in generalising these meth-
ods for strongly-interacting many-body systems, even
in 1D. Here, by hybridizing tensor network and non-
Markovian stochastic techniques, we show how to cap-
ture the effects of non-Markovian dissipation on the gen-
eration of long-range correlations in strongly interact-
ing one-dimensional many-body systems. As an exam-
ple, we consider a damped form of the Hubbard-Holstein
model, which introduces electron-phonon interactions to
strongly correlated systems [12–14]. We find that the
growth of pairing correlations can be enhanced by going
beyond the Markovian regime and that by controlling
the properties of the environment we can tune the cor-
relation spreading in the (electron) system. Our results
demonstrate the capabilities of these methods to explore
dissipative many-body systems beyond the Born-Markov
limit and quantitatively capture their out-of-equilibrium
dynamics, as motivated by experimental advances with
many-body cavity quantum electrodynamics (QED) [15–
17] and with cold atoms immersed in reservoir gases [18–
22].

Large separations of frequency scales in quantum op-
tical systems coupled to their environment have made
theoretical tools such as the Gorini, Kossakowski, Sudar-
shan, Lindblad (GKSL) master equation [23, 24] invalu-
able for quantitatively capturing many important exper-
iments. There, the system and environment are weakly
coupled and the environment is memory less, satisfying
the Born-Markov approximation [25, 26]. Reservoir en-
gineering in recent quantum optics experiments, such as
using impurities immersed in Bose-Einstein Condensates
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FIG. 1. (a) Illustration of the Hubbard model coupled with
strength g to independent identical local phonon modes of fre-
quency ω and damping rate κ. While the dissipative dynam-
ics of the system made up of the fermions and the phonons
(dashed black box) is Markovian, the one of the Hubbard sys-
tem alone (dashed blue box) is generally non-Markovian. (b)
Matrix product state (MPS) representation of the many-body
HOPS equations [see Eq. (6)], with local dimension d and hi-
erarchy dimension kmax + 1 in the usual form but now with
an enlarged local dimension d+ kmax + 1.

(BEC) to produce spin-boson models [18–22] or with
multi-mode cavity QED systems [15–17], has made it
possible to go beyond the Born-Markov regime in systems
where microscopic models can still be derived from first
principles. This has motivated interest in creating the-
oretical tools to compute dynamics in these cases. The
large size of these systems makes it necessary to trace
out the BEC in the former scenario and the cavity modes
in the latter, which results in open quantum system de-
scriptions that are generally non-Markovian [14, 27–30].
Simulating these situations is particularly challenging
due to the combination of strong interactions generating
strongly correlated phases, the many-body system giving
rise to an exponentially large Hilbert space and the non-
Markovian features requiring the use of an equation of
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motion that is non-local in time.
Finding the best way to deal with non-Markovian dy-

namics, the most natural kind of open system dynamics
occurring in the solid-state from which our example orig-
inates, is an old and difficult problem, and a number of
approaches have been developed over the past decades,
ranging from non-Markovian master equations [26] to
non-Markovian collapse theories [31], collisional mod-
els [32] and stochastic Schrdinger equations [33, 34]
(see [1] for a detailed review). More recently, time-
evolving matrix product operators (TEMPO) [7–9] or hi-
erarchical equations of motion (HEOM) [5, 6] have shown
remarkable potential for systems with a small Hilbert
space, but so far have not been generalised to many-body
systems.

To address this challenge here we employ the hierarchy
of pure states (HOPS) [10, 11], a non-Markovian quan-
tum state diffusion method, which we have combined
with matrix product state (MPS) techniques [35]. We
demonstrate applications for this method by exploring
dynamics in a modified Hubbard-Holstein model [12, 13],
where we couple strongly interacting fermions to local
harmonic oscillator modes that are damped, representa-
tive of phonons that have dispersion. We show that non-
Markovian dissipation can enhance the short-time dy-
namical growth of the pairing correlations where we find
a qualitative difference compared to the Markovian, but
also the phononless cases. This demonstrates that this
method allows us to quantitatively simulate the dynamics
of strongly correlated one-dimensional open many-body
systems well into the non-Markovian and strong coupling
regimes.

The dissipative Hubbard-Holstein model. We consider
the model shown in Fig. 1(a), with fermions in an M site
lattice, described by a many-body system Hamiltonian
Ĥs where each site is coupled to a local phonon mode
similar to the (Hubbard)-Holstein model [12, 13]. The
total Hamiltonian is given by

Ĥ = Ĥs + ω

M∑
n=1

â†nân + g

M∑
n=1

(
L̂nâ

†
n + L̂†nân

)
, (1)

where â†n and ân create and destroy a phonon in the nth
mode and L̂n are system operators acting on site n. We
modify the usual Holstein model by going beyond the
approximation of dispersionless phonons, taking a next
step in better modelling realistic situations with this toy
model [36]. We incorporate these effects by modelling
each phonon mode as a damped harmonic oscillator, such
that we can write the phonon correlation function as,

αn(t− t′) = 〈ân(t)â†n(t′)〉 = e−κ|t−t
′|−iω(t−t′), (2)

where ω and κ are the phonon frequency and damping
rate, respectively.

Non-Markovian Quantum State Diffusion. Non-
markovian dynamics arise when we trace out part of the

system where we do not have a strong separation of fre-
quency scales that satisfy the conditions for the Born-
Markov approximation. In principle it is always possible
to place the boundary of the system where the dynamics
are Markovian. In this case, we could take the fermions
and phonon modes as the system [dashed black box in
Fig. 1(a)], with the phonon damping remaining Marko-
vian [37]. However, in many relevant situations (such
as multi-mode cavities described above), it becomes pro-
hibitively expensive computationally to make this choice
because of the large local basis. In this particular case,
we find it much more convenient to trace out the phonon
modes and work with an effective equation of motion for
the Hubbard system only [dashed blue box in Fig. 1(a)].
For finite κ the resulting correlation function for the
phonon modes, Eq. (2), cannot be approximated as a
delta function, and so we must use the non-Markovian
quantum state diffusion (NMQSD) equation for the dy-
namics of the reduced system |ψ(t)〉 [1, 33],

∂t|ψ(t)〉 =− iĤs|ψ(t)〉+ g

M∑
n=1

L̂nz
∗
n(t)|ψ(t)〉

− g
M∑
n=1

L̂†n

∫ t

0

dsα∗n(t− s)δ|ψ(t)〉
δz∗n(s)

,

(3)

where we have introduced a set of stochastic colored noise
terms z∗n(t) which upon taking an ensemble average give
the correlation function E [zn(t)z∗n′(t′)] = δn,n′αn(t− t′).

The HOPS + MPS algorithm. The insight which lead
to the HOPS algorithm [10, 11] is to introduce a set of
auxiliary states which absorb the numerically intractable
functional derivatives δ/δz∗n(s),

|ψ(1,n)(t)〉 = Dn(t)|ψ(t)〉 ≡
∫ t

0

dsα∗n(t− s)δ|ψ(t)〉
δz∗n(s)

. (4)

Deriving an equation of motion for this auxiliary state
requires the introduction of further auxiliary states de-
fined through |ψ(k,n)(t)〉 = [Dn(t)]k|ψ(t)〉 which give rise
to a hierarchical set of equations. In order to write this
hierarchy, we find it convenient to include the hierarchy
index into the basis states and write a total state for the
combined system and auxiliary Hilbert space,

|Ψ(t)〉 =
∑
~k

C~k(t)|ψ(~k)(t)〉 ⊗ |~k〉, (5)

where the C~k(t) are time-dependent complex numbers

and |~k〉 = |k1, k2, · · · , kM 〉 = |k1〉⊗ |k2〉⊗ · · ·⊗ |kM 〉 with
each of the kn running from 0, 1, · · · ,∞, as we have a
hierarchy index for each of the M phonon environment
modes. Each hierarchy index is represented as an in-
dependent boson mode, see the supplementary material
for details [38]. Note that the |ψ(0)(t)〉 ⊗ |0〉 = |ψ(t)〉 is
the physical system state. This allows us to write the
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equation of motion for the total state as,

∂t|Ψ(t)〉 =− iĤs|Ψ(t)〉+

M∑
n=1

(
z̃∗n(t)gL̂n − (κ+ iω) K̂n

+ gL̂n ⊗ K̂nb̂
†
n − g

(
L̂†n − 〈L̂†n〉t

)
⊗ b̂n

)
|Ψ(t)〉.

(6)

Note that we time-dependently modify the colored noise
according to z̃∗n(t) = z∗n(t) + g

∫ t
0
dsα∗n(t − s)〈L̂†n〉s with

〈L̂†n〉s = 〈ψ(0)(s)|L̂†n|ψ(0)(s)〉 thus explicitly taking into
account previous states of the system. Note that one has
to consider sufficiently small time steps in the numeri-
cal resolution of the equation so that the time-dependent
terms in Eq. 6 can be approximated as constant in time.
In this way the non-linear terms z̃∗n(t) and 〈L̂†n〉t are cal-
culated using the state before the time increment.

In the above equation we have introduced the bare
operators (ommitting the index n) b̂†|k〉 = |k + 1〉,
b̂|k〉 = |k−1〉 (see Ref. [39, 40]) and K̂ =

∑
k k|k〉〈k|. We

initialise the hierarchy with C0(0) = 1 and C|k|>0(0) = 0
and in order to extract observables we use the (normal-
ized) physical system state O(t) = 〈ψ(0)(t)|Ô|ψ(0)(t)〉
which we must average over many trajectories with dif-
ferent realisations of the random numbers z∗n(t), similar
to conventional QSD equations [1, 25, 37].

Formally the hierarchy depth is infinite, but the popu-
lations of the auxiliary states typically decrease with the
hierarchy indices kn, which makes it possible in practice
to truncate each hierarchy to some index kmax (chosen
such that the results have converged to a given precision)
to render the problem numerically feasible. In general,
the stronger the violation of the Born-Markov approxi-
mations the larger the number of auxiliary states we must
retain. Note that this hierarchy truncation still results
in an exponential number of equations: if each hierarchy
index can run from 0, 1, · · · , kmax then in total we have
(kmax + 1)M auxiliary states. This motivates the incor-
poration of MPS techniques which allow us to time-evolve
many-body states of one-dimensional Hamiltonians with-
out explicitly working with the full Hilbert space [35]. As
each hierarchy only couples locally with a system opera-
tor of site n this allows us to efficiently write this problem
as an MPS simply with an enlarged local Hilbert space
consisting of the physical local dimension of the system,
but now also an effective local dimension for the auxiliary
state of that effective environment mode [see Fig. 1(b)]
modelled as a boson Hilbert space. This is particularly
convenient as we can then apply standard MPS tech-
niques for time-evolution [41]. This does result in an
MPS with a large local dimension but in the following
sections we show that it can be used to make important
quantitative predictions with practical numerical values
for the size of the hierarchy dimension kmax and also the
bond dimension of the MPS D (see the supplemental ma-
terial for a detailed error analysis [38]). Note finally that
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FIG. 2. Dynamics in the dissipative Holstein model [Eq. (1)

with the system Hamiltonian (7), L̂n = n̂n and the environ-
ment correlation functions (2)] upon beginning in an initial
state |1, 0, 1, 0, · · · 〉. (a-b) The evolution of the CDW corre-
lations OCDW(t) = (1/M)

∑
n(−1)n〈n̂n(t)〉 for different cou-

pling strengths g (g = 0 in black dotted) and phonon dis-
persion rates κ = [g, 2g,∞] (dark to light blue). The Born-
Markov limit (κ → ∞) was calculated using a conventional
quantum trajectory method [37]) (c-d) Finite temperature
analysis for different coupling strengths g = [1, 3, 5]J (light
to dark blue, g = 0 in black dotted) and phonon dispersion
rates κ. See Ref. [11] on how to adapt the algorithm for fi-
nite temperature environments. In all cases we average the
observables over Ntraj = 100 trajectories and use ω = J and
M = 20 lattice sites. For our hybridized HOPS+MPS algo-
rithm, we use the numerical parameters kmax = 8, D = 128
and Jdt = 0.01.

providing kmax and D are large enough, Eq. (6) numeri-
cally converges to the exact dynamics of the system (as
well as of the environment via monitoring of the noises
as we will discuss below), as it does not directly rely on
any approximation (neither Born nor Markov).

Benchmarking. We first consider the out-of-
equilibrium dynamics of a Holstein model [12, 13]. We
use,

Ĥs = −J
∑
n

(
ĉ†nĉn+1 + ĉ†n+1ĉn

)
, (7)

as the system Hamiltonian in Eq. (6), where J describes
the tunnelling of the (spinless) electrons. Additionally,
we use the number operator as our system-environment
coupling operators L̂n = n̂n = ĉ†nĉn, and as mentioned we
include dissipation on the phonons yielding the damped
correlation functions, Eq. (2).

We begin with the initial state |1, 0, 1, 0, · · · 〉 and time-
dependently calculate a charge density wave (CDW) cor-
relations OCDW(t) = (1/M)

∑
n(−1)n〈n̂n(t)〉. We plot

this in Fig. 2(a-b) for different coupling strengths g and
phonon dispersions κ. Comparing to the results obtained
in Ref. [42], which analyzes this system in the limit of dis-
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persionless phonons (κ → 0), we find the same qualita-
tive behaviour, where for g = J the dynamics are similar
to the closed system (g = 0) case where there are oscil-
lations but the CDW melts into a homogeneous steady
state. Increasing the coupling strength to g = 5J we can
see that the CDW melting is slowed for short times and
the oscillations become completely damped.

Born-Markov limit. We also compare our results to
that of a conventional quantum state diffusion (QSD)
equation valid in the Born-Markov limit [37]. This is
achieved by setting kmax = 1 and αn(τ) = δ(τ) (see
Ref. [10] and the supplemental material [38]) which phys-
ically corresponds to the approximation that the phonon
dispersion κ goes to infinity. From Fig. 2 we see that for
strong coupling (g = 5J) this model completely fails to
predict the suppression of the CDW correlations at short
times.

Finite temperature. Within the framework of HOPS
it is also possible to efficiently include finite temperature
effects of the environment (see Ref. [11]). In Fig. 2(c-d)
we plot the dependence on the CDW correlations upon
increasing the initial temperature of the environment
modes. We see that the suppression of the CDW melt-
ing is enhanced for increasing temperatures which is due
to a non-zero population of phonons in the initial state,
allowing for a greater effect on the short time dynamics.
Including finite temperature effects in the Born-Markov
QSD simply increases the effective system-environment
coupling strength (see the supplemental material [38])
which as seen from (a-b) predicts an increased decay
of the CDW. Increasing the temperature of the phonon
modes in this model therefore results in further devia-
tions from the Born-Markov regime, in contrast to the
more common cases where larger temperatures suppress
non-Markovian features [1, 14].

Correlation spreading. We move on and consider the
Hubbard-Holstein model describing two-species fermions
coupled to phonon modes and now with an onsite inter-
action U . Explicitly our system Hamiltonian is given by

Ĥs = −J
∑
n,σ

(
ĉ†n,σ ĉn+1,σ + ĉ†n+1,σ ĉn,σ

)
+U

∑
n

n̂n,↑n̂n,↓,

(8)
where n̂n,σ = ĉ†n,σ ĉn,σ and our system-environment cou-

pling operators are L̂n = n̂n,↑ + n̂n,↓. As earlier, we go
beyond the usual case and include phonon dissipation.

In Fig. 3 we begin in the initial product state | ↑, ↓
, ↑, ↓, · · · 〉 and in (a) we analyze the fermionic pairing
correlation functions,

Pm =
1

M −m
∑
m̃

〈ĉ†m̃,↑ĉ
†
m̃,↓ĉm̃+m,↓ĉm̃+m,↑〉. (9)

For the case where there is no coupling to the phonons
g = 0 we observe a peak in these correlations which
spreads out in time, and beyond this the correlations de-
cay exponentially which is the usual light cone spreading
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FIG. 3. Dynamics in the dissipative Hubbard-Holstein model
[Eq. (1) with the system Hamiltonian (8), L̂n = n̂n,↑ + n̂n,↓
and the environment correlation functions (2)], upon be-
ginning in an initial CDW state | ↑, ↓, ↑, ↓, · · · 〉. (a) The
pair correlation function [Eq. (9)], where we use g = J
(g = 0 in black) and compare different phonon disper-
sion rates κ = [g/5, 5g,∞] (dark to light blue). (b) Dy-
namics of the average phonon mode occupation, 〈a†a〉av =
(1/M)

∑
n〈a
†
nan〉 = (1/M)

∑
n

(
|z̃∗n(t)|2 − 1

)
. (c) The real

(blue) and imaginary (red) part of the phonon coherences
〈a†〉av = (1/M)

∑
n〈a
†
n〉 = (1/M)

∑
n z̃
∗
n(t). For our hy-

bridized HOPS+MPS algorithm, we use the parameters
kmax = 6, D = 300 and Jdt = 0.01 where we also have
incorporated conserved quantum numbers into the MPS al-
gorithm [46]. We average the observables over Ntraj = 100
trajectories. In all cases we use U = J , ω = 2J and M = 50
sites.

of correlations [43–45]. Including coupling to the phonon
modes with g = J we see similar behaviour, although the
dissipation damps the amplitude of this peak in time,
gradually suppressing correlations in the steady state.
For finite κ (i.e., non-Markovian environment behaviour),
we see a strong enhancement of the correlation length be-
yond the light cone at short times (tJ ∼ 0.5, 1) which is
qualitatively different to the case of purely Markovian
dissipation (κ → ∞) where the correlation length is un-
affected.

These features of the non-Markovian dynamics can be
understood by realising that the coupling to the phonons
dresses the electrons [47], modifying the quasi-particle
excitations and shifting the effective fermion-fermion in-
teraction strength Ueff → U − 2g2/ω. Here there is a
competition between a generated effective attractive in-
teraction and then the dynamical generation of phonons
in the environment, the presence of which can strongly
suppress dynamics and correlation growth resulting in
CDW order [47]. We can see the competition of these
effects in Fig. 3(a), which are made even more clear by
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analysing the phonon mode observables in Fig. 3(b-c)
which we can directly calculate from HOPS using the
time-dependent colored noise term z̃∗n(t) in Eq. (6) (see
the supplemental material [38]). We see that initially the
phonon population is low and so the effective interaction
between fermions dominates, enhancing the growth of
pairing correlations, before the dynamical generation of
phonons begins to dominate, suppressing correlations at
later times, which for smaller κ is larger due to an in-
creased phonon population.

Discussion and outlook. Our combination of the HOPS
algorithm with MPS techniques opens up the ability to
explore a wide range of new and interesting regimes
that were previously only possible to simulate qualita-
tively and/or through invoking some strong approxima-
tions. By considering the dispersive Hubbard-Holstein
model we demonstrated that we can simulate the ex-
act dynamics of open many-body systems well into the
non-Markovian and strong coupling regimes and we are
able to quantitatively analyze the dynamical proper-
ties of long-range correlation functions. In particular,
we found strong qualitative differences in the dynam-
ics of fermionic pairing correlations between the non-
Markovian and Markovian cases. This work can be gen-
eralised to describe microscopic dynamics in a range of
experimental settings, such as impurities immersed in
BECs [18–22] or atoms in multi-mode cavities [15–17].

Other non-Markovian techniques could be adapted in
order to probe the features investigated in our work, for
example TEMPO [7–9] or HEOM [5, 6]. It may similarly
be possible to combine these methods with MPS, as we
have done here with HOPS. The combination is particu-
larly amenable to our case as it involves the evolution of
a single 1D matrix product state to capture the strongly
interacting open system. Alternatively, explicitly retain-
ing the phonon basis states would result in an equiva-
lent simulation with Markovian dissipation, allowing for
the solution within a standard Born-Markov QSD [1, 37].
However, we find that the number of phonon basis states
required (the local dimension of the MPS) is generally
larger than that required for the present HOPS algo-
rithm. In addition, HOPS has two main additional ad-
vantages. Firstly it can simulate phonon modes initially
at finite temperatures and then track the induced dynam-
ics in real time as demonstrated here, whereas explicitly
retaining the basis states in this case would further in-
crease the complexity. But secondly, improvements and
extensions to the MPS representation can be immedi-
ately implemented [42, 48–51], allowing us to generalise
this approach and approximate the dynamics induced by,
up to reasonable timescales, environments that have al-
gebraically decaying correlations [10, 11] such as those
that arise from power law spectral densities [1, 27, 28].
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[41] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana,
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