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A unique feature of the complex band structures of moir materials is the presence of minivalleys,
their hybridization, and scattering between them. Here we investigate magneto-transport oscilla-
tions caused by scattering between minivalleys - a phenomenon analogous to magneto-intersubband
oscillations - in a twisted double bilayer graphene sample with a twist angle of 1.94 ◦. We study
and discuss the potential scattering mechanisms and find an electron-phonon mechanism and valley
conserving scattering to be likely. Finally, we discuss the relevance of our findings for different
materials and twist angles.

Two-dimensional moiré materials are formed by stack-
ing van der Waals materials such that the layers couple
and an in-plane superlattice emerges. The superlattice
formed depends on the twist (and lattice mismatch) be-
tween the layers. Graphene is a typical van der Waals
material and has a honeycomb lattice build up from two
hexagonal sublattices. The wavefunctions of the two val-
leys K and K ′ in reciprocal space are sublattice polarized
at the Dirac point [1]. Similarly, for trigonal moiré lat-
tices, such as twisted graphene [2, 24], the wavefunctions
of the minivalleys κ and κ′ are polarized on the twisted
layers when the interlayer coupling is weak. Even though
this is a generic property of trigonal moiré lattices, little
is known about the scattering of charge carriers between
these minivalleys.

We focus on twisted graphene since recently a plethora
of correlated states has been observed [3–9], and in view
of these correlations, scattering in twisted graphene is a
highly interesting topic. Specifically, we choose to work
with twisted double bilayer graphene (TDBG) with weak
coupling between the layers, because this offers excellent
control over the minivalley occupation, and high qual-
ity electron transport. This system resembles that of
a weakly coupled double quantum well, where the two
minivalleys around κ and κ′ play the roles of the two
subbands. Since the wavefunctions of the minivalleys are
mostly bilayer polarized, a dual gate geometry provides
independent control over the density in the two minival-
leys, and with that, their energetic alignment [10].

A common way to obtain the leading scattering mecha-
nism is analyzing the temperature dependence of the elec-
trical resistivity [11]. Measurements of the resistivity in
magic-angle twisted bilayer graphene have shown a linear
temperature dependence, suggestive of electron-phonon
scattering [12, 13] or strange metallic behavior [14, 15].
As the scattering between minivalleys is not necessarily
the leading scattering mechanism, we introduce a more
targeted approach. When applying a magnetic field, Lan-

dau levels are formed in both minivalleys separately. The
energetic (mis)alignment of the modulated densities of
states in the two minivalleys leads to oscillations in the
interminivalley scattering. This oscillating interminival-
ley scattering is reflected in electrical transport through
an effect analogous to magneto intersubband oscillations
(MISO) [16, 17]. In the following, we will refer to these
magneto inter-minivalley oscillations as MISO, since they
encapsulate the same physical phenomenon. The method
we present is transferable to other moiré materials with a
well developed Landau level spectrum as well as control
of the energetic alignment of the minivalleys.

Here, we report measurements of MISO in TDBG with
a twist angle of 1.94◦ and investigate the interminivalley
scattering in the regime of hole-like states (n < 0). We
introduce the bandstructure and tunability of the TDBG
device by analyzing its Shubnikov-de Haas oscillations
(SdHO) as a function of density and displacement field.
Then we investigate two regions where MISO are par-
ticularly pronounced. First, towards the Lifshitz transi-
tion [18], we study MISO as a function of temperature
and displacement field and discuss the scattering mech-
anism. Second, at the onset of the second minivalley, we
discuss implications of the underlying scattering mech-
anism based on the observed valley degeneracy lifting.
Finally, we discuss the impact of our findings with re-
gard to different materials and twist angles.

We fabricate a Hall bar device [Fig. 1(a)] from TDBG
sandwiched between two hexagonal boron nitride layers.
A four-terminal current-bias setup is used to obtain the
longitudinal resistance Rxx and Hall resistance Rxy, uti-
lizing standard lock-in techniques with IAC = 100 nA.
Crucially, we are able to control the density n and dis-
placement field D separately in the device through volt-
ages applied to the top gate (Vtg) and bottom gate (Vbg)
(see Supplementary Material [19]). We investigate the
device in a 4He cryostat with a base temperature of
T = 1.2 K, and implemented temperature control. The
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FIG. 1. (a) Schematic overview of the device, including setup to measure the longitudinal and Hall voltage (Vxx and Vxy), and
an out-of-plane magnetic field B. Cross-section of the device featuring the graphite, hexagonal boron nitride (hBN), TDBG,
aluminium-oxide (AlOx), and gold (Au) layers, and the top and bottom gates (Vtg and Vbg) indicated. (b,c) Calculated band
structure of TDBG (1.94 ◦) for displacement field D = 0 and D = 0.1 V/nm, respectively. Minivalleys κ and κ′ are indicated
as well as the regions A and B. (d) Rxx as a function of density n and D at temperature T = 1.2 K and B = 2 T. Regions A
and B are indicated. The overlayed colors bronze and gray indicate single minivalley regimes. The LT is highlighted by the
dashed line. (e,f) Resistance modulation ∆Rxx(n,D) at B = 2 T and T = 10 K and T = 20 K, respectively. The density used
in Figs. 2 and 3 is indicated with a black dashed line.

device is identical to the one investigated in Ref. [27].
For details on the device fabrication and data analysis
see the Supplementary Material [19].

The bandstructure of TDBG with a twist angle of 1.94◦

is presented in Fig. 1(b). The bands in the mini-Brioullin
zone show local minima, maxima and band gaps around
the two minivalleys κ and κ′. Without an applied dis-
placement field D the minivalleys are occupied equally
(region A). In contrast, when a displacement field is ap-
plied, the energetic alignment of the minivalleys ∆ is al-
tered [10]. Independently tuning the Fermi energy now
allows one to only occupy the bands centered around κ′

[Fig. 1(c)], and reach asymmetric minivalley occupations
(region B).

The tunability of our device with respect to the occu-
pation of different minivalleys in the hole bands is in-
vestigated using SdHO. In Fig. 1(d) we show Rxx as

a function of displacement field D and total density n
measured at constant magnetic field B = 2 T and tem-
perature T = 1.2 K. We observe a single set of SdHO
in the regions masked with bronze and gray in Fig. 1(d),
indicating the occupation of a single minivalley. This
corresponds to the Fermi energy being tuned into the
band gap of either minivalley [Fig. 1(c)]. The blue re-
gion in Fig. 1(d) corresponds to the configuration where
both minivalleys κ and κ′ are occupied, giving rise to a
pattern of two sets of SdHO. Similar pattern has been
observed due to interlayer Landau level pinning [26]. We
reproduce this pattern within a simple model by con-
sidering screening effects of the bilayers as presented in
the Supplementary Material [19]. Finally, we highlight
the Lifshitz transition [18] in Fig. 1(d) by drawing the
contour (dashed line) where Rxy = 0. At this line, the
topology of the Fermi surface changes as the Fermi en-
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ergy crosses the saddle point in the bandstructure at the
µ point [see Fig. 1(b,c)] [10].

Interestingly, apart from the SdHO pattern, density in-
dependent resistance minima cutting through the middle
of the hexagons are observed indicated with black ar-
rows in the region labeled A in Fig. 1(d). Unlike SdHO,
which are strongly thermally damped, these resistance
minima are more pronounced at higher temperatures as
seen at T = 10 K and T = 20 K in Fig. 1(e,f). There
we plot the resistance modulation ∆Rxx, where we ex-
tracted a smooth background (RBG

xx ) using the Savitsky
Golay filter [30] and subtracted this from the data (Rxx):
∆Rxx = Rxx − RBG

xx (see Supplementary Material [19]).
These oscillations are MISO [16, 17], caused by an oscil-
lating interminivalley scattering rate. The displacement
field tunes the energy offset between the minivalleys, ∆
(indicated in Fig 1(c)) that periodically changes the en-
ergetic alignment of the Landau levels in the minivalleys.
This results in a periodic modulation of the interminival-
ley scattering rate that we observe as MISO in Fig. 1(d-f).

The unprecedented tunability of our TDBG device al-
lows us to study MISO at various possible relative en-
ergetic alignments of the minivalleys. In particular, we
observe enhanced MISO in two distinct regions denoted
A and B in Fig. 1(d-f). Region A is located towards the
Lifshitz transition for moderate values of displacement
fields, and region B at the onset of the second minivalley.

We start discussing region A showing unambiguously
the difference between MISO and SdHO. Line traces of
Rxx as a function of D measured at different tempera-
tures and constant density n = −2.28× 1012 cm−2 (data
measured at n = −2.78× 1012 cm−2 is in the Supple-
mentary Material [19]) are shown in Fig. 2(a) revealing
the suppression of SdHO with temperature, while MISO
persist. At T = 20 K, as in Fig. 1(f), only MISO are left,
where as at T = 1.2 K, as in Fig. 1(d), SdHO are domi-
nant and MISO are slightly visible as well. However, in
the intermediate temperature regime, T = 10 K, the os-
cillations are commensurate. In Fig. 1(e), this leads to
an apparent phase shift in MISO because with increasing
density there is a shift around n = −2.28× 1012 cm−2

from commensurate SdH and MISO regime to MISO
dominated regime (see Supplementary Material [19]).

In order to show that the oscillation spectrum of MISO
also differs from SdHO we present the resistivity modu-
lation ∆Rxx as a function of B and D at T = 20 K in
Fig. 2(b). Note, displacement field independent Azbel-
Brown-Zak oscillations (ABZO) [27, 38] are present in the
whole magnetic field range. For comparison, we plot the
results of a basic MISO model (see Supplementary Mate-
rial [19]) using dashed lines that highlight the alignment
of Landau levels from different minivalleys. The condi-
tion is fulfilled when the energy spacing of an integer
number of Landau levels fits the energy offset between
the minivalleys, i.e. when ∆(D) = k~eB/meff where k
is an integer and meff = 0.06me the effective mass. At
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FIG. 2. (a) Line traces of the Rxx − Rxx,0 (value of Rxx

at D = 0) versus displacement field D for various temper-
atures T as indicated, at constant n = −2.28 × 1012 cm−2

and B = 2 T. The traces are offset by 35 Ω and the upper
four traces are multiplied by 5 for clarity. Vertical dashed
lines mark positions of MISO as guides to the eye. (b) Resis-
tance modulation ∆Rxx as a function of D and B, taken at
n = −2.28 × 1012 cm−2 and T = 20 K. The black dashed lines
represent the result of the basic MISO model, while gray and
bronze dashed lines represent SdHO originating from κ and
κ′ minivalley respectively (see Supplementary Material [19]).

T = 20 K we estimate that only a few Landau levels par-
ticipate in transport. The model fits well for moderate
D and deviates at higher D, where we suspect the align-
ment condition is broken because meff in the minivalleys
becomes dissimilar. This is in contrast to semiconduc-
tors with mostly parabolic bandstructure, where larger
numbers of Landau levels can overlap at the same time.
Finally, we like to point out the MISO fan in Fig. 2(b) is
different from SdHO Landau fans since it has its origin
at D = 0 [not at finite D as for SdHO in Supplemental
Fig. 7], and it fans out in both directions in D.

Generally MISO is considered to be caused by impu-
rity scattering [17]. One would therefore expect to see
maxima in the resistivity when the Landau levels from
both minivalleys are aligned. Here, we observed the op-
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FIG. 3. (a) Rxx(D,B) at T = 5 K and n =
−2.28 × 1012 cm−2. We highlight an example of SdHO from
κ and κ′ carriers with gray and bronze dashed lines, several
ABZO by purple dashed lines, and the split MISO peaks with
the dark blue arrows. (b,c,d) Possible description of splitting
of the MISO peaks. The density of states (DOS) for both
minivalleys κ and κ′ are shown for D < 0, D > 0 and D = 0,
respectively. The valley splitting and proposed scattering is
indicated. (e) Mini-Brillouin zones of TDBG with labeled
valleys (K and K′) and minivalleys (κ and κ′).

posite. Observing minima at MISO resonances indicates
that phonon-assisted instead of impurity intersubband
scattering is the dominant mechanism [39]. We expect
the electron-phonon scattering to be quasi-elastic, be-
cause in Fig. 2(b) the experimentally observed phase of
the oscillation matches with the phase of the Landau level
alignment in the basic MISO model. Since we observe the
MISO resonances as resistance minima in the full tem-
perature range [Fig. 2(a)], we envision scattering by low
energy phonons (e.g. flexural phonons) that have a flat
dispersion [40, 41].

Additionally, we measured the temperature depen-
dence of the resistivity at B = 0 and D = 0,
which shows a linear behavior, indicative of an electron-
phonon mechanism. However, since the amplitude of
the MISO is small compared to the smooth background
[e.g. ∆Rxx/Rxx,0 ∼ 1% at T = 20 K in Fig. 2(a)],
the interminivalley scattering is probably not the dom-
inant scattering mechanism determining the resistance.
In the Supplementary Material [19], apart from a detailed
analysis of the temperature-dependence of the data, we
present a theoretical model that reveals that intramini-
valley electron-phonon scattering is likely to be the dom-
inant mechanism.

We continue by analyzing MISO as a function of dis-
placement and magnetic field at T = 5 K in Fig. 3(a), fo-
cusing on the same density as in Fig. 2(b). The hexagonal

pattern is formed by two sets of SdHO originating from
respective minivalleys, as indicated in Fig. 3(a), whose
discontinuous structure is a result of screening effects.
Additionally, displacement field independent ABZO are
present throughout the whole magnetic field range. In-
terestingly, instead of single resistance minima, as ob-
served at the alignment condition of MISO in Fig. 2(b),
the MISO resonances are split into two resistance min-
ima at higher magnetic fields, as highlighted by the dark
blue arrows in Fig. 3(a), while the SdHO are not split.
We extract an effective Landé g-factor of g ≈ 5, pointing
towards a splitting of the valley (K and K ′) degeneracy
rather than the spin [42].

The possible Landau level alignments taking into ac-
count valley splitting of a single Landau level in each
minivalley are schematically shown in Fig. 3(b-d), where
three typical energetic offsets are sketched. From this
picture one would expect to observe three MISO minima.
However, since we only observe two (configuration b and
c), the interminivalley scattering must have a valley se-
lection criterion. Note that the MISO splitting is twice
that of the Landau levels, which makes it plausible that
the splitting is not apparent in the SdHO. In Fig. 3(e)
we sketch the mini-Brillouin zones with respective val-
leys and minivalleys. Considering the relative distance
in k-space it is more likely that the scattering is valley
conserving. In combination with a quasi-elastic scatter-
ing mechanism, this implies that the valley splitting in
the two graphene bilayers should be opposite and scat-
tering is only allowed when the same valleys line up, as
sketched in Fig. 3(b,c). Future theoretical work is needed
to confirm this possible mechanism.

After analyzing the region of enhanced MISO in region
A of Fig. 1(d), we shift our attention to the region at the
onset of the second minivalley occupation, denoted by B
in Fig. 1(d). In Fig. 4(a) we plot Rxx as a function of
B and n, at finite displacement field and temperature of
T = 1.2 K. At densities below n ∼ −1.5× 1012cm−2,
which is the density onset of the κ minivalley, we mea-
sure the Landau fan of κ′ minivalley highlighted with
bronze dashed lines in Fig. 4(a). Once the Landau levels
of the second minivalley appear, the levels in the already
occupied κ′ minivalley (dotted bronze lines) split as in-
dicated with the bronze arrow in Fig. 4(a), signalling a
transition from 4-fold to 2-fold degenerate levels [see also
inset of Fig. 4(a)]. To find out which degeneracy (valley
or spin) is lifted, we perform additional measurements,
using a different cryostat, for two different angles of the
magnetic field with respect to the normal of device [see
Fig. 4(b)]. Since the splitting depends on B⊥ (and not on
|B|), we speculate that the valley (K and K ′) degeneracy
in the already occupied κ′ minivalley is lifted.

The lifting of the valley degeneracy once the second
minivalley gets occupied can be a result of electron-
electron interactions, as it is not expected to occur due
to single particle effects [43]. A possible electron-electron
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interaction at play is the valley exchange effect. Further-
more, due to high effective mass at the onset of the sec-
ond minivalley, screening effects can improve the mobil-
ity leading to better line-width of SdHO hence revealing
the splitting in the spectrum. However, since we observe
enhanced MISO, i.e. stronger scattering, at the onset
of the second minivalley, we speculate that the observed
enhanced inter-minivalley scattering leading to MISO in
region B of Fig. 1(d) is due to an electron-electron scat-
tering mechanism.

In summary, by using MISO as a targeted measure-
ment approach, we have investigated interminivalley
scattering in a moiré material. We found two regions
of enhanced MISO, and discussed the likely scattering
mechanisms of electron-phonon scattering with a valley
selection rule in the vicinity of the Lifshitz transition
and electron-electron scattering at the onset of the sec-
ond minivalley. The described measurement technique is
transferable to other moiré materials [44, 45], given that
they adhere to the prerequisites of a clear Landau level
spectrum and sufficient tunability. Furthermore, when
decreasing the twist angle the regions of enhanced MISO
merge, the minivalleys come closer in k-space, and the ef-
fective mass is lowered further as the bands become flat-
ter. We therefore anticipate interminivalley scattering to
increase strongly. Our observations may give a handle
to refine theoretical models that aim to capture inter-
actions in moiré systems, such as magic-angle twisted
bilayer graphene.

When preparing the manuscript we became aware of a

complementary work [45] in twisted bilayer graphene.

All data used in this Letter is made available online at
the ETH Zürich research collection DOI 10.3929/ethz-b-
000508511.
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