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2INFN, Sezione di Padova, I-35131 Padova, Italy

3Center for Quantum Physics, Faculty of Mathematics,
Computer Science and Physics, University of Innsbruck, A-6020, Innsbruck, Austria

4Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria

We present a numerical strategy to efficiently estimate bipartite entanglement measures, and in
particular the Entanglement of Formation, for many-body quantum systems on a lattice. Our ap-
proach exploits the Tree Tensor Operator tensor network ansatz, a positive loopless representation
for density matrices which, as we demonstrate, efficiently encodes information on bipartite entan-
glement, enabling the up-scaling of entanglement estimation. Employing this technique, we observe
a finite-size scaling law for the entanglement of formation in 1D critical lattice models at finite
temperature for up to 128 spins, extending to mixed states the scaling law for the entanglement
entropy.

Quantum entanglement, correlations uniquely present
in quantum systems [1], lies at the heart of the second
quantum revolution. It is a fundamental resource in the
development of present and future quantum technolo-
gies [2], and it drives the collective physics of many-body
quantum systems at low temperatures [3, 4]. The abil-
ity to characterize and quantify entanglement in a quan-
tum state is thus crucial. However, even the simplest
entanglement characterization, bipartite entanglement −
quantifying the mutual quantum correlations between
two subsystems − is well-understood only when the state
of the joint subsystems is a pure quantum state. This is
mostly due to the fact that the estimation strategies for
entanglement of mixed states call for minimizations in
spaces that scales exponentially with the number of con-
stituents of the system, and thus are effectively limited
to small-sized systems [5, 6]. In this letter, we show how
tensor network (TN) techniques can tackle this challenge,
and efficiently estimate the Entanglement of Formation
(EoF) [7] − the convex-roof extension of the Von Neu-
mann entropy − of many-body quantum states. As first
application of this approach, we show that for critical
one-dimensional systems the EoF obeys a (logarithmic)
finite-size conformal scaling-law, for temperatures com-
mensurate with the energy gap.

For pure states, the connection between bipartite en-
tanglement and the effective entropy of either subsystem
has been largely established, and is typically expressed
in terms of Von Neumann (S) or Rényi entropies [7–10].
While challenging to measure in an experiment [11], these
estimators are often accessible in numerical simulations of
many-body quantum systems, and especially in loopless
tensor network ansatz states, where the calculation com-
plexity scales polinomially with the system size [12–16].
Conversely, for mixed global quantum states, the problem
of characterizing and quantifying bipartite entanglement
is much more involved, both conceptually and technically.
It is nevertheless a fundamental goal, since any realistic
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FIG. 1. (a) The Tree Tensor Operator (TTO) representing a
density matrix ρ = XX†. K0 is the number of pure states in
the representation used, while M is the maximal dimension
for all bonds. The gray dashed square highlights the root
tensor R, containing all the information about entanglement
between the red and green bipartitions of the physical space.
(b) Change of representation for the EoF minimization using
R, after having compressed the state with some maximal bond
dimension M . (c) Same as (b), but without compression, so

that M = dN/2. Optimizations are possible for any system
size and state that can be efficiently represented as TTOs.

quantum platform faces imperfections, statistical errors,
and/or imperfect isolation leading to finite temperatures.
From a conceptual standpoint, a major focus is to assess
which of the entanglement monotones proposed over the
years satisfy the desired properties of entanglement mea-
sures [8]. At a technical level, the core problem is to
efficiently estimate these entanglement quantifiers. Even
those that can be evaluated by linear algebra operations,
such as negativity [17] and quantitative witnesses [18, 19],
are exponentially expensive in the system size. Addi-
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tionally, many important monotones with a clear phys-
ical significance, in terms of resource and information
theory, are convex-roof extensions of pure-state entangle-
ment measures [7]. Estimating these monotones is a hard
non-linear minimization problem over pure-state decom-
positions of the global density matrix [20–26], severely
limited to small system sizes.

The key point of our strategy is to exploit TN com-
pressing capabilities and the exploitation of the Tree Ten-
sor Operator (TTO) structure to represent a density ma-
trix ρ (Fig. 1) [12–16, 27, 28]. This TN ansatz guarantees
positivity of ρ, and being loopless it is efficiently con-
tractible. Moreover, it is a natural TN geometry for es-
timating bipartite entanglement measures: as discussed
below, the information about bipartite entanglement is
compressed into a single tensor, ultimately simplifying
the complexity of the minimization problem. We demon-
strate this method effectiveness computing the EoF of
thermal many-body quantum states of the 1D transverse-
field Ising and XXZ models.

Tree Tensor Operator ansatz − As positive operators,
density matrices ρ =

∑
j pj |ψj〉〈ψj | can be written as ρ =

XX†, where the rectangular matrix X =
∑
j

√
pj |ψj〉〈j|

has a number of columns equal to the rank of ρ, also
known as the the Kraus dimension K0. For many-body
quantum states at low temperatures, probabilities pj de-
cay sufficiently fast that it is possible to approximate ρ
using a K0 that scales at most polynomially with the
system size N . Therefore, from a numerical viewpoint,
it is meaningful represent X with a Tree Tensor net-
work as shown in Fig. 1: the lower open links (‘leaves’,
each of dimension d) represent the physical sites, while
the upper open link (‘root’, of dimension K0) represents
the Kraus space of the global purification. As for other
Tensor Network ansätze, this representation becomes ef-
ficient when the connecting links, or ‘branches’, carry an
effective dimension M that also scales polynomially with
N [16, 27, 29].

By construction, the TTO ansatz guarantees positiv-
ity of ρ, in contrast to the Matrix Product Density Op-
erator ansatz [30, 31], whose positivity can be checked
only as an NP-hard problem [32]. Locally Purified Ten-
sor Networks [33] also preserve positivity, but the pres-
ence of loops in their network geometry leads to numer-
ical limitations when implementing optimization strate-
gies [34, 35]. The TTO is instead positive and loopless
thus encompassing the best of the two words without
any drawbacks. When the TTO is properly isometrized
to the root tensor, via (efficient) TN gauge transforma-
tions [16], all the information about the mixing prob-
abilities pj ends up stored within that tensor. Thus,
also information about global entropies (Von Neumann
S = −∑ pj log pj and Rényi Sα = (1 − α)−1 log

∑
j p

α
j ,

including the purity). Moreover, all the information on
bipartite entanglement (for a half-half system biparti-
tion) is contained only in the root tensor. Indeed, the

action of the isometrized branches is actually an invert-
ible LOCC (operation achievable via Local Operations
and Classical Communication), and entanglement mono-
tones cannot increase under such transformations [8]. In
conclusion, compressing the relevant information into a
tensor with polynomially-scaling dimension, it is possible
to efficiently estimate entanglement monotones by pro-
cessing only the root tensor, even for complex measures
that rely on convex-roof extensions. Below, we specialize
this procedure to the specific case of the EoF.
EoF estimation − The EoF of a mixed quantum state

ρ, defined as [7]

EF (ρ) = inf
{pj ,ψj}

{∑
j

pjS(|ψj〉) : ρ =
∑
j

pj |ψj〉〈ψj |
}
,

quantifies the number of Bell pairs needed to construct
a certain number of copies of ρ via LOCC. The mini-
mization runs over all possible decompositions of ρ as
a convex mixture of pure states |ψn〉, with probabilities
pn. It is straightforward to recast the previous expres-
sion in terms of the matrix X, whose columns

√
pj |ψj〉

represent one possible pure-state decomposition of ρ. Via
the Schrödinger-HJW theorem [36, 37], it is possible to
obtain the whole set of X ′ matrices representing ρ, and
thus all possible pure-state decompositions. This is done
by multiplying X ′ = XU , where U is any right-isometry
(a semi-unitary matrix satisfying UU† = 1) of dimension
K0 ×K, with K ≥ K0. The minimization problem then
becomes a minimization over the space of right isometries
U , precisely

EF (ρ) = min
K≥K0

inf
U

{ K∑
j=1

pjS(|ψ′j〉) : X ′ = XU
}
, (1)

where the columns of X ′ represent the new pure-
state decomposition of ρ, with wavefunctions |ψ′j〉 =

X ′|j〉(p′j)−1/2 and probabilities p′j = 〈j|X ′†X ′|j〉.
As depicted in Fig. 1(a), the X matrix composing the

isometrized TTO can be written as X = (VL ⊗ VR)R,
where R is the root tensor, and the branches V? are left-
isometries (V†?V? = 1). It follows that the columns of
R must have the same entanglement entropy S of the
columns of X, and clearly the same probabilities p′j .
Thus, Eq. (1) can be more efficiently computed by re-
placing X with the smaller root tensor R.
Numerical Simulation − Hereafter, we estimate the

EoF of low-temperature many-body states of 1D quan-
tum lattice models H via TTO. The first step is to
approximate the many-body density matrix as a TTO
ansatz. That is, writing X = 1√

Z

∑K0

j e−Ej/2T |ψj〉〈j| in

tensor network format as it appears in Fig. 1, where Ej
is the energy of the Hamiltonian eigenstate |ψj〉 and Z
ensures normalization Tr

[
XX†

]
= 1. In this work, we

achieve this goal with either of the two following meth-
ods: (i) Energy eigenstates |ψj〉 are obtined via Exact
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Diagonalization (ED). Thus X is calculated exactly, for
a given K0, and then compressed into a TTO as de-
tailed in the Supplemental Material (SM, which includes
Refs. [38–48]). (ii) |ψj〉 are obtained via a Tree-Tensor
Network algorithm capable of targeting each of the K0

lowest energy eigenstates [39]. Their collected informa-
tion is then easily formatted into a TTO with standard
tensor network operations [16]. The accuracy of this sec-
ond approximate method is benchmarked against the ex-
act one for thermal states of small size in the SM. Be-
yond these two strategies, we envision the possibility to
develop algorithms that directly compute the TTO for
finite-temperature quantum states, capture Markovian
real-time evolution, or transform other TN states into
TTOs [49, 50].

Once the TTO is built, we proceed to calculate the
optimization from Eq. (1) on the top tensor R. To build
sets of U matrices, we fix a value for K ≥ K0 and pa-
rameterize a Hermitian matrix A = A† of dimensions
K × K. Then, we get the corresponding unitary from
U = exp{iA}, and finally we take K0 random rows of U
to build U . For every column of R′ = RU , its entangle-
ment entropy is calculated via S = −∑i s

2
i log s2i , where

the singular values si are obtained by a singular value de-
composition (SVD). In the results section, entropies are
expressed in basis of log2, so that a Bell pair defines the
unit of entanglement. For a given K ≥ K0, minimization
in the space of the U is carried out via direct search meth-
ods, but other choices are possible. Extensive proofs of
the stability of this method, as well as some results on
many-body random density matrices, are provided in the
SM. Convergence of the minima is rapidly reached when
increasing K ≥ K0. For all practical purposes, choosing
K ≈ K0 is often sufficient to achieve close convergence
(see SM). We stress that, even in case of incomplete or
failed convergence, our method still provides an upper
bound to the actual EoF of the quantum state. In par-
ticular, in every case we could check, the results provided
tight bounds. The accuracy and convergence of the EoF
estimation is discussed in detail in the SM: we (i) bench-
mark the optimization procedure applied to exact states
of small systems, whose EoF is known a priori, and (ii)
test how state compression into a TTO affects the EoF
computation, by comparing optimizations done on the
approximate root tensor R and on the exact X, for ther-
mal states of small systems.

Results −We consider two well-known prototype quan-
tum critical spin- 12 models as benchmarks [51]: specifi-
cally, the Ising model

ĤIsing = J

N∑
i=1

(
σ̂xj σ̂

x
j+1 + hσ̂zj

)
(2)
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FIG. 2. Computational times of EoF estimation ‘from
scratch’ as a function of system size N , for critical ĤIsing

(h = 1) at temperature kBT = 0.5∆, where ∆ ∼ N−z (z = 1)
is the finite-size gap. Two data sets show EoF Estimation
without TTO compression: either using the full exact density
matrix (green diamonds), or from the exact X matrix at con-
vergence in columns K0 (orange squares). The last data set
shows EoF estimation with TTO method, where the Hamil-
tonian eigenstates were calculated via Tree-Tensor Network
eigensolver algorithm. Inset: Bond dimensions M required
to achieve convergence of the EoF estimator (approximation
less than 1% from its exact value). Red pentagons and pur-
ple diamonds refer respectively to the critical Ising model at
kBT = 0.1J and to the XXZ model with ξ = 0.5 (critical) at
kBT = 0.5J .

in a transverse field h, and the XXZ model

ĤXXZ = J

N∑
j=1

(
σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1 + ξ σ̂zj σ̂

z
j+1

)
(3)

with anisotropy ξ, both models considered in periodic
boundary conditions (PBC) and σ̂αj s (α = x, y, z) are the
Pauli matrices. The temperature T , defining the thermal

state ρ = 1
Z e
−Ĥ/T , is expressed in units of the Hamilto-

nian energyscale (J = kB = 1). To appropriately choose
a suitable number K0 we start from K0 = 2. We then
evaluate the resulting EoF, gradually increasing K0 until
convergence of the estimated EoF is reached. We employ
a similar strategy to choose the best M .

Fig. 2 shows a typical benchmark comparison of the
total computational time required to acquire the EoF,
which include both calculation of the thermal state and
entanglement measure estimation. Three data sets show
respectively EoF estimation using: the full exact density
matrix (green), the exact X matrix at convergence in K0

(red), and the TTO method with Tree-Tensor Network
eigensolver (blue). Complexity of the exact methods in-

creases exponentially, basically as O(dim{H}3/2), since
the bottleneck of our algorithm is the SVD to calculate
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S for each of the K pure states. By contrast, this run-
time scales like O(M3) for a TTO representation, with
M �

√
dim{H}. At size 20 and beyond, the TTO al-

gorithm clearly outperforms exact methods, displaying a
visibly polynomial scaling. Typical bond dimensions M
required to have a good approximate estimation (99% of
the exact EoF value) are displayed in the inset, and show
a roughly linear scaling with the system size.

Equipped with our diagnostic tool, we quantified the
bipartite entanglement properties of two quantum sys-
tems at finite T . The two panels in Fig. 3 focus on criti-
cal phases of the two models, the quantum phase transi-
tion point of the Ising model (h = 1, top), and the Lut-
tinger liquid phase of the XXZ model (ξ = 0.5, bottom)
respectively. While the system is strongly-correlated at
zero temperature, entanglement seems to survive roughly
unaltered up to T of the order of 0.2∆(N), with ∆(N)
the finite-size energy gap, and smoothly drop at higher
T . This phenomenon is to be contrasted with the Von
Neumann entropy S (global, or of either subsystem),
which instead grows with T , and can not capture alone
the entanglement decrease [52, 53]. More importantly,
we observe an emergent scaling behavior when plotting
EF (T,N). In fact, the EoF appears to follow the log-
arithm of a conformal scaling function, in proximity of
the quantum critical point (i.e., for small temperatures
T ∼ ∆). For PBC, this behaviour can be expressed as
EF = log(N c/3f(TNz)), or

EF (T,N) =
c

3
logN + g(TNz) (4)

in analogy to Ref. [54], where c is the critical exponent
that connects lengthscales to entanglement, while z is
the critical exponent that connects lengthscales to en-
ergyscales (∆ ∝ N−z). The functions f(·) and g(·) =
log f(·) are non-universal and depend on the microscopi-
cal details of the model. This behaviour actually extends,
to finite T , the known scaling law for the entanglement
entropy with size, valid for critical ground states [52, 53].
We validate this argument in the inset of Fig. 3, where
the EF (T,N) data sets are appropriately rescaled, ac-
cording to N . As we expect, the curves collapse when
the appropriate critical exponents of the corresponding
model are used (c = 1

2 , z = 1 for critical Ising; c = 1,
z = 1 for Luttinger liquid XXZ). In the former case, we
pushed the numerics to very large system sizes and fully
exploited the TTO approach. Larger system analy-
sis of the XXZ model is feasible but numerically
challenging: we thus limited our analysis to ED
methods as it already clearly confirms the scaling
behaviour of critical systems.

As a final remark, we stress that the EoF analy-
sis enabled by the TTO method is not limited to low-
temperature many-body states of lattice models. We
have employed the same diagnostic tool on other classes
of mixed many-body states, including on sets where the
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FIG. 3. Scale-invariance of the EoF at temperatures T (in
units of J/kB) in the range kBT ≤ 0.5∆, where ∆ ∝ N−z,
for the critical Ising model in Eq. (2) (top panel) and the
XXZ model in Eq. (3) in the critical phase at ξ = 0.5 (bot-
tom panel). Data for N = 16, 32, 64, 128 (top, approximate
method for TTO computation) and N = 8, 12, 16, 20 (bot-
tom, exact TTO from ED), from the flattest to the steepest
curve. Inset: curves in the main figures after rescaling ac-
cording to Eq. (4). The agreement is stunning, using c = 1/2
and z = 1.00 ± 0.01 (top) and c = 1 and z = 0.98 ± 0.02
(bottom). The grey area highlights the temperature range
T ≤ 0.2∆(N).

EoF is known to further benchmark our approach, as re-
ported in the SM.

Conclusions In this letter, we have presented a new
tensor network approach that enables the numerical anal-
ysis of bipartite entanglement for many-body quantum
systems, even for those entanglement monotones that
are considered hard since they require convex-roof opti-
mization. We employed a Tree Tensor Operator (TTO)
to well-approximate the global density matrix at low
temperatures. Such a tensor network architecture com-
presses information of the bipartite entanglement into
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a single tensor, whose dimensions in many cases scale
polinomially with the system size. As a result, evaluat-
ing entanglement monotones is numerically efficient, as
illustrated for 1D interacting lattice models. Our analy-
sis observed a scaling law for the Entanglement of For-
mation, compatible with a logarithmic conformal scal-
ing law. We successfully tested this argument for a free
fermion (Ising) and an interacting fermion (XXZ) criti-
cal models, where it is satisfied in a temperature range
commensurate with the finite-size energy gap (T ∼ ∆).

While we built TTOs by collecting information on
low-lying energy eigenstates, we envision the possibil-
ity of developing algorithms capable of directly target-
ing finite-temperature states on a TTO architecture.
Similarly, we envision the possibility of replacing the
TTN branches of the ansatz with Matrix Product State
branches: an alternative TN design that is still efficient
toward EoF estimation. Finally, we expect that TTO
may be capable to accurately capture some features of
open-system quantum dynamics. This will actually ex-
tend the bipartite-entanglement analysis, presented here,
from finite-temperature states to a larger set of open-
system physically relevant states, i.e. the stationary
states of a Lindblad master equation [55–57]. The Time-
Dependent Variational Principle [58, 59] is surely a good
candidate strategy towards this goal. This will likely be
the focus of our research in the near future.
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