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Confined active nematics exhibit rich dynamical behavior, including spontaneous flows, periodic
defect dynamics, and chaotic ‘active turbulence’. Here, we study these phenomena using the frame-
work of Exact Coherent Structures, which has been successful in characterizing the routes to high
Reynolds number turbulence of passive fluids. Exact Coherent Structures are stationary, periodic,
quasiperiodic, or traveling wave solutions of the hydrodynamic equations that, together with their
invariant manifolds, serve as an organizing template of the dynamics. We compute the dominant
Exact Coherent Structures and connecting orbits in a pre-turbulent active nematic channel flow,
which enables a fully nonlinear but highly reduced order description in terms of a directed graph.
Using this reduced representation, we compute instantaneous perturbations that switch the system
between disparate spatiotemporal states occupying distant regions of the infinite dimensional phase
space. Our results lay the groundwork for a systematic means of understanding and controlling
active nematic flows in the moderate to high activity regime.

Active matter is a class of materials composed of in-
teracting and energy-consuming constituents. The past
two decades have seen active matter grow into a new
paradigm of nonequilibrium matter, with applications to
both synthetic and biological systems [1]. Under the in-
fluence of particle-level driving forces, the emergent spa-
tiotemporal structures of active matter are free to explore
a much larger state space than available to passive equi-
librium materials. Behaviors with no known equilibrium
analogue include flocking and swarming [2–8], athermal
clustering of spheres [9–13], spontaneous flows [14–22],
and low Reynolds number ‘active’ turbulence [23–27].

There is an extensive theoretical framework for under-
standing and manipulating emergent structures in mate-
rials at or near equilibrium. However, there is not yet
an equivalent framework for active matter. In this pa-
per, we make progress towards this goal in the context
of active nematics (AN), which are suspensions of ac-
tive, rod-like, and apolar components [25, 28]; examples
include bacterial films and cell colonies [29, 30]. Some
of the most distinct phenomenology of AN occurs under
confinement, in which case diverse spatiotemporal flow
patterns are observed, including states of active turbu-
lence [18, 25, 31–35]. There is much interest in learning
to navigate this large space of spatiotemporal structures,
for example steering a system toward a desired end state
or switching between states [36–38]. In addition, there
are fundamental unanswered questions related to active
turbulence: how active fluids become turbulent, how to
characterize them, and how to promote or inhibit transi-
tion to turbulence [27, 39].

Here we take a deterministic dynamical systems ap-
proach to these questions, beginning with the hydro-
dynamic equations governing AN. The dynamical sys-
tems approach has provided fresh insight into the long-
standing problem of transition to turbulence in passive,
high Reynolds number fluid flows [45]: the core premise,

going back to [46, 47], considers the fluid to be a de-
terministic dynamical system evolving in an infinite di-
mensional phase space [48]. The dominant flow patterns
are understood in terms of Exact Coherent Structures
(ECS) and the dynamical pathways connecting them.
An ECS is a (generically unstable) stationary, periodic,
quasiperiodic, or traveling wave solution of the hydro-
dynamic equations. Each ECS possesses invariant mani-
folds that are dynamical pathways connecting regions of
phase space. A finite set of ECS, together with their
invariant manifolds, constitutes a reduced-order but ex-
act characterization of the global phase space. Though
each ECS is non-turbulent, this representation is fully
adequate for describing turbulent flows, which appear as
chaotic trajectories meandering through the phase space
and visiting the neighborhoods of different ECS in a re-
curring fashion [49–51]. Therefore, the ECS and their
invariant manifolds act as an organizing template for the
complicated spatiotemporal motion of the fluid. In iner-
tial fluids, control strategies using this framework [52–54]
are being explored for suppressing or delaying the transi-
tion to turbulence and reducing viscous dissipation. Re-
cently, the approach has also been extended to elasto-
inertial [55] and viscoelastic [56] turbulence.

However, similar insight is missing in active, low
Reynolds number fluids. Previous work on pre-turbulent
flows has focused on discovering stable solutions and
tracking equilibria through primary bifurcations [18, 34,
57, 58], while fully developed turbulence has been studied
using coarse-grained statistical descriptions [27, 59–62]
that do not deal primarily with deterministic dynamics.

In this work, we take a first step toward developing a
dynamical systems picture of AN turbulence, focusing on
the ECS and heteroclinic connections in a 2D channel in
the pre-turbulent regime. We conducted a comprehensive
search for the most dynamically relevant objects, which
led to the discovery of three coexisting attractors—two
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FIG. 1: Snapshots of three Exact Coherent Structures (ECS). The top plots show the nematic director field overlayed on the nematic
order parameter (color gradient), and the bottom plots show the velocity field overlayed on the vorticity. Left column: PO3a, a

periodic orbit with a 3-fold translational symmetry. Middle column: RPOu4, a relative periodic orbit that cycles between a vortex
lattice (as shown) and a nearly unidirectional, defect-less flow. Right column: RPO1c, a relative periodic orbit without obvious spatial

structure. Movies S1-S5 show the dynamics of each ECS [44].

periodic orbits and a low-dimensional chaotic set—and
44 unstable ECS [44]. Away from the attractors, the
phase space has complex global structure shaped by the
unstable ECS and their invariant manifolds. In particu-
lar, the ECS dictate which of the three attractors a given
flow configuration will evolve toward.

Our results go beyond previous work on AN in that
they generate a reduced-order picture of the exact non-
linear dynamics: because the ECS framework is rooted in
global relationships among exact time-dependent objects,
it does not involve phenomenological approximations or
restrictions to locally linear analysis. Moreover, our com-
putation of unstable structures leads to new insight into
the origin of stable structures and the dynamical paths
leading to them. In particular, this understanding allows
control of AN flows with minimal external input.

Nematohydrodynamic Model.—We model the AN
in terms of the velocity u(r, t) =(u, v), and nematic align-
ment tensor Q(r, t). The latter is symmetric and trace-
less and can be parameterized as Qij = q(ninj − 0.5δij),
where the scalar q and unit vector n̂ describe the degree
and direction of nematic ordering. The domain is a peri-
odic 2D channel, parameterized as (x, y) ∈ [−L/2, L/2]×
[0, h], with x the periodic coordinate. The channel walls
impose a no-slip boundary condition on u and strong per-
pendicular anchoring on Q. Following earlier work, we
describe the dynamics using the hydrodynamic equations

ρ (∂t + u ·∇) u = −∇p+ ∇ · (2ηE− αQ) ,

(∂t + u ·∇) Q + Q ·Ω−Ω ·Q = Γ H,

∇ · u = 0.

(1)

The first and last lines are the incompressible Navier–
Stokes equations, with p the pressure, E and Ω the strain
rate and vorticity tensors, and η the viscosity. The term
∇ · (αQ) is the active dipolar density that drives the
system. Recent work has shown that the resulting en-
ergy fluxes are dominated by viscous dissipation and in-
ertial energy transfer [64]; hence, we omit terms describ-

ing passive elastic stresses. The dynamics of Q consists
of: (1) advective and rotational coupling to the velocity
and the vorticity, and (2) relaxation via the molecular
field H = A Q − BQTr

(
Q2
)

+ K∇2Q toward configu-
rations that minimize an effective free energy functional.
Here A , B, and Γ are material constants describing bulk
properties of the nematic, and K is an elastic constant
characterizing the energy cost of spatial variations in Q.
We focus on a single parameter set, working in units such
that ρ= η= 1, A = 0.1, B = 0.5, Γ = 0.34, K = 0.04, and
choose channel dimensions L= 50 and h= 11 in these
units. We fix α such that the non-dimensional activity
A ≡ h

√
α/K equals 15.5. For comparison, the nematic

has an intrinsic length Ln =
√
K/A ' 0.63, which is

roughly the radius of a defect core, and activity induces
the length scale La =

√
K/α ' 0.71, which measures the

balance between active and elastic stresses. We also ob-
serve that the velocity magnitude is roughly 0.01–0.1,
which corresponds to Reynolds number Re ∼ 0.1–1. Fi-
nally, we note that Ref. [34] and others incorporate ad-
ditional terms in Eqs. 1 that account for flow alignment,
which is the coupling between Q and the symmetric part
of the flow gradients. Here, we neglect these terms to
focus on the essential aspects of the problem [65, 66].

To emphasize the phase space approach, we rewrite
Eqs. 1 as Ẋ =F (X), where X =[u,Q] denotes the state
of the system. The associated flow map is f t(X0) =X0 +∫ t
0
F (X(τ))dτ , where X0 is the initial condition. Since

ECS are generically unstable, they cannot be com-
puted from direct time-dependent simulations; rather,
one searches for solutions to certain fixed point equations
(FPEs). The FPE for an equilibrium solution Xeq is just
F (Xeq) = 0, while any point XP on a periodic orbit (PO)
satisfies fT (XP) =XP, where T is the time period. Simi-
larly, a point XRP on a relative periodic orbit (RPO) sat-
isfies fT (XRP) = τx(`)XRP, where τx(`) is a streamwise
translation by `. Hence, an RPO is a field profile that
recurs at a streamwise-shifted location after time T . In
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FIG. 2: Left: Directed graph representation of the phase space, with ECS (and the CA) as nodes and heteroclinic connections as
edges. The colored arrows (red, green, blue) highlight three multistep connections that Fig. 3 visualizes in more detail. Right: ECS in a

reduced 3D phase space (〈u〉, 〈v2〉, 〈Q11〉), where 〈.〉 denotes the instantaneous channel average. The channel average removes the
continuous translation symmetry [63], such that RPOs are closed orbits rather than tori in this representation. The laning equilibrium

(LAN) and POs have no net streamwise flow and therefore lie on the 〈u〉 = 0 plane. The right drifting (〈u〉 > 0) unidirectional
equilibrium, RPOs, and chaotic attractor have left drifting counterparts (〈u〉 < 0) (not shown). See movie S6 for a 360◦ view [44].

phase space, an RPO densely covers the surface of a two-
torus. We also compute heteroclinic connections between
pairs of ECS [67], which are trajectories that depart the
‘source’ ECS along its unstable manifold and converge to
the ‘destination’ ECS along its stable manifold.

Symmetries.—Eqs. (1) are equivariant under the
one-parameter group of x translations, τx(`), as well as
the following x and y reflections, denoted σx and σy:

σx[u, v,Q11, Q12](x, y) = [u,−v,Q11,−Q12](x, h− y),

σy[u, v,Q11, Q12](x, y) = [−u, v,Q11,−Q12](L− x, y).

If a state initially possesses any symmetries derived from
these group operations, then it will retain the same sym-
metries under time evolution by Eqs. 1 [63]. Some ECS
and heteroclinic connections fall into such invariant sub-
spaces, while others possess no symmetries at all (Fig. 1).
As our results below illustrate, these symmetries are pow-
erful tools for analyzing the phase space geometry.

Methods.—Our computations use the open-source
pseudospectral code Dedalus [68]. For channel geome-
tries, Dedalus implements a Fourier basis for the peri-
odic directions and Chebyshev polynomials for the wall-
normal direction. All ECS and connections reported
here were computed using 256 Fourier modes and 64
Chebyshev modes, corresponding to phase space dimen-
sion ≈ 4×256×64 = 65536. To solve the FPEs, we use
modified Newton-Raphson algorithms [69]. Two key in-
gredients are adaptive ‘hookstep’ step-size selection to
improve global convergence [70], and a matrix-free GM-
RES [71, 72] algorithm for solving the linear BVP at each
iteration. The matrix-free methods are essential because

they scale efficiently to the large problem dimensions en-
countered in hydrodynamic simulations. Finally, finding
a new ECS requires a good initial guess for the FPE
solver. Here, we devise initial guesses using a combina-
tion of (1) the global search method of [72] that sam-
ples arbitrary time-dependent trajectories for approxi-
mate solutions to the FPEs, (2) symmetry reduction [73],
and (3) branch continuation in channel width; see the
supplemental material [44] for details.

Results.—In time-dependent simulations, the dom-
inant attracting state roughly passes through the fol-
lowing sequence of transitions as activity is increased:
(1) zero-flow state; (2) defect-less, unidirectional flow;
(3) vortex lattice with motile defects (‘dancing disclina-
tions’); (4) spatiotemporal chaos (turbulence). These re-
sults generally agree with [34], which considers a similar
AN model in channel confinement. The main difference
is that the stable vortex lattice is an RPO in our case
and a PO in [34]. This difference appears to arise from
the effects of flow alignment, as we recover the results of
[34] at sufficiently large values of flow alignment.

In this Letter, we discuss the phase space struc-
ture at an intermediate non-dimensional activity,

A≡
√

αh2

K = 15.5, where the system has several co-

existing attractors and saddle-type ECS. While this sys-
tem is pre-turbulent, the phase space is quite rich,
and there are numerous heteroclinic connections between
ECS. Fig. 2 shows the dominant ECS in a reduced 3D
phase space, alongside several connections as a directed
graph. In addition to the unidirectional equilibria (UNI),
we also found a pair of laning equilibria (LAN), in which
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FIG. 3: Four connecting orbits in the reduced phase space obtained from the graph representation in Fig. 2. Such orbits can be
constructed for a pair of ECS if a directed path exists between them in the graph. Each orbit is formed by patching together heteroclinic

connections between successive ECS along the path using small perturbations. Top: Green shows the connection
LAN→RPOu8→RPO4c→RPO4a. Red shows two connections: both starting with LAN→PO7a→PO3a and then perturbed toward

either the left- or right-flowing version of RPO3a. These last segments (red and gray) highlight the two-dimensional unstable manifold of
PO3a. Bottom: Blue shows the connection UNI→RPOu4→RPO4c→CA (chaotic attractor). The dynamics of each connection are

shown in movies S7-S9 [44].

the upper and lower halves of the channel flow in oppo-
site directions, ±u(y) = ∓u(h− y) and v= 0. Both UNI
and LAN are independent of x.

Periodic Orbits.—We found 11 unstable POs with k-
vortex lattice structure for 3≤ k≤ 8, which we label POkζ

for ζ = a, b, . . .. Each POkζ has 2k defect pairs and is in-
variant under the action of Tk ≡ τx(L/k) and σxσy. They
are unstable versions of the previously reported stable
‘dancing disclinations’ solutions [34, 74].

Relative Periodic Orbits.—We found 33 RPOs, which
we grouped based on their symmetries and relation to
each other in phase space. One family, labeled RPOuk

for 4≤ k≤ 9, cycles between a k-fold vortex-like structure
and a defect-free, nearly unidirectional flow. The time
period of these RPOs diverges as activity is decreased
from A= 15.5, which leads us to conjecture that they are
born as homoclinic orbits to the unidirectional equilib-
rium (UNI). The remaining RPOs are grouped based on
their (exact or approximate) discrete translational sym-
metry Tk, and labeled as RPOkζ for ζ = a, b, . . .. Some
are left and right drifting versions of the POkζ family;
others appear more closely related to the RPOuk family
or lack distinct structure altogether. Under the action of

σxσy, an RPO is transformed into its ‘opposite drifting’
counterpart, changing the sign on the shift `.

Attractors.—We found three attractors, not counting
copies related by symmetry transformations. One is a
chaotic attractor (CA), and hence, not an ECS. Rather,
it is a higher-dimensional set localized to a cigar-shaped
region of the 3D phase space projection, and containing
trajectories that look like broken or frustrated versions of
a 3-fold ‘dancing disclinations’ state. We confirmed the
set is chaotic using the 0-1 test, which takes a time series
as input and outputs a binary indicator for the presence
of chaos; see [44]. The other two attractors are RPOs:
RPO3a and RPO4a. They consist of 3 and 4-fold ‘rolling
vortices’ and have the appearance of drifting versions of
the dancing disclinations POs (see movie S3 in [44]) The
reason that 3 and 4 are the only ‘allowed’ number of
vortices in the attractors is that they accommodate the
preferred active length scale intrinsic to the dynamics
[75], whereas in wider channels, any RPO attractors have
a proportionally larger number of vortices.

Heteroclinic connections.—Individual ECS lend struc-
ture to localized regions of phase space. To understand
the global structure, we compute heteroclinic connec-
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tions, which are special dynamical pathways connect-
ing ECS. These reveal, for instance, the relationship be-
tween the RPOuk family and the UNI equilibrium: by
choosing a perturbation with k-fold translational sym-
metry, a trajectory starting on UNI passes directly onto
RPOuk. There are myriad other connections both inside
and outside the ECS families. Some involve relatively
little change in structure; for instance, PO3a and PO4b

connect to their left and right flowing RPO counterparts.
Others display striking changes in structure along non-
trivial paths in phase space that, at first glance, seem
unlikely to be found by our search strategy. For example,
some trajectories starting from a k-fold PO have their k-
fold symmetry destroyed before eventually landing on the
unstable PO3a and acquiring a 3-fold symmetry. In real-
ity, these and similar connections are not accidental: in
most cases they occur because the target ECS is stable
in an invariant subspace. PO3a, for example, is stable
in the σxσy subspace. Nonetheless, there may be non-
trivial connections that have little to do with invariant
subspaces and require more systematic search tools, such
as the nonlinear adjoint method [76]. See Tables S3-S12
for a list of ECS and heteroclinic connections [44].

Directed graph representation.—In experiments,
one might wish to direct the system toward a specific
attractor. In fact, our framework allows for more com-
plex control objectives involving unstable ECS, which is
a necessary prelude to engineering turbulent AN flows,
where all ECS are unstable. The centerpiece of this con-
trol capability is a reduced-order representation of the
phase space in terms of a directed graph, in which ECS
and the CA are nodes, and heteroclinic connections are
edges (Fig. 2). This representation uncovers nontrivial
relationships in phase space, which can be exploited to
induce desired transitions using minimal external con-
trol input. For instance, such methods have been used
to discover low-energy dynamical channels forming an
‘interplanetary superhighway’ in the solar system [77].
Fig. 3 provides four examples of connecting orbits be-
tween distant ECS that were found by patching together
heteroclinic connections using small perturbations.

Conclusion.—The characterization and control of
far-from-equilibrium dynamics is a key step in realizing
the promise of active matter. We have employed the Ex-
act Coherent Structure approach to obtain a tractable,
reduced-order representation of a model AN system. At
higher activities, this approach can lead to a better un-
derstanding of transitional turbulence in active fluids. In
experiments, the reduced-order representation can be ex-
ploited by applying external vorticity [78], light [36, 37],
or pressure [58] modulation to reach and maintain oth-
erwise inaccessible spatiotemporal states.
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