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Active matter represents a broad class of systems that evolve far from equilibrium due to the
local injection of energy. Like their passive analogues, transformations between distinct metastable
states in active matter proceed through rare fluctuations, however their detailed balance violating
dynamics renders these events difficult to study. Here, we present a simulation method for evaluating
the rate and mechanism of rare events in generic nonequilibrium systems and apply it to study the
conformational changes of a passive solute in an active fluid. The method employs a variational
optimization of a control force that renders the rare event a typical one, supplying an exact estimate
of its rate as a ratio of path partition functions. Using this method we find that increasing activity
in the active bath can enhance the rate of conformational switching of the passive solute in a manner
consistent with recent bounds from stochastic thermodynamics.

The constituent agents of active matter– biomolecules,
colloids, or cells– autonomously consume energy to
fuel their motion.1,2 Their resultant nonequilibrium
states have non-Boltzmann phase-space densities and ex-
hibit exotic structural and dynamical collective fluctua-
tions, including motility-induced phase separation and
swarming.3–7 Within these nonequilbrium steady-states,
fleeting fluctuations can free particles from external
potentials,8–10 nucleate stable phases from metastable
ones,11,12 and assemble passive objects.13,14 The study
of such rare dynamical events within active matter and
the calculation of their associated rates is difficult. Tradi-
tional equilibrium rate theories like transition state the-
ory and Kramer’s theory require knowledge of the form
of the steady-state distribution that is not in general
available.15 Further, only a few numerical methods exist
that can be used to tame the exponential computational
cost associated with sampling the unlikely fluctuations
that lead to transitions between metastable states. Exist-
ing methods improve sampling by stratifying or branch-
ing stochastic trajectories16–18 but do not typically em-
ploy driving forces to specifically enhance the sampling
of these rare events.

Here we present a perspective and an associated nu-
merical algorithm, termed Variational Path Sampling
(VPS), for estimating transition rates in active systems
using optimized time-dependent driving forces. Our ap-
proach relies on a equality between the rate of a rare
event in a reference system and a ratio of path parti-
tion functions in the reference system and with a driving
force that makes the rare event occur with high proba-
bility. The VPS algorithm solves a variational problem
to approximate the functional form of an optimal time-
dependent driving force for this estimate and is applica-
ble to any stochastic dynamics. With VPS we investigate
how driven fluids can direct motion into useful function.

We apply this technique to study the rate of conforma-
tional changes of a passive dimer in a dense bath of ac-
tive Brownian particles.19–21 This model exemplifies how
collective active fluctuations around passive solutes can
drive self-assembly and speed up transitions between dis-
tinct metastable states.22,23 We find the rate to switch
between the dimer’s two metastable states increases dra-
matically with increasing activity in the bath, which we
rationalize with a recent dissipation bound from stochas-
tic thermodynamics.24 We study the computational ef-
ficiency of rate estimation with VPS and demonstrate
its advantage over existing trajectory stratification based
methods like Forward Flux Sampling.16

We consider a system described by overdamped Brow-
nian dynamics of the form,

γiṙi(t) = Fi[r
N (t)] + ηi(t) (1)

where ṙi is the rate of change of the i-th particle’s po-
sition, γi is the corresponding friction coefficient, and
Fi[r

N (t)] is the sum of all conservative, nonconservative
and active forces exerted on the i-th particle that de-
pends on the full configuration of the N -particle system,
rN . The final term, ηi(t), is a Gaussian white-noise with
〈ηiα(t)〉 = 0 and

〈ηiα(t)ηjβ(t′)〉 = 2γikBTδijδαβδ(t− t′) (2)

for component (α, β) and kBT is Boltzmann’s constant
times the temperature. In order to study the transition
rate between two long-lived metastable states, denoted A
and B, we define each from a given configuration using
the indicator functions,

hX [rN (t)] =

{
1 if rN (t) ∈ X
0 else

, (3)

for either X = A,B. In practice this designation requires
an order parameter capable of distinguishing configura-



2

tions and grouping them into these distinct metastable
states like that illustrated in Fig. 1(a) in one dimension.
Assuming there exists a separation between the time τ ‡

required to traverse the transition region between the
two metastable states, and the typical waiting time for
the transition, the rate k can be evaluated from the prob-
ability to observe a transition, per unit time25

k =
〈hB(tf )hA(0)〉

tf 〈hA〉
= t−1

f 〈hB|A(tf )〉 , (4)

where the angular brackets denote an average over trajec-
tories of duration τ ‡ < tf � 1/k started from a steady-
state distribution in A and 〈hB|A(tf )〉 denotes the con-
ditional probability for transitioning between A and B
in time tf . When tf is chosen to satisfy the timescale
separation described above, k is independent of time.

If the transition is rare, most short trajectories are
nonreactive leading to difficulties in estimating the rate
directly. Instead of trying to evaluate the small transi-
tion probability through stratification as other existing
methods do,16,17 we instead optimize a time-dependent
driving force λ(rN , t) that constrains the transition to
occur, and evaluate the probability cost associated with
adding that force to the original dynamics. For a gen-
eral time-dependent force λ, using the Onsager-Machlup
form for the probabilities of stochastic trajectories,26 the
rate expression in Eq. 4 can be rewritten as24

k = t−1
f

〈
e−∆Uλ

〉
B|A,λ , (5)

where 〈〉B|A,λ denotes a conditioned average computed in
presence of the additional force. This relation holds for
forces λ that affect the transition to occur with probabil-
ity 1, such that the rate in the driven ensemble is 1/tf .
The average is of the exponential of the change in the
path action, ∆Uλ,

∆Uλ[X] = −
∫ tf

0

dt
∑
i

[λ2
i − 2λi · (γiṙi − Fi)]

4γikBT
, (6)

between trajectories generated with the added force and
in its absence. The path action and all other stochastic
integrals are evaluated in the Ito convention.

Equation 5 is a direct estimator for a rate employing an
auxiliary control system, but it only becomes useful when
the protocol λ(rN , t) generates trajectories in a manner
equivalent to the unbiased reactive trajectory distribu-
tion. This is because the expectation can be viewed as
an overlap between the two reactive path distributions,
and without significant overlap the exponential average
is difficult to estimate. We express the optimality of λ
using Jensen’s inequality after taking the logarithm of
Eq. 5 to obtain a variational principle,

ln k ≥ − ln tf − 〈∆Uλ〉B|A,λ . (7)

If the average change in conditioned path action
〈∆Uλ〉B|A,λ is minimized over all possible functional

FIG. 1. Reactive trajectories with VPS. (a)Schematic repre-
sentation of the total optimal time-dependent potential in an
isolated passive dimer as t goes from 0 to tf . Shaded regions
are the compact (A, pink) and extended (B, light blue) states.
(b) Unbiased reactive trajectories generated with λ(R, t).

forms of λ, the rate can be obtained directly as a simple
ensemble average of ∆Uλ∗ at the minimizer λ = λ∗.

The optimal control force λ∗ that saturates Eq. 7
is unique and given by the solution of the backward
Kolmogorov equation27–29 as detailed in the Supporting
Material(SM), which includes Refs. [6, 16, 24, 27–39].
Specifically, the optimal force is 2kBT times the gradient
of the logarithm of the commitor probability40 of ending
in state B at tf . A schematic illustration of the opti-
mal effective time-dependent potential Vt(R) added to a
double well potential is illustrated in Fig. 1(a). The re-
sultant force gradually destabilizes the reactant well to
ensure the transition almost surely within the short du-
ration tf . Viewed in the backwards direction of time, the
potential follows the negative logarithm of the relaxation
of an initially localized distribution in B to its steady-
state. The force is thus optimal in the sense that reactive
trajectories, like those in Fig. 1(b), generated with it are
drawn from the reference path ensemble with the correct
statistical weights. Generically, λ∗(rN , t) is a function of
all particle coordinates, so it is not typically tractable to
compute. We demonstrate here that one- and two-body
representations of λ can be sufficiently close to optimal
as to estimate the rate accurately even in cases where the
rare event is collective, similar to related observations in
large-deviation sampling.33,41–43

We study the accuracy and utility of this formalism in a
system comprised of an active bath and a passive dimer
that can undergo conformational changes between two
metastable states. All particles interact pairwise via a
Weeks-Chandler-Andersen (WCA) repulsive potential44

VWCA(r) =

{
4ε

[(σ
r

)12

−
(σ
r

)6
]

+ ε

}
Θ(rWCA − r)

(8)
with energy scale ε, and particle diameter σ, truncated
at rWCA ≡ 21/6σ with the Heaviside function Θ. Active
particles experience an additional self-propulsion force of
magnitude v0, Fai (t) = v0e[θi(t)] where the director is
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e(θi) = (cos θi, sin θi) and θi obeys θ̇i(t) = ξi(t) with,

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dθδijδ(t− t′) (9)

for angular diffusion constant Dθ. Passive solutes sepa-
rated by distance R are bound by a double-well potential

Vdw(R) = ∆V
[
1− (R− rWCA − w)2/w2

]2
(10)

with an energy barrier of height ∆V between the compact
and extended states at R = rWCA and R = rWCA + 2w
respectively.45 We study the transition rates between
these states, employing indicator functions hA(t) =
Θ(RA − R) and hB(t) = Θ(R − RB) for RA = 1.25σ
and RB = 1.85σ. Conformation transitions like these
in dense fluids are collective in origin45 and serve as a
sensitive probe of the bath.

The VPS algorithm estimates an optimal force using
a low-rank ansatz by iteratively solving the variational
problem in Eq. 7, and uses this force to directly obtain
a rate estimate. For computing the rate of isomerization
of the passive dimer, we approximate λ∗ with a time-
dependent interaction along the dimer bond vector R,
expressed as a sum of Gaussians

λ(R, t) = R̂

MR,Mt∑
p,q=1

c(i)pq e
−

(R−µR,p)
2

2ν2
R

− (t−µt,q)2

2ν2t (11)

where c
(1)
pq = −c(2)

pq are variational parameters to be
tuned, and the locations and widths µR,p, µt,q, νR and
νt are held fixed. To impose the conditioning while min-
imizing 〈∆Uλ〉B|A,λ, we use a Lagrange multiplier s to
construct a loss function Ωλ = 〈∆Uλ〉λ + s(〈hB|A〉λ−1).
For a general force that does not ensure the transition
with unit probability, there is a multiplicative contribu-
tion to the estimate of the rate in Eq. 5 from 〈hB|A〉λ,
which for most optimized forces is negligible.

The optimization problem maps onto the computation
of a cumulant generating function for the statistics of the
indicator hB(tf ) studied previously,29,32 with the short
trajectories starting from a steady-state distribution in
the initial state. As such we can employ generalizations
of recent reinforcement learning procedures to efficiently
estimate the gradients of the loss function with respect
to the variational parameters.46 Specifically, we modify
the Monte-Carlo Value Baseline (MCVB) algorithm32

which performs a stochastic gradient descent to opti-

mize c
(i)
pq . We add two preconditioning steps over the

MCVB algorithm. First, we generate an initial reactive
trajectory using a routine reminiscent of well-tempered
metadynamics.35 Then we symmetrize the learned force
to ensure time translational invariance of the transition
paths. We denote this preconditioning algorithm MCVB-
T. Further information is available in the SM.

We first illustrate the systematic convergence of VPS
by estimating the isomerization rate of an isolated passive

FIG. 2. Convergence of isomerization rates for an isolated
passive dimer. (a) Learning curve for ∆V = 10kBT and
MR,Mt = 20. (b) Convergence of the variational rate es-
timate (circles) and cumulant corrections for ` = 2 (triangles)
and ` = 4 (squares) with basis size as compared to the nu-
merically exact answer (dashed line). (c) Variational (circles)
and ` = 2 (triangles) estimate of the rate compared to the
exact value (dashed line) with increasing barrier height.

dimer. Such a simplified system allows us to compare to
numerically exact results, and study convergence of the
force ansatz in the complete basis limit, where MR,Mt →
∞ and the Gaussians cover the thermally sampled region
in R and t. For this simple system, we take kBT =
γ = σ = ε = 1, w = 0.25σ, with diffusive timescale
τ = σ2γ/kBT . We simulate the one-dimensional version
of Eq. 1 along R, with Vdw(R) only. For simplicity we
define state A by the initial condition R(0) = rWCA, and
state B via RB = 1.45σ. To provide a steady-state value
in Eq. 4,32,47 we use an Euler method and take in this
example tf = γwσ/

√
8kBT∆V . We choose µR,p and µt,q

evenly distributed in R/σ ∈ [0.9, 1.77] and t ∈ [0, tf ],
respectively, and νR, νt to be half the distance between
Gaussian centers. We consider basis sizes MR = Mt =
2−40, each optimized independently and used to sample
∼ 105 transition paths.

Figure 2(a) illustrates a typical learning curve for the
control force, showing convergence of the variational rate
bound towards the numerically exact rate. The varia-
tional estimate requires a basis of MR,Mt > 40 to ap-
proach the rate to within the statistical uncertainty of
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the estimate, however alternative estimates with small
basis sets can be refined using a cumulant expansion ap-
proximation to Eq. 5. Specifically, truncating the exact
exponential relation at the `th cumulant as

ln k ≈ − ln tf +
∑̀
n=1

1

n!

dn ln
〈
e−∆Uλ

〉
B|A,λ

d∆Unλ
(12)

provides an approximation to the rate that converges in
the limit that ` is large. Figure 2(b) illustrates this con-
vergence, where we find that even coarse-representations
of the control force can yield close estimates of the rate
with only the first few cumulants, illustrating a tradeoff
between basis set completeness and statistical efficiency.
Sweeping across a wide range of barrier heights in Fig.
2(c), we find excellent agreement between the log-rate
from brute force simulations and a truncation of the cu-
mulant expansion to ` = 2 using MR = 80 and Mt = 30.

We next compute the isomerization rate with VPS
when the dimer is immersed in an explicit solvent of
active Brownian particles with N = 80 and a total
density of 0.6/σ2. The dimer particles have a friction
γd = 2γ and the solvent particles have γs = 4γ. We
take γ = σ = ε = 1, kBT = 0.5, ∆V = 7kBT ,
τ = σ2γ/2kBT = 1, Dθ = 1/τ and timestep 10−5τ . We
also change w = 0.45σ such that the collisional cross-
section of the dimer is large. Collisions with active parti-
cles transduce energy along the dimer bond and we study
the change in the isomerization rate as the bath activity
v0σ/kBT is varied from 0 to 18. We use a basis size of
MR = Mt = 50 distributed between R/σ ∈ [0.9, 2.3] and
t ∈ [0, tf ] where tf = 0.2τ . The optimization starts by
learning forces λ(R, t) for the isolated dimer with WCA
interactions between monomers, followed by the MCVB-
T algorithm. Then, λ(R, t) is optimized in the presence
of the bath for v0 = 0 and higher values of v0 are initial-
ized from converged forces at the previous v0.

The rate is a strong function of activity, increasing
twenty-fold over the range of v0’s considered. While the
variational rate estimate from Eq. 7 is closest for the
passive bath, it weakens with increasing v0, indicating a
growing importance of solvent degrees of freedom in the
optimal control force. With converged forces at each v0,
we run 106 trajectories of length tf to compute k from
Eq. 5. This estimate correctly predicts the suppression of
k due to passive solvation and can be converged statisti-
cally for v0σ/kBT < 9, which is supported by direct rate
estimates from unbiased simulations in Fig. 3(a). Above
v0σ/kBT = 9, the optimized force is not close enough to
λ∗ to estimate k directly through the exponential average
or a low order cumulant expansion.

Provided we have access to the transition path en-
semble from direct unbiased simulations or methods like
Transition Path Sampling48–50 we can supplement the es-
timate of k using histogram reweighting.51 k satisfies a

FIG. 3. Rate enhancement of isomerization in an active fluid.
(a) Change in the rate as estimated from direct unbiased sim-
ulations (crosses), from exponential estimate (squares), and
from histogram reweighting (circles). The excess dissipated
heat (triangles) bounds the rate enhancement achievable de-
marked by the red shaded region. The thick tick mark on
the left denotes the rate for the isolated dimer. (b) and (c)
Typical snapshots of reactive trajectories of the active bath
(blue) and passive dimer (red), at t = 0 and t = tf .

reweighting relation of the form,

k =
e−∆UλPB|A,λ(∆Uλ)

tfPB|A,0(∆Uλ)
(13)

where we have defined PB|A,λ(∆Uλ) = 〈δ(∆Uλ[X] −
∆Uλ)〉B|A,λ and similarly for its undriven counterpart
λ = 0. We evaluate k with this estimator by sampling
104 driven and only 6-100 unbiased reactive paths, using
the Bennett Acceptance Ratio36 to evaluate the ratio of
probabilities. Compared with the brute-force estimate in
Fig. 3(a), we find this reweighting predicts k accurately
across all values of v0 with significantly higher statistical
efficiency then a brute force calculation, which validates
the accuracy and utility of the control forces. We have
compared the VPS rate estimates in the SM, using ei-
ther Eqs. 5 and 13, to the Rosenbluth variant of Forward
Flux Sampling,16 and find that VPS is statistically more
efficient and converges more quickly with the number of
reactive trajectories.

Access to an ensemble of transition paths in this active
system gains us mechanistic insight into the process. The
rate enhancement observed for the compact to extended
state transition of the passive dimer with bath activ-
ity can be understood using recent results from stochas-
tic thermodynamics. Specifically the rate enhancement
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achievable by coupling a reactive mode to a nonequilib-
rium driving force is bounded from above by the heat dis-
sipated over the course of the transition.24 In this case the
nonequilibrium driving is afforded by the interactions be-
tween the dimer and the active bath, so the bound takes
the form

ln k ≤ ln k0 +
1

2kBT
〈Q−Q0〉B|A (14)

where k0 is the rate at v0 = 0 and 〈Q − Q0〉B|A is the
dissipative heat less its average at v0 = 0 given by

Q =

∫ tf

0

dt
∑
i∈d

∑
j∈s

(ṙi − ṙj) · FWCA(rij) (15)

which is a sum of the total force from the WCA poten-
tial of the solvent particles (s) on the dimer (d) times the
difference in their velocities in an ensemble at fixed v0

(SM). This bound is verified in Fig. 3(a) for all v0, and
saturated at small v0. The specific mechanism of energy
transfer from bath to dimer that promotes transitions
is clarified by examining reactive trajectories driven by
the biasing force and are typical, after removal of the bias
from the incomplete basis set. Figures 3 (b) and (c) show
typical snapshots of the solvated dimer at the start and
end of the reaction. Energy transfer results from active
particles accumulating around the dimer, and preferen-
tially in its cross-section, pushing it apart into an ex-
tended state. This mechanism of action is reminiscent of
how nonequilibrium agents collect in the corners of meso-
scopic gears to power their directed rotation.22,23 At low
v0, we find the driven isomerization process is efficient,
while deviation from the bound at large v0 demonstrates
that energy is additionally funneled into non-reactive
modes. Further studies showing the unbiased nature of
the VPS-sampled transition path ensemble in terms of
duration and distribution of transition paths, and quan-
tification of the changing solvation environment with v0

are provided in the SM.
In conclusion, we developed a novel formalism and

corresponding algorithm termed Variational Path Sam-
pling to compute rate constants in nonequilibrium sys-
tems by optimally driving the systems to transition be-
tween metastable states. VPS can be used to compute
rates in arbitrary stochastic systems and extends the
use of optimal control forces in large deviation sampling
to transient rare events.29,33,41,42,52 VPS complements
trajectory-level importance sampling methods by gen-
erating the rare reactive event through a time-series of
driving forces instead of a sequence of rare noise histories.
We expect this approach to find broad use in rate compu-
tations for rare events in dissipative systems throughout
the physical sciences and across scales.
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Espigares, Physical Review A 98, 010103 (2018).

[32] A. Das, D. C. Rose, J. P. Garrahan, and D. T. Limmer,
arXiv:2105.04321 (2021).

[33] A. Das and D. T. Limmer, Journal of Chemical Physics
151, 244123 (2019).

[34] P. Warren and R. Allen, Entropy 16, 221 (2013).
[35] A. Barducci, G. Bussi, and M. Parrinello, Physical Re-

view Letters 100, 020603 (2008).
[36] M. R. Shirts and J. D. Chodera, Journal of chemical

physics 129, 124105 (2008).
[37] R. Zwanzig, Nonequilibrium statistical mechanics (Ox-

ford university press, 2001).
[38] R. J. Allen, P. B. Warren, and P. R. Ten Wolde, Physical

review letters 94, 018104 (2005).
[39] R. J. Allen, D. Frenkel, and P. R. ten Wolde, The Journal

of chemical physics 124, 024102 (2006).
[40] E. Vanden-Eijnden et al., Annual review of physical

chemistry 61, 391 (2010).
[41] U. Ray, G. K.-L. Chan, and D. T. Limmer, Physical

review letters 120, 210602 (2018).
[42] T. Nemoto, F. Bouchet, R. L. Jack, and V. Lecomte,

Physical Review E 93, 062123 (2016).
[43] D. Jacobson and S. Whitelam, Physical Review E 100,

052139 (2019).
[44] J. D. Weeks, D. Chandler, and H. C. Andersen, The

Journal of chemical physics 54, 5237 (1971).
[45] C. Dellago, P. G. Bolhuis, and D. Chandler, The Journal

of chemical physics 110, 6617 (1999).
[46] D. C. Rose, J. F. Mair, and J. P. Garrahan, New Journal

of Physics 23, 013013 (2021).
[47] M. Delarue, P. Koehl, and H. Orland, The Journal of

chemical physics 147, 152703 (2017).
[48] P. G. Bolhuis, D. Chandler, C. Dellago, and P. L.

Geissler, Annual review of physical chemistry 53, 291
(2002).

[49] U. Ray, G. K.-L. Chan, and D. T. Limmer, Journal of
chemical physics 148, 124120 (2018).

[50] P. Buijsman and P. Bolhuis, The Journal of chemical
physics 152, 044108 (2020).

[51] D. Frenkel and B. Smit, Understanding molecular simu-
lation: from algorithms to applications, Vol. 1 (Elsevier,
2001).

[52] J. Dolezal and R. L. Jack, Journal of Statistical Mechan-
ics: Theory and Experiment 2019, 123208 (2019).

[53] A. Das, B. Kuznets-Speck, and D. T. Limmer, “Direct
evaluation of rare events in active matter from variational
path sampling,” (2021).

http://dx.doi.org/https://doi.org/10.1103/PhysRev.91.1505
http://dx.doi.org/ https://doi.org/10.1088/1742-5468/2015/12/P12008
http://dx.doi.org/ https://doi.org/10.1088/1742-5468/2015/12/P12008
http://dx.doi.org/https://doi.org/10.1007/s00023-014-0375-8
http://dx.doi.org/https://doi.org/10.1007/s00023-014-0375-8
http://dx.doi.org/ https://doi.org/10.1088/1742-5468/2015/12/P12001
http://dx.doi.org/ https://doi.org/10.1088/1742-5468/2015/12/P12001
http://dx.doi.org/https://doi.org/10.1063/1.5128956
http://dx.doi.org/https://doi.org/10.1063/1.5128956
http://dx.doi.org/10.3390/e16010221
http://dx.doi.org/10.5281/zenodo.5763101
http://dx.doi.org/10.5281/zenodo.5763101
http://dx.doi.org/10.5281/zenodo.5763101

	Direct evaluation of rare events in active matter from variational path sampling
	Abstract
	References


