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We implement a two-qubit entangling Mølmer-Sørensen interaction by transporting two co-
trapped 40Ca+ ions through a stationary, bichromatic optical beam within a surface-electrode Paul
trap. We describe a procedure for achieving a constant Doppler shift during the transport which
uses fine temporal adjustment of the moving confinement potential. The fixed interaction duration
of the ions transported through the laser beam as well as the dynamically changing ac Stark shift
require alterations to the calibration procedures used for a stationary gate. We use the interaction to
produce Bell states with fidelities commensurate to those of stationary gates performed in the same
system. This result establishes the feasibility of actively incorporating ion transport into quantum
information entangling operations.

Recent progress in the ability to control trapped-ion
positions and velocities offers opportunities to explore
novel roles for active transport in quantum logic opera-
tions. Transport operations are essential to most modern
ion trap experiments to enable loading, individual detec-
tion, and individual addressing [1, 2]. Maturing trap de-
sign and electrical potential control hardware have led to
impressive feats of fast shuttling [3, 4], fast ion separation
[5, 6], optical phase control [7], junction transport [4, 8],
and ion chain rotation [9, 10].
An architecture that incorporates ion transport di-

rectly into quantum gates was proposed as an approach
to reduce overall optical power and timing precision re-
quirements within large trap arrays [11]. This architec-
ture was partially realized by de Clercq et al., who per-
formed one-qubit operations in parallel on two 9Be+ ions
by transporting them through reflected, co-propagating
beams in separate trap regions [12]. This work did not
demonstrate the two-qubit entangling operations that
would be necessary for a universal gate set [13].
Here we demonstrate two-qubit entangling gates per-

formed on trapped ions during transport. In contrast
to the hyperfine qubits envisioned in ref. [11], we ad-
dress an optical qubit transition between an electronic
ground state and a metastable excited state of 40Ca+

ions confined within a surface Paul trap, where we can
perform both one-qubit and two-qubit gates with a sin-
gle, global beam. We modify the time dependence of
the transport potential to control the velocity of the ions
across an 80 µm trap region, and we apply a bichromatic
field during this transit to produce a Mølmer-Sørensen
(MS) entangling interaction [14]. To compensate for the
time-varying ac Stark shift that the ions experience as
they traverse the optical beam, we leverage small changes
in the Doppler shift and thereby obtain fidelities tanta-
mount to those of stationary gates in the system.
In these experiments, two 40Ca+ ions are confined

58 µm above a surface-electrode linear Paul trap [15].
A radio-frequency potential with 176 V amplitude at
56.4 MHz applied to long electrodes on both sides of the
trap axis provides radial confinement. Arbitrary wave-
form generators (AWGs) deliver potentials with a max-

imum amplitude of ±12 V and a 5 ns sampling rate to
42 electrodes to control the strength and location of the
axial potential minimum [7]. The center-of-mass (COM)
and breathing-motion (BM) axial mode frequencies are
ωCOM/(2π) = 1.41 MHz and ωBM/(2π) = 2.45 MHz
[16]. We use the ground |S1/2,mj = −1/2〉 (|S〉) and
metastable |D5/2,mj = −1/2〉 (|D〉) electronic states
of the ions as our qubit, with mj denoting the angular
momentum projection of each state; we coherently ma-
nipulate the populations in these states with a narrow-
linewidth 729 nm laser beam oriented at 45◦ to the trap
axis and with a waist of 15 µm. We distinguish popula-
tions in the two-ion bright state P2 (|SS〉), the one-ion
bright subspace P1 (superpositions of |SD〉 and |DS〉),
and the dark state P0 (|DD〉) using fluorescence detected
by a single photomultiplier tube while illuminating the
ions with 397 nm and 866 nm light [17]. The trap is
housed in a room temperature ultra-high vacuum cham-
ber with windows for optical access, and the chamber
and beam-delivery optics are surrounded by a mu-metal
enclosure.
Figure 1 illustrates the trap geometry and experimen-

tal sequences. The ions first undergo Doppler cooling,
sideband cooling (axial COM and BM modes), and state
preparation at position ‘C’ and are transported 40 µm
to the left (position ‘L’) in 25 µs. The entangling inter-
action is then applied during an 80 µm transport (‘L’ to
‘R’) at 0.5 m/s ( 160 µs duration). For our beam geome-
try, this motion Doppler shifts the 729 nm beam tones by
0.5 MHz. The ions then are returned to ‘C’ in 10 µs for
additional 729 nm pulses and final state detection. For
interactions that take place during the entire ‘L’→‘R’
transport duration, the 729 nm beam is switched on 2 µs
before the transport starts and off 2 µs after the trans-
port has finished [Fig. 1(b)][18]. For detailed in-flight
spectroscopy experiments, we divide the transport into
eight portions and probe these segments using 729 nm
pulses with 20 µs duration each [Fig. 1(c)].
Our MS entangling interaction requires two optical

tones applied simultaneously with frequencies detuned
near the red and blue BM sidebands [19]; we choose the
BM mode because it has a low heating rate and is not



2

excited strongly during linear transport. We create this
bichromatic field by passing the 729 nm beam through
an acousto-optic modulator (AOM) with two rf tones ap-
plied; both diffracted output beams are coupled into a
single optical fiber to deliver co-propagating laser fields
to the trapped ions [20, 21]). For an interaction dura-
tion τ , the optical tone frequencies and powers are cho-
sen such that the gate transforms ions initialized in the
ground state |SS〉 into a maximally entangled Bell state
(|SS〉 − i|DD〉)/

√
2. We quantify the fidelity F of the

state produced in this way using a combination of two
experimental results: (1) the populations P0 and P2 af-
ter the gate and (2) the amplitude A of a parity signal
constructed by applying a global π/2 pulse with varying
phase after the gate [22].

time

40 

Cool & 

Prep

L R

time

Cool & 

Prep

L R

Detect( )

Detect( )

Transport

Optical operations

Transport

C R

40 07
2

9
 n

m
 

In
te

n
si

ty

(a)

Optical operations

L

(b)

(c)

C L R C

C L R C

( )

( )

FIG. 1. (a) Diagram of the trap and 729 nm beam inten-
sity profile along the trap axis with rf electrodes in dark gold
parallel to the trap axis and segmented electrodes above and
below them. Ions begin in the center of a 60 µm wide elec-
trode at position ‘C’. ‘L’ and ‘R’ denote the leftmost and
rightmost portions of the transport region. (b) Experimental
sequence for full transport measurements. Green blocks in-
dicate optical operations (cooling, state preparation) before
and after transport, red blocks indicate 729 nm pulses, and
blue blocks indicate transport operations between indicated
positions. (c) Segmented measurement sequence in which the
729 nm beam is pulsed only during a 20 µs segment of the
full transport duration. Red pulses in parentheses indicate
729 nm pulses used in parity analysis and red-sideband spec-
troscopy measurements.

We determine several initial sets of dc electrode volt-
ages to confine the ions statically at 2 µm intervals along
the trap axis by creating a three-dimensional discretized
model of the ideal trap and solving for potentials that
produce harmonic confinement [23]. For simple shuttling
operations, linear interpolation between these harmonic
potentials is sufficient to transport ions from one position

to another. We use this preliminary sequence of volt-
ages, called a waveform, as a starting point for transport
across the 80 µm experimental region. Unfortunately,
the confining fields produced in practice can differ from
the ideal solutions due to trap fabrication imperfections,
stray fields, and dc electrode filter distortions, so we cali-
brate modifications to the waveform to correct for varia-
tions in axial confinement strength and transport veloc-
ity.

Because the entangling operation relies on interactions
with an axial motional mode, producing constant axial
confinement during transport simplifies the gate imple-
mentation. For this we take measurements of the COM
mode frequency of an ion in a stationary potential every
5 µm along the transport region: we apply an rf exci-
tation to a nearby electrode and measure the detected
fluorescence as the excitation frequency is varied. These
measurements reveal deviations in the harmonic poten-
tial strength at different locations in the transport region
(as high as 4.6% variation in ωCOM), which we correct
with a multiplicative scaling on all of the electrode volt-
ages responsible for harmonic confinement, but not on
those compensating for stray electric fields.

Measurements of the Doppler-shifted qubit transition
frequency after this procedure reveal undesired devia-
tions in the transport velocity. We expect the frequency
of the 729 nm beam to be shifted by 500 kHz for ions
moving at 0.5 m/s, but initial spectroscopy of the qubit
resonance realized by shuttling an ion over the entire re-
gion from ‘L’ to ‘R’ reveals a multi-peaked feature [black
points in Fig. 2(a)]. This indicates that the Doppler
shift is changing during transport. We instead probe
the in-flight Doppler shift in smaller 20 µs segments [see
Fig. 1(c)], which produces single-peaked spectra repre-
senting the local Doppler shifts plotted in Fig. 2(b). The
local Doppler shifts indicate velocity variations of up to
4.9% from the expected value. To achieve a constant
Doppler shift during transport, we modify the ion ve-
locity in each segment of the waveform with an appro-
priate change in sampling density. When this correction
is applied to each segment, the full-transit spectrum ex-
hibits a single peak with full width 7.0 kHz at half maxi-
mum [red points in Fig. 2(a)]; this width is slightly larger
than the 5.6 kHz width expected for a Gaussian inten-
sity ramp with 42 µs 1/e2 time, indicating a variation
of 1 kHz on a 500 kHz background Doppler shift. We
refer to this corrected waveform as the ‘constant-velocity
waveform’ below. While the MS interaction is insensitive
to motional occupation to first order, motional heating
of the mode during the MS gate can cause errors. We
measure the motional heating after a round-trip trans-
port using the constant-velocity waveform and observe
no transport-induced heating for BM or COM modes
(within 0.04 and 0.1 quanta uncertainty, respectively).
Assuming a BM mode heating rate ṅ given by this uncer-
tainty distributed over our transport duration provides
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an estimated upperbound error contribution from gate

transport of ṅτ
4 ≈ 0.005[24].
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FIG. 2. Black circles (red diamonds) indicate data taken be-
fore (after) waveform correction. (a) Frequency spectrum of
the qubit transition; points represent the mean of two-ion fluo-
rescence counts over 500 experiments, and error bars represent
the standard error of the mean. (b) Doppler shift measured
in each 10 µm segment of the transport region as determined
from fits to spectral peaks; error bars (fit errors) are smaller
than the size of the points.

In the absence of Stark shifts, the blue and red BM mo-
tional sideband frequencies are given by ωb = ωc + ωBM

and ωr = ωc − ωBM, respectively, where ωc is the qubit
carrier frequency. When the ions are illuminated with the
two MS interaction tones, the sideband frequencies expe-
rience an intensity-dependent light-shift of ∆S , assumed
to be equal for both sidebands[25, 26]. To implement the
entangling interaction, we apply the two MS tones at de-
tunings (from the bare carrier) of δb = ωBM + δm + δg
for the blue tone and δr = −ωBM − δm + δg for the red
tone. Here, δm is the usual ‘mode detuning’, and δg is a
‘global detuning’ that can be used to compensate for the
light shift. Both ∆S and δg can be time-dependent.
We consider the interaction of co-propagating laser

fields of equal intensity and polarization at frequency
detunings δb and δr with the electric quadrupole tran-
sition of the ions [27]. After taking both Lamb-Dicke
and rotating wave approximations and neglecting off-
resonant terms, we write the MS Hamiltonian in the
(Stark-shifted) spin and motion interaction frame as:

HMS =
ℏΩηBM

2
(a†e−i(δm+δg−∆S)t + aei(δm−δg+∆S)t)

× (σ+
1 − σ+

2 ) + h.c.

where Ω is the carrier Rabi frequency, ηBM ∼ 0.042 is

the BM Lamb-Dicke parameter, a† and a are creation
and annihilation operators for BM vibrations, and σ+

and σ− are raising and lowering operators for the internal
electronic states of the indicated ion. We model the dy-
namics of the interaction by solving the time-dependent
Schrodinger equation for τ = 160 µs, and we allow the
parameters of HMS to vary during the interaction to an-
alyze the effects of a changing Rabi frequency and Stark
shift in cases where the ions are transported across the
729 nm beam.

We briefly describe typical calibration procedures and
results for an MS entangling gate on ions in a stationary
potential in order to highlight the differences between
this simpler situation and the interaction we later im-
plement on transported ions. For a constant-intensity
interaction, we perform Rabi experiments to calibrate
both the red and blue BM sideband frequencies. Dur-
ing the calibration of each sideband, we apply the other
tone at a detuning of δm/(2π) = 25 kHz from its side-
band frequency to generate the Stark shift present during
the gate while only minimally driving the gate interac-
tion. This procedure effectively applies the global detun-
ing necessary to compensate the Stark shift (δg = ∆S).
We use a similar experiment to balance Rabi frequen-
cies. Then, for a fixed bichromatic interaction duration,
we analyze the ion state populations P0, P1, and P2 as a
function of δm to determine that value which minimizes
P1, and we adjust the beam powers at this optimum de-
tuning to balance P0 and P2. For τ = 160 µs, we choose
δm/(2π) = 12.5 kHz (implementing two loops in motional
phase space), and achieve a gate fidelity F = 97.0(4)%.
This fidelity is limited largely by magnetic field noise and
laser phase noise: we measure a 1.4(3)% contrast loss
in a single-ion Ramsey experiment with a 160 µs delay,
suggesting an approximate decoherence-induced two-ion
process error of 3%.

When the Stark shifts are compensated (δg = ∆S), the
state population curves become symmetric about δm = 0,
as seen in Fig. 3(a). The constant-intensity square pulse
of 729 nm light produces minima in P1 at mode detun-
ings δm = n/τ for integers n, so that only these values
are optimal. Revivals in P1 between these optimal val-
ues can be diminished through a smooth intensity enve-
lope [11], thereby reducing this constraint on detunings.
When we transport ions through the stationary 729 nm
Gaussian beam, they experience a natural Gaussian in-
tensity envelope, but this smoothly varying optical in-
tensity also creates a time-dependent Stark shift ∆S(t),
rather than a constant ∆S , that cannot be completely
compensated through a constant offset in drive frequen-
cies (δg). The uncompensated Stark shift breaks the
mode-detuning symmetry of the interaction, complicat-
ing the dynamics. While the light shift can be eliminated
to first order by adjusting the relative tone powers [25]
or by illuminating the ions with an additional tone that
produces an opposite light shift [26], we instead indepen-



4

0

0.2

0.4

0.6

0.8

S
ta

te
 P

o
p

u
la

ti
o

n

(a)

(b)

. % 

. % 

0

0.2

0.4

0.6

0.8

-30 -20 -10 0 10 20 30

S
ta

te
 P

o
p

u
la

ti
o

n

Mode Detuning m/(2 )  (kHz)

FIG. 3. State populations P0 (red), P1 (blue), and P2 (green)
as a function of mode detuning δm for τ = 160 µs. Points
represent experimental data (error bars give the 68% confi-
dence interval assuming binomial statistics). Solid lines repre-
sent fits to simulations with our model Hamiltonian HMS and
with Ω and ∆S as free parameters; in the transport gate case
these are given a Gaussian time envelope. Vertical dashed
lines indicate the detunings corresponding to the reported
gate fidelities. (a) Constant intensity interaction with ions
in a stationary potential; F = 97.0(4)%. (b) Interaction on
ions transported with modulated velocity through the beam;
F = 97.1(4)%.

dently implement two different Stark shift compensation
methods for these ‘transport gates’ performed on trans-
ported ions; the first ‘static’ method involves the appli-
cation of a constant δg that only loosely counteracts the
time-varying Stark shift. The second ‘dynamic’ method
leverages in-flight adjustments to the velocity of the mov-
ing potential to smoothly counteract ∆S(t) with a vary-
ing Doppler shift δD(t) which acts as a time-dependent
δg(t). We model these effects in both cases using a Gaus-
sian envelope on Ω(t) and ∆S(t) that takes into account
the beam waist, the moving potential, and the ion spac-
ing.

All calibrations for the transport gate are performed
with the beams turned on during the full transport du-
ration [Fig. 1(b)]. We begin by calibrating the Doppler-
shifted, bare sideband frequencies (ωb and ωr) using a
reduced optical power with the constant-velocity wave-
form; the lowered intensity avoids over-driving the tran-
sitions and minimizes the Stark shift. We then perform
the MS sequence at full power and analyze the result-
ing populations to determine a value for the detuning δm

that minimizes P1. We first attempt the static compen-
sation method, for which we scan the global detuning
δg to further minimize P1 and then optimize the beam
powers to balance P0 and P2. We perform the MS gate
at δm/(2π) = 14.2 kHz and δg/(2π) = 4.4 kHz, and we
measure a gate fidelity F = 96.6(4)%.

The static compensation method is straightforward to
implement, and it allows us to determine both the re-
quired optical power necessary to perform the transport
gate and the corresponding Stark shift experienced by
the ions during transport. The gate performed on trans-
ported ions requires a three-fold increase in optical in-
tensity compared to the standard gate because the trans-
ported ions spend less time in the most intense portion of
the beam. While the intensity necessary for a single gate
is higher, the power could be recycled to perform gates
on other ion pairs in a larger trap array[11]. To quan-
tify the light shift variation during the transport gate,
we measure the Stark-shifted sideband frequencies dur-
ing 20 µs segments of the transport at the MS gate in-
tensity. As described above for the stationary potential
well, each sideband is calibrated with the other tone ap-
plied simultaneously at δm/(2π) = 25 kHz. We measure
a 5 kHz difference between sideband frequencies at the
edge of the beam and those in the most intense, center
portion - a quantity consistent with the value of δg used
to optimize gate performance.

Rather than applying a constant frequency correction
for the light shift, the ion transport allows us to im-
plement a unique dynamic Stark shift correction using
our control over ion velocity. We create a ‘modified-
velocity waveform’ by making further small adjustments
to the sampling density in each segment of the wave-
form. The adjustments produce an additional time-
varying Doppler shift δD(t) on the laser tones that
counteracts the intensity-dependent Stark shift (δg(t) =
δD(t) = ∆S(t)). Using the bare, Doppler-shifted side-
band frequencies calibrated with the constant-velocity
waveform, we implement the MS interaction on ions
transported with the modified-velocity waveform. We
choose a value of δm that minimizes P1 [Fig. 3(b)], and
we optimize the global beam power to balance P0 and P2.
For δm/(2π) = −15 kHz, we measure a gate fidelity of
F = 97.1(4)%. The interaction model fit to the dynamic
correction transport gate data determines an uncompen-
sated Stark shift of 140 Hz and predicts an error of 0.0058
for our gate. With perfect Stark shift compensation, the
expected error reduces to 0.0026; this could be reduced
even further by operating at larger gate detuning with
greater optical power. The use of fine adjustments to the
moving potential’s velocity allows us largely to remove
the symmetry-breaking light shift effects while maintain-
ing a smooth optical intensity ramp and therefore allows
a wider range of detunings and optical intensities for the
gate.

While the transport used in this study is adiabatic, we
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note that non-adiabatic transport could also be incor-
porated in the gate. In that case, a well defined phase
must be established between the transport and the op-
tical force to ensure that the same motional phase-space
trajectory is achieved during every experimental repeti-
tion [28, 29]. The subdivision of the transport waveform
into eight 20 µs segments does not approach the limits
of the AWG sampling rate (5 ns) nor the response time
of the electrode filters (2 µs). Shorter waveform seg-
ments would provide finer velocity control for correcting
Doppler shift variations and for dynamically compensat-
ing Stark shifts. Through observations of mode detuning
asymmetry, we can leverage the gate itself to calibrate
small corrections to the waveform interpolation which
optimally compensate the variable Stark shifts. Despite
the coarse discretization of the transport waveform used
here, we obtain gate fidelities equalling those of station-
ary gates in our system and demonstrate the feasibility
of a transport-based universal quantum gate set.

Ongoing advances in trapped-ion experimental control
provide opportunities to explore new quantum logic ar-
chitectures and techniques. Fine spatial and temporal
manipulation of trap electric fields yields freedom in the
confining potential position, velocity, and strength that
can be exercised to modify qubit interactions in ways
that can reduce constraints on experimental requirements
and can improve gate performance. The transport gate
technique demonstrated here could be extended to longer
ion strings with different motional modes and ion species
with appropriate changes in beam geometry. In partic-
ular, the scheme is amenable to σzσz interactions such
as the optical-transition dipole force gate [30, 31] where
the Stark shift effects could be eliminated entirely with
an echo pulse.
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