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Abstract

Integrating the Kondo correlation and spin-orbit interactions, each of which have individually

offered unprecedented means to manipulate electron spins, in a controllable way can open up new

possibilities for spintronics. Here, we demonstrate electrical control of the Kondo correlation by

coupling the bound spin to leads with tunable Rashba spin-orbit interactions, realized in semi-

conductor quantum point contacts. We observe a transition from single to double peak zero-bias

anomalies in nonequilibrium transport—the manifestation of the Kondo effect—indicating a con-

trolled Kondo spin reversal using only spin-orbit interactions. Universal scaling of the Kondo

conductance is demonstrated, implying that the spin-orbit interactions could enhance the Kondo

temperature. A theoretical model based on quantum master equations is also developed to calculate

the nonequilibrium quantum transport.

1



The Kondo effect – which entails the many-body interaction between localized spins and

their nearby itinerant electrons – is continuously of central interest in condensed matter

physics. It is not just a historical challenge still with many unresolved puzzles[1, 2], but also

provides a powerful laboratory to study quantum spin correlations and coherence that could

extend over micrometres[3], as well as to investigate other strongly correlated electronic

systems[4, 5]. One of the most intriguing problems amongst all Kondo systems is when it

is associated with spin-unbalanced itinerant electrons. This has generally been realized by

coupling the localized spin in a quantum dot to magnetic reservoirs, e.g., using ferromagnetic

contacts, and tuning the Kondo resonance through exchange-driven energy renormalization

associated with quantum fluctuations[6–10]. This kind of system holds the key for con-

trollable single-spin reversal as achieved by the use of ferromagnetic leads[8, 9]. However,

for greater impact in spin-related quantum technologies it is essential for the Kondo spin

reversal to be controlled electrically.

Spin-orbit (SO) coupling – which links the electron spin to its motion – provides an ideal

method of spin manipulation and has played a crucial role in both fundamental science

and the advent of technologies. Intuitively, the combination of SO coupling and the Kondo

correlation is a powerful paradigm for more comprehensive spin manipulation. However, so

far very few systems are shown to harbor both effects and most of them are in emergent

materials[11–13]. The experimental demonstration and implementation of such interplay in

a controllable nanostructure with single magnetic impurity is challenging. Prior experiments

have been limited to measurement of multielectron quantum dots (QDs) with SO splitting of

the energy levels[14, 15], focusing on the role of the SO coupling in the QD energy spectrum

with the Kondo resonance merely as a tool to probe the energy spectrum. In that case, the

itinerant electrons are from the conventional spin-degenerate reservoirs in a well-established

Kondo system. The inability to tune the SO coupling while retaining the electron number

(and thus the unpaired electron spin), within the QD also creates difficulties for investigating

their interplay and for realizing the Kondo spin reversal.

Here, we report a system in which the Kondo correlation is coupled to and controlled

by the leads with SO coupling. It is essential to study whether the SO coupling in the

reservoirs can influence the Kondo correlation through exchange-driven energy renormaliza-

tion, as previously achieved by the use of magnetic leads[6–10]. The study is accomplished

using quantum point contacts (QPCs) with strong Rashba SO coupling, a one-dimensional
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(1D) constriction defined electrostatically in a two-dimensional electron gas (2DEG) of an

InGaAs/InAlAs heterostructure[16], where the electric field leading to the Rashba SO cou-

pling arises from the structural inversion asymmetry of the heterostructure[27, 28]. QPCs

are proven to be a powerful means for spin manipulation [29–31] and realization of the spin

transistor[30]. The Kondo effect can also occur in QPCs when conduction electrons interact

with a quasi-bound spin that arises within a double-barrier potential of the QPC channel[32–

35], shown schematically in Fig. 1(a). The microscopic origin of the quasi-bound state can be

attributed to strong electron interactions associated with either Friedel oscillations[33, 35] (a

scenario recently also linked to the van Hove ridge[36]), or back-scatterings induced by the

potential barrier profile[34], although no consensus has yet been reached. Its interplay with

SO coupling occurs regardless of its detailed microscopic origin. The Kondo effect manifests

in QPCs as a zero bias anomaly (ZBA), a peak in conductance centered around zero source-

drain bias voltage (Vsd = 0). The peak splits as a function of in-plane magnetic field and

is suppressed as T increases at a rate determined by the Kondo temperature TK , similar to

the manifestation of the Kondo effect in quantum dots. Prior to our work, most research

in this context uses systems with negligible SO coupling. One advantage of using QPCs

over quantum dots is that the localized spin moment is strongly coupled to the neighbour-

ing electron reservoirs since the quasi-bound state within the QPC is shallow[33, 34], thus

the exchange-driven energy renormalization of the Kondo resonance is more pronounced.

Figure 1(b) shows a simplified device schematic.

Figures 1(c)–(e) show schematic energy-level diagrams to illustrate the interplay between

SO coupling and the Kondo effect. The Kondo resonance can be represented by a peak

in the density of states (DOS) at the source and drain chemical potentials (µs and µd),

arising from the interaction between an Anderson magnetic impurity and conduction elec-

trons. Figure 1(c) represents the normal Kondo circumstance in which the localized spin

is coupled to spin-degenerate leads, and the characteristic conductance enhancement i.e.,

single-peak ZBA, centered on Vsd = 0 is expected [Fig. 1(f)]. However, when the leads

are spin-unbalanced – e.g., by ferromagnetism[6–9], spin accumulation[10], or presumably

the SO couplings as presented here – a spin splitting of Kondo resonances is expected even

without any external magnetic field [Fig. 1(d)]. For a finite dc source-drain bias eVsd equal

to the spin splitting ∆ESO = 2αRkx, where αR parameterizes the strength of SO coupling

and kx is the electron wavevector, the local resonances in the source and drain DOS align as
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shown in Fig. 1(e) for the Kondo spin reversal to occur. This leads to a double-peak ZBA

with peaks at eVsd = ±2αRkx [Fig. 1(g)].

Figure 1(h) shows the differential conductance G = dI/dVac for a QPC at T = 22 mK

in the linear regime (Vsd = 0), where I is the source-drain current. In addition to standard

conductance plateaus near integer multiples of 2e2/h due to the 1D quantization of energy

levels, a plateau is present roughly halfway between G = 0 and the first conductance plateau.

Plateaus at 0.5 × 2e2/h have been observed in QPCs with strong SO coupling attributed

to spin polarization driven by the SO coupling and electron-electron interactions[29], as has

the conductance feature known as the 0.7 anomaly[37, 38], on some occasions visible near

0.5×2e2/h when SO interactions are strong[39]. Figure 1(i) shows the nonlinear conductance

G as a function of Vsd at different split-gate voltage Vsg. The classic single-peak ZBA, which

is commonly observed in QPCs, occurs at certain Vsg, especially at low G when the 1D

channel just opens, indicating relatively weak SO coupling in this regime. An example is

highlighted in red. However, further from the pinch off voltage when G >∼ 0.5(2e2/h), a

double-peak ZBA emerges (the blue traces mark two examples). An increase of the peak

splitting with G is observed for double-peak ZBAs and may be explained by a change in

∆ESO due to αR and kF increasing with carrier density via the gate voltage, where previous

measurements in an identical heterostructure show αR increasing with density[30, 31]. A

qualitatively similar transition from the single-peak to double-peak ZBAs with conductance

has been observed in a GaAs QPC [35], but is attributed to the two-impurity Kondo effect

since the SO coupling is negligibly small. Hence, deeper investigation into these double-peak

ZBA for our high SO material is essential to determine its origin.

The double-peak ZBA based on a scenario of the Kondo effect and SO coupling has a

unique behaviour in the influence of magnetic field. For the case where it is the time-reversal-

symmetry breaking field (including ferromagnetism and spin accumulation) that leads to the

spin splitting of Kondo resonances (and hence the splitting of ZBA), an external magnetic

field will either enlarge or reduce the splitting depending on the orientation, relative to the

net polarization of the Kondo system. Although the SO interaction (which can also be

viewed as an effective magnetic field BSO), is also expected to lift the degeneracy and split

the Kondo-enhanced conductance, a crucial difference is that BSO and its resulting spin

splittings are momentum-dependent and, more importantly, time reversal symmetric. For

external B parallel (B‖) to BSO, the spin splitting is simultaneously enlarged and reduced
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since B is parallel to BSO for one momentum (kF ) but antiparallel to its opposite counterpart

(−kF ). The two spin subbands of 1D leads are simply shifted vertically by the Zeeman

energy. A distinctly different B dependence is predicted for B perpendicular (B⊥) to BSO,

since the two spin subbands become mixed and anticross [40, 41]. The spin gap between

these spin states in the eigenbasis is proportional to
√
B2
⊥ +B2

SO and hardly varies in energy

while B⊥ < BSO, therefore the peaks should barely change with B⊥.

Figures 2(a) and (b) show G as a function of Vsd at various B‖ for the single- and double-

peak ZBAs, respectively. In Fig. 2(a), the classic splitting of the Kondo-induced single-peak

ZBA with increasing B‖ is observed. The splitting is consistent with the magnetic-field

dependence of Kondo effect[32] i.e., e∆Vsd ≈ 2g∗µBB‖, where ∆Vsd is the peak separation

and Landé g-factor g∗ = 9 for InGaAs[42]. For the double-peak ZBAs [Fig. 2(b)], the two

peaks merge as B‖ increases, forming a single peak around B‖ ≈ 1.4 T, and continue to

move past each other as B‖ increases further. Their evolution is quantitatively consistent

with a Zeeman splitting 2g∗µB(B‖ − BSO) with an offset BSO accounting for the zero-field

splitting. Supplementary information shows the same double-peak ZBA dependence with

B‖ for a second QPC.

Applying B⊥ perpendicular to BSO has a distinctly different effect. The single-peak

ZBA [Fig. 2(c)] splits as B⊥ increases with separation equal to twice the Zeeman energy,

similar to B‖. However, for the double-peak ZBA [Fig. 2(d)], the peak positions hardly

change as B⊥ increases from zero to 0.8 T. The peaks remain at Vsd ≈ ±0.6 mV, illustrated

by the vertical lines, and have almost fully disappeared by B⊥ = 0.8 T. The fact that

the ZBAs survive to a much smaller B⊥ compared to B‖ may be due to the mixing and

significant modification of the two spinful subbands driven by the interplay between the

B⊥ and SO interactions[40, 41]. The SO effective magnetic field in Fig. 2(d) is estimated

to be BSO = 1.15 T using e∆Vsd = 2g∗µBBSO, assuming the zero-field splitting is wholly

attributed to SO coupling.

Figures 2(e) and (f) show colormaps of G as a function of B‖ and Vsd for the case of

a single-peak ZBA and a double-peak ZBA, respectively. Light (dark) colors indicate high

(low) G, such that peaks in G correspond to bright diagonal regions. Dashed lines with a

slope given by the Zeeman splitting of Kondo resonances are overlaid. Figure 2(e) shows

the single-peak ZBA centred on Vsd = 0 at B‖ = 0 T splits at a rate of eVsd = ±gµBB‖

with B‖ (marked by the overlaid dashed lines), following the Zeeman splitting expected for
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Kondo resonances. For the double-peak ZBA [Fig. 2(f)], each of the two peaks split and

dissolve into two crossing branches as B‖ increases, although the outer pair of branches

(i.e., at larger Vsd), are more blurred since the electrons are in a highly nonequilibrium

transport region and may be heated by the large source-drain bias. These right and left

moving branches follow the Zeeman splitting for SO-coupled Kondo resonance and represent

energies eVsd = ±gµB(B‖ + BSO), with the offset gµBBSO = 2αRkx which changes sign as

the momentum reverses. The evolution of ZBA peaks is thus mirror symmetrical across

both B‖ and Vsd. The agreement between the dashed lines and bright regions highlight the

cohesiveness between the data and a scenario given by the Kondo effect with SO coupling.

This is distinctly different to the double-peak ZBAs induced by a time-reversal-symmetry-

broken spin imbalance, and is also opposite to that expected for the two-impurity Kondo

system[35], in which the evolution with B mostly depends on the coupling between different

impurities and reservoirs and is irrelevant of Zeeman energy.

We now present a theoretical basis for the nonequilibrium Kondo phenomenon with SO-

coupled reservoirs and its behavior with magnetic field, with full treatment in supplementary

information[16]. Although the Landauer-Büttiker scattering theory and the nonequilibrium

Green’s function formalism are two standard approaches to capture the quantum nature of

transport with the nonequilibrium Kondo effect, the application to some non-trivial cases

becomes formidable. Attempts have therefore been made to develop a more convenient

approach[43–45], based on quantum master equations (QMEs) in open systems[46, 47].

However, this becomes cumbersome for cotunnelling and Kondo problems which require

higher-order expansions. An improved QME approach under the self-consistent Born ap-

proximation has been proposed[45] to efficiently account for higher-order tunneling contri-

butions. This improved QME is capable of reproducing the Kondo peaks, but extending this

approach to the Kondo problem with SO interactions is still challenging since the electron

Fock state with a specific spin is no longer the eigenstate of the leads. Here, by intro-

ducing the helicity quantum number together with the orbital magnetic quantum number,

we diagonalize the lead Hamiltonian in the presence of the Rashba SO term ĤSO. Due to

the conservation of angular momentum, the problem can be effectively transformed into a

two-channel Anderson model, where the effect of SO interactions is equivalent to coupling

each spin state in the impurity to two helicities in the leads[16]. Figures 3(a) and (b) show

G as a function of Vsd at selected values of B‖ in the absence and presence of SO coupling,
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respectively. The corresponding colormaps as a function of B‖ are shown in Figs. 3(c) and

(d), for the single- and double-peak ZBAs, respectively. The evolution of all the ZBA peaks

follows the Zeeman term in good agreement with experimental observations.

The universal temperature dependence ofG with T/TK (i.e., the Kondo universal scaling),

is a fundamental trait of the Kondo effect. This Kondo universality and its characteristic

energy scale (kBTK) are crucial to identifying and understanding many-body correlations

and quantum critical phenomena[1, 48, 49]. Figure 4(a) shows the T -dependence of the

single-peak ZBA at four different conductance values, for B = 0 T. Peak heights at Vsd = 0

are plotted in Fig. 4(b) as a function of T . Solid curves show fits using the Anderson model

for a Kondo impurity[50, 51]:

G(T ) = G0[1 + (21/s − 1)(T/TK)2]−s , (1)

with TK as the fitting (scaling) parameter, where G0 is the zero-temperature conductance,

and s = 0.22 for the spin-1/2 Kondo system. Above the first plateau, 2e2/h is subtracted

from G before fitting to remove the conductance from the first 1D subband. Similar values

of TK are obtained in all cases (TK =∼ 6–8 K). Deviations from Eq. (1) at high T are likely

due to thermal fluctuations in state occupancy.

Figure 4(c) shows the temperature dependence of the double-peak ZBA at B = 0 T. The

peak heights decrease with T , while G between the peaks increases. The inset shows G at

Vsd = 0 as a function of T . The conductance rises almost monotonically. This is opposite to

a two-impurity Kondo system[35, 52], where G is expected to decrease with T . We also plot

the T -dependence of several double-peak ZBAs with finite B‖ applied, sufficient to merge

the peaks, so they appear as a single peak. Figures 4(d) and (e) illustrate examples at two

different Vsg, showing the peak height reduces with T similar to Fig. 4(a). Figure 4(f) shows

the Kondo universal scaling of G at Vsd = 0 for four such double-peak ZBAs with B‖ applied,

merging the peaks. The values of TK estimated by fitting range from ∼ 14 to 22 K, larger

than the single peak. The single-peak data from Fig. 4(c) are also plotted for comparison.

There is a lack of consensus between theoretical works regarding how SO interactions

influence the Kondo correlation, unaided by the lack of experimental data because of the

challenge of realizing a Kondo system with controllable SO interaction. Some theories predict

exponentially enhancement of TK as SO interactions increase[53, 54], whereas others suggest

it remains relatively unchanged[54, 55]. Our estimates of TK are larger when SO coupling
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appears to be significant (double-peak ZBAs present). Although it is difficult to draw definite

conclusions from this limited data set, the Kondo system presented here may suggest a new

route to explore this fundamental spin correlation problem.

Integrating the Kondo effect and SO coupling in a single device and regulating their in-

teractions may provide insight into many strongly-correlated quantum systems associated

with these two mechanisms, such as heavy fermion materials, and topological Kondo mate-

rials. From a technological perspective, demonstrating electrical control of the spin degree

of freedom removes any drawbacks associated with requiring external magnetic fields or

ferromagnetic components, and thus could be significant for quantum-based technologies

including quantum computation and spintronics.
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FIG. 1. Illustrations of the Kondo and spin-orbit coupled system, and zero-bias anomalies. (a)

Schematic profile of the bound-state potential in the QPC. (b) Simplified circuit schematic. ER

and BSO indicate directions of the electric field from the structural inversion asymmetry and the

effective magnetic field due to SO coupling, respectively. (c)–(e) Energy-level diagrams of a Kondo

impurity coupled to source and drain leads at three situations described in the main text. (f)

and (g) Sketches of G against Vsd in the absence and presence of SO coupling, respectively. (h)

QPC conductance at Vsd = 0. Plateaus are slightly suppressed below expected values due to

imperfect transmission through the QPC. (i) QPC conductance as a function of Vsd, with Vsg

stepped incrementally between traces.
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FIG. 2. Magnetic-field dependence of the single- and double-peak zero-bias anomalies. (a) and

(b) G as a function of Vsd for single- and double-peak ZBAs, respectively. The external magnetic

field is applied parallel (B‖) to BSO and stepped between traces. (c) and (d) Same as (a) and

(b) but for the external magnetic field applied perpendicular (B⊥) to BSO. In (a)–(d) data are

offset vertically for clarity. (e) and (f) Colormaps of G as a function of B‖ and Vsd, for the single-

and double-peak ZBA, respectively. The position of ZBA peaks are well described by dashed lines

eVsd = ±gµB(B‖ + BSO), for (e) BSO = 0 and (f) BSO = ±1.8 T. BSO in (f) differs from the

estimate for Fig. 2(d) since data are measured at different Vsg and G. All data are obtained at

T = 22 mK.
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FIG. 4. Temperature dependence of single- and double-peak zero bias anomalies. (a) Temperature

dependence of four different single-peak ZBAs (B = 0). (b) Peak height of ZBAs in (a) as a function

of T , measured at Vsd = 0. Solid lines are fits to the data using Eq. 1, with TK as the fitting

parameter. From top-to-bottom TK = 8.5, 7.0, 6.6, and 8.4 K. (c) Temperature dependence of the

double-peak ZBA at B = 0. The inset shows G against T at Vsd = 0. (d) and (e) Temperature

dependence of two double-peak ZBAs at B‖ = 1.2 T and 0.72 T, respectively. The values of B‖

are those where the peaks merge into a single peak. (f) Normalized ZBA peak height (G/G0) at

Vsd = 0 for both the single- and double-peak ZBAs. For each data set G0 is the ZBA peak height

at base temperature and Vsd = 0. The black line is plotted using the Anderson model for a Kondo

impurity, Eq. 1.
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