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We introduce a novel measure for the quantum property of non-stabilizerness - commonly known
as magic - by considering the Rényi entropy of the probability distribution associated to a pure
quantum state given by the square of the expectation value of Pauli strings in that state. We show
that this is a good measure of non-stabilizerness from the point of view of resource theory and
show bounds with other known measures. The stabilizer Rényi entropy has the advantage of being
easily computable because it does not need a minimization procedure. We present a protocol for
an experimental measurement by randomized measurements. We show that the non-stabilizerness
is intimately connected to out-of-time-order correlation functions and that maximal levels of non-
stabilizerness are necessary for quantum chaos.

Introduction.— Quantum physics is inherently
different from classical physics and this difference
comes in two layers. First, quantum correlations
are stronger than classical correlations and do vi-
olate Bell’s inequalities[1, 2]. Classical physics can
only violate Bell’s inequalities at the expense of local-
ity. Second, based on the assumption that P 6= NP ,
quantum physics is exponentially harder to simulate
than classical physics[3]. The theory of quantum
computation is based on the fact that, by harness-
ing this complexity, quantum computers would be
exponentially faster at solving certain computational
tasks[3–7].

It is a striking fact that these two layers have a
hierarchy: entanglement can be created by means
of quantum circuits that can be efficiently simulated
on a classical computer[8]. These states are called
stabilizer states (STAB) and they constitute the or-
bit of the Clifford group, that is, the normalizer of
the Pauli group. Therefore, starting from states
in the computational basis, quantum circuits with
gates from the Clifford group can be simulated on
a classical computer, in spite of being capable of
making highly entangled states. The second layer of
quantumness thus needs non-Clifford gates. These
resources are necessary to unlock quantum advan-
tage. Since there is never a free lunch, non-Clifford
resources are harder to implement both at the exper-
imental level and for the sake of error correction[9–
13]. Understanding non-stabilizerness in quantum
states is of fundamental importance to understand
the achievable quantum advantage in schemes of
quantum computing[14–17] or other quantum infor-
mation protocols[18, 19]. Resource theory of non-
stabilizerness has recently found copious applica-
tions in magic state distillation, non-Clifford gate

synthesis[20–23], as well as classical simulators of
quantum computing architectures[23–26].

In a broader context, one would like to know
what is the bearing of this second layer of quan-
tumness on other fields of physics: from black holes
and quantum chaos[27, 28] to quantum many-body
theory[28], entanglement theory[29], and quantum
thermodynamics[30].

Standard measures of non-stabilizerness are based
on general resource theory considerations. A good
measure must be stable under operations that send
stabilizer states into stabilizer states and faithful,
that is, stabilizer states (and only those) must return
zero. Known measures of non-stabilizerness either
involve computing an extreme over all the possible
stabilizer decompositions of a state and are therefore
very hard to compute or cannot anyway be seen as
expectation values of an observable[21, 22, 28].

In this paper, we define a measure of non-
stabilizerness as the Rényi entropy associated to the
probability of a state being represented by a given
Pauli string. Computing this quantity does not in-
volve a minimization procedure. We also present a
protocol for its experimental measurement based on
randomized measurements[31–36]. We show that, in
the context of state synthesis, O(n) magic states are
necessary to prepare a Haar-random state. Then we
proceed to investigate how much stabilizer entropy a
unitary operator can achieve on average on the stabi-
lizer states, that is, the free resources and finally we
show that the non-stabilizing power of a quantum
evolution can be cast in terms of out-of-time-order
correlation functions (OTOCs) and that is thus a
necessary ingredient of quantum chaos.

Stabilizer Rényi Entropy.— In this section, we
define a family of non-stabilizerness measures for



pure states. Let P̃n be the group of all n−qubit
Pauli strings with phases ±1 and ±i, then let
Pn := P̃n/ 〈±i1l〉 the quotient group containing all

+1 phases and define ΞP (|ψ〉) := d−1 〈ψ|P |ψ〉
2
as

the squared (normalized) expectation value of P
in the pure state |ψ〉, with d ≡ 2n the dimen-
sion of the Hilbert space of n qubits. Note that
∑

P∈Pn
ΞP (|ψ〉) = tr |ψ〉 〈ψ|

2
= 1. Thus, since

ΞP (|ψ〉) ≥ 0 and sum to one, {ΞP (|ψ〉)} is a proba-
bility distribution. We can see ΞP (|ψ〉) as the prob-
ability of finding P in the representation of the state
|ψ〉. We can now define the α−Rényi entropies asso-
ciated to this probability distribution as:

Mα(|ψ〉) := (1− α)−1 log
∑

P∈Pn

ΞαP (|ψ〉)− log d (1)

where we have introduced a shift of − log d for con-
venience. Now let Ξ(|ψ〉) the vector with d2 entries
labeled by ΞP (|ψ〉); then we can rewrite the stabi-
lizer α−Rényi entropy in terms of its lα−norm as:

Mα(|ψ〉) = α(1 − α)−1 log ‖Ξ(|ψ〉)‖α − log d (2)

The stabilizer Rényi entropy is a good measure
from the point of view of resource theory. In-
deed, it has the following properties: (i) faithful-
ness: Mα(|ψ〉) = 0 iff |ψ〉 ∈ STAB, otherwise
Mα(|ψ〉) > 0. (ii) stability under free operations
C ∈ C(H): Mα(C |ψ〉) = Mα(|ψ〉). (iii) additivity:
Mα(|ψ〉 ⊗ |φ〉) =Mα(|ψ〉) +Mα(|φ〉). The proof can
be found in[37]. We are particularly interested in
the case α = 2:

M2(|ψ〉) = − log d‖Ξ(|ψ〉)‖22 (3)

the above quantity can be rewritten in terms of
the projector Q := d−2

∑

P∈Pn
P⊗4 as: M2(|ψ〉) =

− log d tr(Q |ψ〉 〈ψ|
⊗4

). The stabilizer α−Rényi en-
tropies are upper bounded as Mα(|ψ〉) ≤ log d.
The proof is elementary: from the hierarchy of
Rényi-entropies we have that for any α > 0,
Mα(|ψ〉) ≤ S0(|ψ〉) ≡ log card(|ψ〉)/d, then note
that card(|ψ〉) ≤ d2, where card(|ψ〉) is the num-
ber of non-zero entries of Ξ(|ψ〉). This bound is
generally quite loose for pure states. For the sta-
bilizer 2−Rényi entropy we can obtain a tighter
bound: M2(|ψ〉) < log(d + 1) − log 2. This is easy
to see by picking an Hermitian operator ρ and set-
ting Ξ1l(ρ) := tr(ρ) = d−1 and ΞP (ρ) := tr(Pρ) =
d−1(d + 1)−1 for all P 6= 1l which maximizes the
2−Rényi entropy by keeping tr ρ = 1 and tr ρ2 = 1,
although ρ results being non-positive in general[38].

Another useful measure of non-stabilizerness is
given by the stabilizer linear entropy, defined as

Mlin(|ψ〉) := 1− d‖Ξ(|ψ〉)‖22 (4)

which obeys the following properties: (i) faithful-
ness: Mlin(|ψ〉) = 0 iff |ψ〉 ∈ STAB, otherwise
Mlin(|ψ〉) > 0. (ii) stability under free operations
C ∈ C(H): Mlin(C |ψ〉) = Mlin(|ψ〉). (iii) upper
bound: M(|ψ〉) < 1−2(d+1)−1; the proofs are easy
consequences of the previous considerations.
Let us now show how this measure compares

to other measures: the stabilizer nullity[22, 39] is
defined as ν(|ψ〉) := log d − log |St(|ψ〉)|, where
St(|ψ〉) := {P ∈ Pn |P |ψ〉 = ± |ψ〉}.
Proposition. The stabilizer α−Rényi entropies are

upper bounded by the stabilizer nullity:

Mα(|ψ〉) ≤ ν(|ψ〉) (5)

the proof can be found in[37]. Notice that
for α = 1/2, the Rényi entropy reduces to
M1/2(|ψ〉) = 2 logD(|ψ〉), where D(|ψ〉) :=
d−1

∑

P∈Pn
| tr(P |ψ〉 〈ψ|)| is the stabilizer norm de-

fined in[20]. More generally, the α−Rényi en-
tropies (with α ≥ 1/2) can be upper bounded by
twice the log-free robustness of magic[21] R(|ψ〉) :=
minx{‖x‖1 | |ψ〉 〈ψ| =

∑

i xiσi, σi ∈ STAB}:
Mα(|ψ〉) ≤ 2 logR(|ψ〉). The proof of this inequal-
ity follows straightforwardly from the hierarchy of
Rényi entropies and from the bound proven in[21]:
D(|ψ〉) ≤ R(|ψ〉) for any state |ψ〉.
Example.— In order to understand the advantages

of the stabilizer Rényi entropy in terms of its com-
putability, let us now compute it for n copies of the
magic state |H〉 = 1√

2
(|0〉 + eiπ/4 |1〉). A straight-

forward calculation, see[37], yields Mα(|H〉
⊗n

) =
(1− α)−1(n log(21−α + 1)− n).

State synthesis.— One of the most useful applica-
tions of the resource theory of non-stabilizerness is
state synthesis[17, 20–22, 25]. The main idea is that,
given a measure M of non-stabilizerness and two
quantum states |A〉 and |B〉, if M(|A〉) < M(|B〉)
one cannot synthesize |B〉 starting from |A〉 using
stabilizer operations. In this context, we use the sta-
bilizer 2−Rényi entropy to obtain a lower bound on
a synthesis of a Haar random state:
Theorem. (Informal) With overwhelming proba-

bility, O(n) copies of the magic state |H〉 are neces-
sary to synthesize a n−qubit Haar random state.
The formal statement and the formal proof have

to be found in [37].
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Measuring stabilizer Rényi entropy.— An impor-
tant feature of the stabilizer 2−Rényi entropy is that
it is amenable to be measured in an experiment. As
the purity can be measured via a randomized mea-
surements protocol[33, 34, 36], we show that a suit-
able randomized measurements of Clifford operators
can return M2. Let |ψ〉 be the quantum pure state.
Randomly choose an operator C ∈ C(2n) and op-
erate it on the state C |ψ〉, then measure C |ψ〉 in
the computational basis {|s〉} ≡ {s = 0, 1}⊗n. For
a given C, by repeated measurements one can esti-
mate the probability P (s|C) := |〈s|C|ψ〉|2. Define
the vector of four n−bit strings ~s = (s1, s2, s3, s4)
and denote the binary sum of these strings as ‖~s‖ ≡
s1⊕s2⊕s3⊕s4. Then the stabilizer 2−Rényi entropy
is equal to

M2(|ψ〉) = − log
∑

~s

(−2)−‖~s‖Q(~s)− log d (6)

where Q(~s) := ECP (s1|C)P (s2|C)P (s3|C)P (s4|C)
is the expectation value over the randomized mea-
surements of the Clifford operator C. For a proof,
see[37].
Extension to mixed states.— The stabilizer Rényi

entropy can be extended to mixed states. We de-
fine the free resources as the states of the form
χ = d−1(1l +

∑

P∈G φPP ) with G ⊂ Pn a subset
of the Pauli group with 0 ≤ |G| ≤ d − 1. Then, we
define the stabilizer 2−Rényi entropy of the mixed
state ρ as

M̃2(ρ) :=M2(ρ)− S2(ρ) (7)

with S2(ρ) being the 2−Rényi entropy of ρ and
M2(ρ) := − log d tr(Qρ⊗4). This quantity is again
faithful as it is zero only on the free resources, is
invariant under Clifford operations C ∈ C(d) then
M̃2(CρC

†) = M̃2(ρ) and has additivity: M̃2(ρ⊗σ) =
M̃2(ρ) + M̃2(σ). As a corollary, if χ is a stabilizer
state then M̃2(ρ ⊗ χ) = M̃2(ρ). The proof is to be
found in[37]. Numerical evidence also suggests that
M̃2 is non-increasing under partial trace. The same
randomized protocol can also be employed to mea-
sure M̃2(ρ).
Non-stabilizing power.— In this section, we

want to address the problem of how much non-
stabilizerness can be produced by a unitary operator,
e.g. a quantum circuit. We therefore restrict our at-
tention to pure states. We define the non-stabilizing
power of a unitary operator U as

M(U) :=
1

|STAB|

∑

|ψ〉∈STAB

M(U |ψ〉) (8)

where M(|ψ〉) is one of the entropic measures intro-
duced in the previous section, i.e. one of the sta-
bilizer α−Rényi entropy Mα(|ψ〉) or the stabilizer
linear entropy Mlin(|ψ〉). Also the non-stabilizing
power is (i) invariant under free operations, that is,
M(U) = M(C1U) = M(UC2) = M(C1UC2), with
C1, C2 ∈ C(d) and (ii) is faithful, that is, M(U) = 0
for the free operations U ∈ C(d) and is greater than
zero otherwise. A proof of these properties is in[37].
The relationship between the 2−Rényi non-

stabilizing power and the linear non-stabilizing
power follows easily from the Jensen inequality:

M2(U) ≥ − log(1 −Mlin(U)) (9)

The linear non-stabilizing power can be computed
explicitly by averaging the fourth tensor power of
the Clifford group: Mlin(U) = 1 − 4(4 + d)−1 −
d(4 + d)−1D−1

+ tr(U⊗4QU †⊗4Πsym), with Πsym :=
1
4!

∑

π∈S4
Tπ the projector onto the completely sym-

metric subspace of the permutation group S4, Q =
d−2

∑

P P
⊗4 and D+ ≡ tr (QΠsym) = (d + 1)(d +

2)/6. The proof can be found in[37]. This re-
sult, through Eq.(9), also gives a lower bound to
the 2−Rényi non-stabilizing power. In the follow-
ing, we provide some useful results on the linear
non-stabilizing power (and, through lower bounds,
for the 2−Rényi non-stabilizing power). First of all,
we provide a characterization of those unitaries that
have zero power: the linear non-stabilizing power
Mlin(U) = 0 if and only if [QΠsym, U

⊗4] = 0, see[37]
for the proof. A second interesting result is a char-
acterization of this quantity in terms of the oper-
ator ∆QΠsym := U †⊗4QΠsymU

⊗4 − QΠsym, that
is, the difference between the operator QΠsym af-
ter and before unitary evolution through U⊗4. We
have Mlin(U) = d2−1D−1

+ ‖∆QΠsym‖
2
2 which fol-

lows straightforwardly from ‖∆QΠsym‖
2
2 = 2D+ −

2 tr(U⊗4QU †⊗4QΠsym). Then again one can apply
the bound Eq.(9) in this form.
After having characterized the non-stabilizing

power of a unitary U , we are interested in knowing
what is the average value that this quantity attains
over the unitary group U(d). We obtain:

EU [Mlin(U)] = 1− 4(d+ 3)−1 (10)

and consequently the 2−Rényi non-stabilizing power
is lower bounded by EU [M2(U)] ≥ log(d+3)− log 4.
The proof can be found in[37]. This average is also
typical. The linear non-stabilizing power indeed
shows strong typicality with respect to U ∈ U(d):

Pr (|Mlin(U)− EU [Mlin(U)]| ≥ ǫ) ≤ 4e−Cdǫ
2

(11)
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where C = O(1). In other words, the overwhelm-
ing majority of unitaries attains a nearly maximum
value of Mlin(U) = 1−Θ(d−1). For a proof, see[37].
As a corollary, the average 2−Rényi non-stabilizing
power over the full unitary group U(d) saturates the
bound up to an exponentially small error. Note that,
because of the left/right invariance of the Haar mea-
sure over groups, the average stabilizer 2−Rényi en-
tropy over the all the set of pure states is equal to the
average 2−Rényi non-stabilizing power over the uni-
tary group, namely E|ψ〉 [M2(|ψ〉)] = EU [M2(U)].
To conclude this section, let us show how the non-
stabilizing power lower bounds the T-count t(U), i.e.
the minimum number of T gates needed in addi-
tion of Clifford resources to obtain a given unitary
operator[39]:

t(U) ≥ − log2 (d− (4 + d)Mlin) + log2(d+ 3)− 2 (12)

the proof can be found in[37]. According to the typi-
cality result, for a generic U ∈ U(d), with overwhelm-
ing probability, one obtains t(U) & Θ(n).
Non-Stabilizerness and chaos.— Having defined

a measure of non-stabilizing power, we now use it
to investigate some important questions in many-
body quantum physics and quantum chaos theory.
In[27], it was shown that, in order to obtain the
typical behavior of the eight-point out-of-time-order
correlation functions (8-OTOC) for universal uni-
taries, a number of T−gates of order Θ(N) was
both necessary and sufficient. The universal behav-
ior of 8−OTOC is a mark of the onset of quan-
tum chaos[27]. Since the T−gates are non-Clifford
resources, this raises the more general question of
what is the amount of non-stabilizerness necessary
to drive a quantum system towards quantum chaos.
In[27], the setting is that of a Clifford circuit doped
by k−layers of non-Clifford one qubit gates, e.g., the
θ−phase gates, what we call k−doped random quan-
tum Clifford circuit[27, 29, 40, 41]. We start address-
ing the question of what is the non-stabilizing power
associated to such circuits. We can show that
Proposition. The non-stabilizing power is mono-

tone under a k−doped random quantum circuit and
it is given by

ECk
[Mlin(U)]=1−(3+d)−1

(

4 +(d− 1)f(θ)k
)

(13)

with f(θ) =
(

7d2−3d+d(d+3) cos(4θ)−8
8(d2−1)

)

≤ 1. The

proof can be found in[37]. Note that iff k =
Θ(n) then ECk

[Mlin(U)] = EU [Mlin(U)], unless,
of course, θ = π/2 in which case the phase gate

is in the Clifford group and f = 1. This proposi-
tion shows how non-stabilizerness increases with non-
Clifford doping. We notice that non-stabilizerness
will converge exponentially fast to the universal max-
imal value with the number k of non-Clifford gates
used. This is the same type of behavior shown by
the 8−OTOCs[27].
At this point, we are ready to show a direct con-

nection between the stabilizer Rényi entropy and the
OTOCs. We have the following:
Theorem. The linear non-stabilizing power is

equal to the fourth power of the 2−OTOC of the
Pauli operators P1, P2 averaged over both all the ini-
tial states with the Haar measure and over the Pauli
group, that is,

Mlin(U) = 1− 4(4 + d)−1 − d2(d+ 3)4−1(d+ 4)−1 ×

E|ψ〉
[

〈OTOC2(P̃1, P2, ψ)
4〉P1,P2

]

(14)

where 〈·〉P1,P2
is the average over the Pauli group

Pn, E|ψ〉 [·] is the Haar average over set of pure

states and OTOC2(P̃1, P2, ψ) := 〈ψ|P̃1P2|ψ〉, where
P̃1 ≡ U †P1U . The proof can be found in[37]. As a
corollary, we can bound the 2−Rényi non-stabilizing
power through the linear non-stabilizing power.
As we can see, the average fourth power of the

2−OTOC is related to the same moment of the
Haar distribution of the following averaged 8 point
out-of-time-order correlation function: 〈OTOC8〉 :=
〈d−1 tr(P̃1P2P3P4P̃1P2P4P5P̃1P2P5P6P̃1P2P6P3)〉,
where the average 〈·〉 is taken over all the Pauli
operators Pi for i = 1, . . . , 6. One can therefore
show that the linear non-stabilizing power is related
to the 8-OTOC as follows
Theorem. The linear non-stabilizing power can be

expressed as an 8−point OTOC up to an exponen-
tially small error in d:

Mlin(U) ≃ 1−
4

(d+ 4)

(

1−
d2(d+ 3)

4
〈OTOC8〉

)

The proof can be found in[37] and it relies on the
fact that the 2−OTOCs have strong typicality with
respect to |ψ〉. We can comment on this last re-
sult: in order for the 8−OTOCs to attain the Haar
value, ∼ d−4 associated to quantum chaotic behavior
(cfr.[37]), then the non-stabilizing power of U needs
to be Mlin(U) ≃ 1 − 4/d for large dimension d. So
only unitaries with maximal non stabilizing power
(up to an exponentially small error ) can be chaotic.

Conclusions.— Harnessing the power of quantum
physics to obtain an advantage over classical in-
formation processing is at the heart of the efforts
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to build a quantum computer and finding quan-
tum algorithms. Quantumness beyond classical sim-
ulability is quantified in terms of how many non-
Clifford resources are necessary (non-stabilizerness),
and this notion has been colloquially dubbed magic.
This information-theoretic notion is also involved
- beyond quantum computation - in physical pro-
cesses like thermalization, quantum thermodynam-
ics, black holes dynamics, and the onset of quantum
chaotic behavior[27, 28, 42, 43]. In this paper, we
have shown a new measure of non-stabilizerness in
terms of the Rényi entropies of a probability distribu-
tion associated to the (squared) expectation values
of Pauli strings and show that this is a good measure
from the point of view of resource theory. This quan-
tity can be measured experimentally through a ran-
domized measurement protocol. Thanks to this new
measure, we can define the notion of non-stabilizing
power of a unitary evolution and show that the onset
of quantum chaos requires a maximal amount of the
stabilizer Rényi entropy.
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