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Multivalent associative proteins with strong complementary interactions play a crucial role in
phase separation of intracellular liquid condensates. We study the internal dynamics of such “bond-
network” condensates comprised of two complementary proteins via scaling analysis and molecular
dynamics. We find that when stoichiometry is balanced, relaxation slows down dramatically due
to a scarcity of alternative binding partners following bond breakage. This microscopic slow-down
strongly affects the bulk diffusivity, viscosity, and mixing, which provides a means to experimentally
test this prediction.

Protein-rich liquid condensates, also known as mem-11

braneless organelles, have recently emerged as an impor-12

tant paradigm for intracellular organization [1–3]. The13

molecular mechanisms involved in condensate phase sep-14

aration [4] include weak interactions between intrinsically15

disordered regions of proteins, interactions with RNA16

and DNA, and specific protein-to-protein complementary17

interactions. Here we focus on the latter mechanism, of-18

ten described in terms of “sticker-and-spacer” models [5],19

where strongly interacting complementary “stickers” are20

separated by flexible “spacers”, which have little to no21

interactions. In a simple case, only two species are in-22

volved with complementary sticker domains (Fig. 1a),23

and the condensate liquid consists of a dynamically rear-24

ranging network of these bound domains (Fig. 1b). This25

paradigm of a binary mixture of complementary proteins26

has been observed in membraneless organelles such as the27

algal pyrenoid [6], as well as in artificial systems [7].28

Recent studies show that such binary liquids differ in29

their properties from usual, non-biological liquids: for30

instance, their valence sensitively controls their phase31

boundary through a “magic number” effect [6, 8, 9],32

and they can exhibit long-lived metastable clusters prior33

to macroscopic phase separation [10]. The equilibrium34

phase transitions of these systems, which are to be distin-35

guished from gelation [11] and bond-percolation [12] tran-36

sitions, are well characterized. Little is known however37

about the bulk dynamical properties of these liquids. It38

is expected that these liquids will inherit some properties39

of associative polymers—a class of materials character-40

ized by long chains with sparse sticky sites [13]. In these41

materials, relaxation is slowed down by the attachment-42

detachment dynamics of binding sites, resulting in sticky43

reptation [14]. Indeed, it has been experimentally ob-44

served that a sparsity of free binding sites can signifi-45

cantly slow the dynamics [15]. However, the correspond-46

ing role of attachment-detachment dynamics has not yet47

been considered in liquid protein condensates.48

We theoretically study the bulk relaxation mechanisms49

of liquids consisting of a binary mixture of multivalent50

complementary proteins (Fig. 1a-b). We show that the51

strong specificity of interactions results in a finely tuned52

response to changes in composition—a property that cells53

might exploit to dynamically adapt the mixing properties54

of condensates. We first present a simple kinetic model55

that predicts a strong dependence of the relaxation time56

of bonds on composition of the liquid: at equal stoichiom-57

etry of complementary domains, we anticipate a sharp58

peak in the relaxation time. We then employ molec-59

ular dynamics simulations to confirm these predictions60

and show their striking consequences for bulk diffusivity61

and viscosity. Finally, we demonstrate that this effect62

strongly affects the mixing dynamics of droplets of dif-63

ferent compositions, and propose experiments to test our64

predictions.65

We consider the dense phase of multivalent proteins of66

two different types, denoted A and B (Fig. 1a), where67

each domain can bind to one and only one domain of68

the complementary type. The free energy favoring for-69

mation of such a bond is ∆F , with a corresponding un-70

binding Arrhenius factor ε = exp(−∆F ) (we set kBT = 171

throughout). We consider the strong-binding regime, i.e.72

ε � 1, in which almost all possible bonds are formed73

(Fig. 1b). However, over sufficiently long times, bonds74

still break and rearrange, the system relaxes, and the75

system can flow as a liquid. We investigate here the de-76

pendence of this relaxation time on the Arrhenius factor77

ε and on the composition of the liquid.78

In the strong-binding regime, relaxation is controlled79

by individual bond breaking (Fig. 1c). This process is80

slow and thermally activated, occurring at a dissociation81

rate kd = ε/τ0 where τ0 is a microscopic relaxation time,82

and these events are rapidly followed by rebinding. How-83

ever, the two newly unbound complementary domains84
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FIG. 1. Stoichiometry controls the bond relaxation
time of multivalent associative proteins. (a) Sketch
of associative multivalent proteins, with complementary do-
mains separated by flexible linkers. (b) Strong yet reversible
binding between proteins leads them to condense into a net-
work with most possible bonds formed. (c-e) Schematic of
the bond relaxation mechanism. When two initially bound
domains (c) unbind, the two are caged in a small volume vcage

(d). Two events can then occur: the initially bound domains
can rebind, or, if a free domain is within reach, a new bond
may form (e), which is the system’s basic relaxation mech-
anism. (f) Concentration of unbound domains cfree of both
types as a function of stoichiometry difference. (g) Relax-
ation time (Eq. 1) corresponding to the process of unbinding
and then rebinding with a new partner (c-e), as a function of
stoichiometry difference. Here ε = e−∆F .

are part of the network, and thus are not free: they re-85

main confined and diffuse only in a small volume vcage86

around their initial position (Fig. 1d). This caging vol-87

ume is determined by the length and flexibility of linkers.88

Subsequent to a bond breaking, there is a high probabil-89

ity the two former partners will rebind to each other,90

thus negating the effect of the bond break on relaxation.91

Only if either of the two finds a new, unbound partner92

within the cage volume (Fig. 1e) does the initial break93

contribute to relaxation and liquidity.94

The effective relaxation time can be approximated as95

τrel = 1/(pkd), where p is the probability that either do-96

main finds a new partner instead of rebinding the former,97

i.e. p ≈ n/(1+n), where n is the number of free domains98

in vcage. Assuming that the local density of free domains99

in vcage is on average the same as in the whole system, we100

can then express n = vcagecfree in terms of the concentra-101

tion cfree = cA + cB of unbound domains in the system,102

where we denote by cA and cB the respective concen-103

tration of free domains of each type. We define the stoi-104

chiometry difference δ = cA−cB as the difference between105

these concentrations (which depends only on the overall106

composition, not on the fraction bound), and cAB as the107

concentration of bound domain pairs. We assume that108

the linkers are sufficiently flexible to consider the binding109

state of each domain of a protein as independent of the110

others, and thus treat the binding-unbinding process as a111

well-mixed solution. The dissociation equilibrium reads112

Kd = cAcB/cAB, with Kd the dissociation constant. We113

thus have: cfree =
√
δ2 + 4KdcAB. The concentration of114

free domains thus exhibits a global minimum at δ = 0115

(Fig. 1f).116

We relate the dissociation constant to the Arrhenius117

factor for unbinding, writing Kd = ε/v0 where v0 is a118

molecular volume. Indeed, Kd = kd/ka where the disso-119

ciation rate kd = ε/τ0 is proportional to the Arrhenius120

factor, assuming that the association rate ka is indepen-121

dent of the binding strength. We can thus express the122

relaxation time as:123

τrel =
τ0
ε

(
1 +

1

vcage
√
δ2 + 4εcAB/v0

)
. (1)

When n � 1, i.e. for strong binding when there are124

few available partners within reach, the second term in125

Eq. 1 dominates the relaxation time. In particular, τrel126

exhibits a sharp maximum at δ = 0, whose magnitude127

scales as τrel ∝ ε−3/2. This scaling reflects the prob-128

ability of coincident dissociation events: neither of the129

two domain types is in excess with respect to the other,130

and so rebinding to a new partner is conditioned on find-131

ing another thermally activated unbound domain within132

vcage. The concentrations of such unbound domains are133

cA = cB =
√
KdcAB ∝ ε1/2. In contrast, for δ � 1/vcage134

such that n � 1, binding to a new partner is fast and135

essentially independent of δ, so that τrel ∝ ε−1. This scal-136

ing behavior is our central prediction, and is illustrated137

in Fig. 1g.138

We employ molecular dynamics simulations to test our139

theoretical predictions for the relaxation time (Eq. 1).140

Specifically, we model the system schematized in Fig. 1a-141

b using a bead-spring representation, where only the142

binding domains are simulated explicitly (Fig. 2a). Bind-143

ing between complementary domains is modeled by a soft144

attractive potential minimized when the beads fully over-145

lap, while strong repulsion between beads of the same146

type prevents the formation of multiple bonds involving147

the same domain (see Methods). The mean linker length148

between domains sets the unit of length, while the unit of149

time is chosen to be the average time it takes for a free do-150

main to diffuse a unit length. We simulate only the dense151

phase of this phase-separating system (Fig. 2b). The con-152

trol parameters are the binding free energy ∆F and the153

stoichiometric difference δ = cA−cB, while the total con-154

centration of domains ctot is held fixed. Simulations are155

performed using LAMMPS [16, 17] (see Methods).156
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FIG. 2. Molecular Dynamics (MD) simulations reveal the importance of stoichiometry to the dynamical
properties of the condensate. (a) MD model for the multivalent associative proteins. Colored spheres represent A and B
domains. (b) Representative snapshot of the dense, network-forming liquid condensate. (c) Bond relaxation time (see text)
as a function of stoichiometry for different binding strengths. Symbols indicate MD simulations; solid curves indicate theory
(Eq. 1) with cAB estimated assuming full binding of the minority domains, and with fitted values vcage = 11.4, v0 = 0.4, and
τ0 = 0.37. (d) Bond relaxation time τrel as a function of binding strength is consistent with predicted scaling for both equal and
unequal stoichiometries (Eq. 1, Fig. 1g). (e) Mean squared displacement (MSD) of individual domains as a function of time
reveals diffusive scaling (dashed line) at long times (here δ = 0). (f) Diffusion coefficient of the minority species as a function
of binding strength at equal and unequal stoichiometry. (g) Long-time diffusion coefficient plotted against bond relaxation
time, for all values of δ and ∆F . The dotted black line indicates D ∝ τ−1

rel . Transparent circles correspond to systems where
one component is in large excess, |δ| > 0.2ctot. (h) Viscosity, obtained using the Green-Kubo relation, as a function of binding
strength, reflects the scaling of the bond relaxation time (d).

We first study the relaxation of individual bonds. To157

quantify this relaxation, we compute the bond adjacency158

matrix Aij(t), where Aij(t) = 1 if at time t the distance159

between the center of domains i and j is within the at-160

tractive interaction range rc, and 0 otherwise. We first161

obtain the average autocorrelation function of this ma-162

trix, C(∆t) = 〈
∑
i,j Aij(t)Aij(t + ∆t)〉t, where the sum163

runs over all pairs of complementary domains, and then164

extract the bond relaxation time τ by integration of the165

normalized autocorrelation, τ =
∫∞
0
C(∆t)d∆t/C(0).166

The resulting relaxation time τ is plotted in Fig. 2c.167

These values are in good agreement with the theoretical168

prediction of Eq. 1, and in particular exhibit a clear maxi-169

mum at equal stoichiometry (δ = 0). The magnitude and170

sharpness of the peak increases with the binding free en-171

ergy ∆F . Furthermore, we confirm in Fig. 2d that for172

strong enough binding τ scales as ε−3/2 = exp(3∆F/2)173

at equal stoichiometry, and as ε−1 = exp(∆F ) at unequal174

stoichiometry. Thus, the relaxation time increases much175

faster with ∆F at equal stoichiometry. For longer chains,176

the relaxation peak is strengthened as network caging is177

more efficient, while the peak disappears for monomers178

(see SI).179

How does this sizable difference in relaxation times in-180

fluence macroscopic condensed-phase properties such as181

diffusivity and viscosity? To answer these questions, we182

first monitor the mean squared displacement (MSD) of183

individual binding domains of the minority species as a184

function of lag time (Fig. 2e). Several distinct regimes185

are apparent in the MSD: Short times correspond to186

bond-level vibrations. At intermediate times, the plateau187

reveals caging of binding sites due to the well-bonded188

character of the network. Finally, the long-time scaling189

MSD ∝ ∆t is diffusive, confirming that the system be-190

haves as a liquid. We extract the long-time diffusion coef-191

ficient from these simulations, and find that its variations192

directly reflect those of the bond relaxation time over sev-193

eral orders of magnitude, with approximately D ∝ 1/τ194

(Fig. 2g). Indeed, the product Dτ exhibits much smaller195

variations than either D or τ (see SI). Thus, slow bond196

relaxation within the connected network dominates the197

diffusive properties of the system. Note that at large sto-198

ichiometry differences (|δ| > 0.2ctot, transparent symbols199

in Fig. 2g), the large number of unbound sites results in200

a loose network with possible disconnected clusters, and201

these scaling laws do not apply.202

Turning to the viscosity η, which we measure using203

the Green-Kubo relation between viscosity and equilib-204

rium stress fluctuations [18], we observe similarly that it205

reflects the variations of the bond relaxation time, with206
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FIG. 3. Composition controls mixing rate near equal
stoichiometry. (a) Snapshot of an MD simulation with ini-
tially tagged particles on the left side of the box. (b) Normal-
ized concentration profiles for tagged particles along the long
axis at different times, for equal stoichiometry δ = 0, showing
slow relaxation towards the homogeneous state. (c) Relax-
ation of the tagged concentration difference between the two
half-boxes, for different binding free energies. (d) Equilibra-
tion time as a function of binding strength. The unbalanced
case has δ = 0.14.

approximately η ∝ τ (Fig. 2h). The macroscopic trans-207

port properties of this binary liquid thus directly reflects208

the highly stoichiometry-dependent molecular relaxation209

mechanism (Fig. 1): in the strong-binding regime, the210

viscosity of the liquid noticeably increases near equal sto-211

ichiometry.212

Our predictions for the dependence of bulk transport213

on the stoichiometry of the associative protein conden-214

sate have experimentally testable consequences. For in-215

stance, by preparing a homogeneous droplet and tagging216

all domains on one side by fluorescently bleaching them,217

one could measure the mixing dynamics as a function of218

composition. We simulate the relaxation of the composi-219

tion profile for this case by putting in contact two simula-220

tion boxes (Fig. 3a-b). We monitor the relaxation of the221

tagged composition difference between the two halves of222

the simulation box (Fig. 3c) and extract the relaxation223

time by exponentially fitting the decay curve (Fig. 3d).224

Consistent with our equilibrium analysis, we find that225

mixing is substantially faster when one species is in excess226

(Fig. 3d, squares) than when stoichiometry is balanced227

(Fig. 3d, circles).228

In this Letter, we investigated the dynamics of protein-229

rich condensates characterized by strong, specific inter-230

actions between complementary binding sites. Our the-231

oretical analysis of the molecular-level relaxation mecha-232

nisms in these liquids suggests a strong composition de-233

pendence: near equal stoichiometry of complementary234

binding sites, the dynamics of the liquid dramatically235

slows down. This slowing is due to the lack of free bind-236

ing sites at equal composition, which leads to a predomi-237

nance of rebinding following bond breaks. We confirmed238

this mechanism through molecular dynamics simulations239

and showed that it controls the equilibrium diffusivity240

and viscosity of the liquid network.241

The molecular-level connectivity relaxation of protein242

liquids through binding-unbinding events is generally not243

directly accessible in experiments. By contrast, our pre-244

dictions for macroscopic transport quantities are read-245

ily testable, for instance using engineered protein con-246

densates such as the SUMO-SIM [7] and SH3-PRM [19]247

systems. The reported dissociation constant of SUMO-248

SIM domains is Kd ≈ 10µM [7], which for a binding do-249

main of diameter 1nm corresponds to a binding energy250

of 13kBT . Our simulations thus suggest a sizable ten-251

fold decrease in diffusivity for such systems near equal252

stoichiometry. Our predictions would also hold in other253

liquids characterized by strong specific interactions, such254

as DNA nanoparticles [20]. In such systems, the effect of255

composition on diffusivity could be observed using fluo-256

rescence recovery after photobleaching [21] as in Fig. 3257

or nanoparticle tracking [22], while our predictions for258

viscosity could be tested by passive or active microrheol-259

ogy [23], with predicted mixing dynamics also testable by260

monitoring the shape relaxation of merging droplets [24].261

While the dynamics of protein condensates can be reg-262

ulated by many factors, such as density [24, 25], salt263

concentration, and the presence of RNA [26], our work264

highlights the possibility that cells can also fine-tune265

the mechanical and dynamical properties of their mem-266

braneless organelles through small changes in composi-267

tion. Importantly, while in this study we have focused268

on the dense phase and used component stoichiometry269

as a control variable, in multicomponent phase-separated270

systems there is a subtle interplay between overall com-271

position and dense-phase composition [7, 27]. Beyond272

controlling the time scale of internal mixing and merging273

of droplets, stoichiometry-dependent slowing could also274

be involved in the recently characterized aging of viscos-275

ity [28] and could impact the exchange rates of “clients”276

– constituents of condensates that do not contribute di-277

rectly to phase separation [3]. Overall, we have shown278

that high specificity liquids have unusual physical prop-279

erties [29] and provide novel avenues that cells could use280

to regulate their phase-separated bodies.281

Methods. Molecular dynamics simulations are per-282

formed using the March 2020 version of LAMMPS [16].283

Proteins of type A and B are represented by bead-spring284

multimers with respectively 6 and 4 binding domains285

(chosen with different valency to avoid magic-number ef-286

fects associated with the formation of stable dimers [6,287

8, 9]). Simulations of Langevin dynamics are done us-288

ing the standard LAMMPS combination of commands289

“fix nve” and “fix langevin”, with energy normalized so290
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that kBT = 1, mass of domain 1, and a damping param-291

eter 0.5. Links between domains in a given protein are292

modeled as finite extensible nonlinear elastic bonds, with293

interaction potential E(r) = −0.5KR2
0 log

[
1− (r/R0)2

]
294

as a function of bond elongation r, with coefficients295

K = 3 and R0 = 3. Interaction between domains of the296

same type are given by a repulsive truncated Lennard-297

Jones potential, E(r) = 4ε
[(
σ
r

)12 − (σr )6] with ε = 1,298

σ = 0.6, and cutoff at R = 21/6σ. The linker potential299

and the repulsion between neighboring domains lead to a300

mean linker length 1 which sets the unit of length. Bind-301

ing between complementary domains occurs via a soft po-302

tential, E(r) = A (1 + cos(πr/rc)) for r < rc, with cutoff303

rc = 0.3. Energy is minimized when domains fully over-304

lap, and Lennard-Jones repulsive interaction between do-305

mains of the same type ensured that binding is one-to-306

one. The interaction strength A is related to the binding307

free energy by ∆F = ln
(∫ rc

0
4πr2e−E(r)dr/(4πr3c/3)

)
.308

We set the average time it takes for an unbound domain309

to diffuse a unit length to be the unit of time, τ0 = 1.310

The simulation time step is δt = 0.005. We simulate only311

the dense phase, with periodic boundary conditions (box312

size: 103 for Fig. 2, 30× 10× 10 for Fig. 3) and density313

typical of a demixed droplet with free surface. The total314

concentration ctot = 1.73 of domains is kept fixed while315

the stoichiometry δ is varied.316

To ensure equilibration of the system, the attraction317

strength A is annealed from zero to its final value over318

one bond relaxation time τ . The system then evolves for319

another 4τ , prior to measurements performed over 10τ .320

In Fig. 2, measurements of τ , MSD, and D have N = 10321

repeats; measurements of η have N = 100 repeats. Sta-322

tistical error bars are smaller than the symbol size. In323

Fig. 3, the system is initially annealed with walls separat-324

ing the two halves of the system, with different labels for325

domains in either side. At t = 0, the walls are removed326

and mixing starts.327
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Science 370, 1317 (2020).412

[29] S. Roberts, T. S. Harmon, J. L. Schaal, V. Miao, K. J. Li,413

A. Hunt, Y. Wen, T. G. Oas, J. H. Collier, R. V. Pappu,414

and A. Chilkoti, Nature Materials 17, 1154 (2018).415

http://dx.doi.org/10.1371/journal.pcbi.1007028
http://dx.doi.org/10.1371/journal.pcbi.1007028
http://dx.doi.org/10.1371/journal.pcbi.1007028
http://dx.doi.org/ 10.1126/science.aaw4951
http://dx.doi.org/ 10.1038/s41563-018-0182-6

	 Stoichiometry controls the dynamics of liquid condensates of associative proteins 
	Abstract
	Acknowledgments
	References


