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Recent experiments demonstrate how a soluble body placed in a fluid spontaneously forms a
dissolution pinnacle a slender, upward pointing shape that resembles naturally occurring karst
pinnacles found in stone forests. This unique shape results from the interplay between interface
motion and the natural convective flows driven by the descent of relatively heavy solute. Previous
investigations suggest these structures to be associated with shock-formation in the underlying
evolution equations, with the regularizing Gibbs-Thomson effect required for finite tip curvature.
Here, we find a class of exact solutions that act as attractors for the shape dynamics in two and
three dimensions. Intriguingly, the solutions exhibit large but finite tip curvature without any
regularization, and they agree remarkably well with experimental measurements. The relationship
between the dimensions of the initial shape and the final state of dissolution may offer a principle
for estimating the age and environmental conditions of geological structures.

Ever-changing geological features on this planet never
fail to capture our imagination and inspire new scien-
tific advances. Often, striking features appear when fluid
and solid interact, ranging from centimeter scale pebble
stones [1, 2] to the kilometer scale karst terrains [3, 4].
Even planetary-scale plate tectonics are believed to have
such a fluid-structure interaction origin [5–8].

The direct study of geophysical structures presents
unique challenges owing to the vast range of scales, along
with the limitation of only seeing the current state. On
the other hand, laboratory-scale experiments combined
with judicious physical models have proven valuable in
explaining certain formations [10, 11], like the growth of
icicles [12], river meandering [13–15], the formation of
stalactites and stalagmites [16–18], meteor ablation [19],
and plate tectonics [5–8]. In this letter, we investigate
one such geomorphological problem, namely the forma-
tion of karst pinnacles [3, 20]. We will demonstrate the
unusual shape dynamics that result in convergence to a
morphological attractor.

Commonly seen in South Asia and the island of Mada-
gascar [21, 22], Fig. 1(a) shows the typical shape of the
karst pinnacles that comprise stone forests. While their
origins remain unclear, studies have related such pinna-
cles to the dissolution process [4, 20, 23], as many of these
rocks were once immersed under water, and the rock ma-
terial is slightly water-soluble. Two questions naturally
arise: How does the rock evolve into individual pinnacles?
Why does each pinnacle exhibit the common feature of a
sharp apex?

Aimed at addressing such questions, recent experi-
ments employed lab-scale soluble objects to recreate the
stone forests purely from the perspective of dissolution
and fluid dynamics [9]. These experiments show stone
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forests to manifest from a single porous, soluble block,
highlighting the sharpening of each karst pinnacle as the
key to such formations. In these and other [24] experi-
ments, no external flow is imposed, rather the transport
of relatively heavy solute sustains a natural convective
flow that drives shape evolution.

Huang et al. 2020 and Pegler & Wykes 2020 proposed a
boundary-layer based model capable of predicting sharp-
ening [9, 25]. Notably, the model reduces to a single
integro-PDE that governs shape evolution, denoted here
as the sharpening equation (SE). Initial numerical evi-
dence and scaling analysis of the SE suggested shock for-
mation and finite-time blowup of the tip curvature [9].
Likewise, similarity solutions of a matched-asymptotic
approximation predict unbounded growth of tip curva-
ture for certain initial conditions [25, 26].

Fig. 1 shows experimental images of dissolving planar
and axisymmetric bodies (see [9] for experimental de-
tails). Measurements of the tip curvature indeed in-
crease over time, as seen in Fig. 1(b) and (c), but inter-
estingly give no clear indication of singular behavior. To
reconcile these observations, previous studies appealed to
the thermodynamic Gibbs-Thomson (GT) effect [27, 28],
which regularizes the SE and limits the curvature growth.
However, the strength of the GT term used in previous
simulations was at the high end of the range estimated
from physical considerations (1-10 µm) [9], thus calling
into question whether this term accurately modeled a
physical effect or was simply acting to regularize the nu-
merics. For context, the experiments show in Fig. 1 reach
a final tip radius of 60 µm, suggesting that the GT effect
is secondary. As such, fundamental questions remain:
Does the SE support geometric shock formation? Is there
a blowup in tip curvature, and, if so, is the blowup only
limited in practice by microscale thermodynamics?

Here, we resolve these and other questions by finding
a class of exact solutions to the SE in 2D and 3D that
serve as attractors for the shape dynamics. The solu-
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FIG. 1. Dissolution-induced sharpening. (a) Limestone structures form the stone forests of Madagascar (Grant Dixon). (b)-
(c) Dissolution of lab-scale planar and axisymmetric objects unveils the sharpening process; images from the same set of
experiments reported in [9]. The observed noise in the curvature measurements results from surface impurities, like bubbles,
affecting image tracking. The final radius of curvature at the tip was measured to be 60 µm.

tions exhibit large, but finite, tip curvature, indicating
that the GT effect is not needed to regularize sharpen-
ing. Improved numerical methods, specially tailored to
the hyperbolic nature of the SE, show how initially con-
vergent characteristics bend to avoid crossing and even-
tually straighten in pursuit of the attracting morphology.
Revisited experiments confirm the convergence to these
exact solutions, thus raising the possibility of using the
solutions to infer properties of natural structures.

The model.—In accordance with Fick’s law, a soluble
interface retreats with normal velocity proportional to
the gradient of the solute field Vn ∝ ∇c · n [2, 29, 30].
These dynamics can be greatly complicated by the pres-
ence of a fluid flow, which significantly distorts the field
c and alters local gradients. The flow may be forced
externally [1, 31–37] or driven by buoyancy variations
[9, 24, 38], as in the present study. The evolution of flow,
solute, and body shape are thus inextricably linked.

Due to the large Schmidt and Grashof numbers (Sc ∼
103 and Gr ∼ 109, see SI) of the pinnacle experiments,
these convective flows are confined to narrow boundary
layers, enabling an explicit expression for the 2D interface
velocity [9, 39]:

Vn = −a cos
1
3 θ

(∫ s

0

cos
1
3 θ ds′

)− 1
4

(1)

where the surface tangent angle θ = θ(s, t) is parame-
terized by the arclength s from the apex, as illustrated
in Fig. 2(c). The constant a ≈ 10−7 m5/4/s contains all
material and fluid properties. For simplicity, we focus on
the 2D case in this Letter, with analogous analysis for
axiysymmetric (3D) objects available in the SI.

The θ-L formulation [30, 40–42] offers a single, scalar
equation that fully describes shape evolution:

∂θ

∂t
=
∂Vn
∂s

+ Vs
∂θ

∂s
. (2)

As above, θ represents the surface tangent angle, and
the Cartesian coordinates can easily be recovered from
d
ds (x, y) = (sin θ, cos θ). The artificial tangential veloc-

ity Vs =
∫ s
0
Vn∂sθ ds

′ enforces an invariant metric with

respect to arclength, thereby separating s and t as in-
dependent variables. Equation (2) with interface veloc-
ity Eq. (1) is the nonlinear integro-PDE proposed in [9],
here called the sharpening equation (SE); see [25] for the
Cartesian counterpart .

Previous investigations employed a finite-difference
scheme to solve Eq. (2), but with the GT regulariza-
tion required to maintain numerical stability [9]. Other
studies employed a matched-asymptotic expansion, but
with approximation error that may grow large with time
[25, 26]. In contrast, we introduce a method to directly
propagate characteristics of Eq. (2), with no regulariza-
tion and no additional model approximation made.

To that end, consider a location s = S(0) on the ini-
tial geometry, with tangent angle Θ(0) = θ(S(0), 0). The
trajectory S(t) evolves via the ODE:

Ṡ(t) =

(
R
∂Vn
∂s
− Vs

) ∣∣∣
s=S(t)

, S(0) = S(0), (3)

where R = −(∂θ/∂s)−1 = κ−1 is the radius of curva-
ture. Combining Eqs. (2) and (3) shows that the tan-
gent angle remains constant along such a characteristic,
θ(S(t), t) = Θ(0), thus providing an implicit solution for
any initial profile Θ(0) = θ(S(0), 0). This is the essence
of the method of characteristics.

A PDE-based interpretation of Eq. (3) is also possible
via implicit functions. That is, regard s = s(θ, t), where
θ ∈ (0, π) is now the independent variable, to obtain:

∂s

∂t
= −∂Vn

∂θ
− Vs , (4)

Vn = −a cos
1
3 θ

(∫ π/2

θ

R(θ′, t) cos
1
3 θ′dθ′

)− 1
4

, (5)

where now R(θ, t) = −∂s/∂θ and Vs =
∫ θ
π/2

Vn(θ′)dθ′.

Crucially, the reformulation in terms of θ implies in-
creased numerical tip-resolution in proportion to the
sharpening. We thus solve Equations (4) and (5) nu-
merically (see the SI for implementation details) for a
class of left-right symmetric initial conditions.
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FIG. 2. Simulating dissolution-induced sharpening. (a) Evo-
lution of the initial shape θ = arccot s/` in 2D. (b) Zooming-
in near the apex illustrates the strong sharpening effect. (c)
Model schematic. (d) Profiles of the tangent-angle θ(s, t)
show a steep gradient develop near the apex, s = 0, consistent
with (e) a tip curvature that increases by 5 orders of magni-
tude. (f) Characteristic curves show contours of constant θ,
with the physical trajectories shown in (a) with red.

Results.—As a first numerical test, we simulate the dis-
solution of the initial profile θ(s, 0) = arccot(s/`), with
` = 1 and a = 1 (for other values, time could be rescaled
by the factor `5/4/a). As seen in Fig. 2(a), dissolution
causes the apex to sharpen as the body retreats down-
wards and diminishes in size. Figure 2(b) shows a few
representative shapes at different stages of dissolution,
illustrating the dramatic sharpening effect. Figure 2(d)
shows the corresponding distributions of the tangent an-
gle, θ(s, t). Here, a rapid change of tangent angle devel-
ops at the tip, as is consistent with the increasing curva-
ture κ = −∂θ/∂s there. Indeed, the rescaled tip curva-
ture κ̄0(t) = κ0(t)/κ0(0) shown in Fig. 2(e) increases by
5 orders of magnitude before saturating.

Figure 2(f) shows the characteristic curves (t, S(t)) cor-
responding to different constant values of the tangent an-
gle θ = Θ(0) [the physical trajectories of these curves are
shown in red in Fig. 2(a)]. Near the tip (S ≈ 0) charac-
teristics initially converge towards one another, implying
a large range of tangent angles crowded into a small re-
gion, i.e. sharpening. Previous discretizations of Eq. (2)
interpreted this convergence as a crossing of characteris-
tics and thus the formation of a geometric shock. The re-
formulated Eq. (4), however, reveals that characteristics
bend away from one another before ever crossing, thus
preventing a finite-time blowup of curvature. Character-
istics farther from the tip are seen to change their direc-
tion of travel, initially propagating outwards, and then
inwards, before they ultimately straighten and travel ver-
tically. At late times, all characteristics are seen to travel
vertically, suggesting that a terminal shape has arrived.

Exact solutions.— To examine the possibility of a ter-
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FIG. 3. Convergence towards the equilibrium morphology.
(a) Left : Overlaying interfaces in Fig. 2(a) shows a common
shape to emerge at late times. Right : Zooming-in near the
apex further reveals the convergence towards an equilibrium.
(b) The rescaled radius of curvature R/R0 tends to the exact
distribution predicted by Eq. (8). (c) Choosing initial shapes
near the equilibrium can lead to sharpening or blunting, as
predicted by Eq. (10). Inset : physical shape evolution of the
case γ = 5/3 reveals straight characteristic paths.

minal shape, we take a θ-derivative of Eq. (4) to obtain
an evolution equation for the radius of curvature [10, 43]:

∂R

∂t
= Vn +

∂2Vn
∂θ2

. (6)

Clearly, a steady-state of Eq. (6) is given by

Vn = −V0 sin θ (7)

for any constant V0, which is the recessional rate of the
tip. Eq. (7) represents steady translation of a fixed
shape. It is the only steady-state Vn that satisfies left-
right symmetry. Inserting Eq. (7) into Eq. (5) and
inverting gives the equilibrium distribution of R,

R∗

R∗0
=

1 + 2 cos2 θ

sin5 θ
. (8)

This class of equilibrium solutions has one degree of free-
dom R∗0, which is the equilibrium radius of curvature at
the tip. Exact expressions for the Cartesian coordinates
of this surface, along with solutions for the corresponding
axisymmetric (3D) problem, are given in the SI. Though
differences exist in the θ–L formulation of the 2D and
3D problems, the final equilibrium solutions are identical
when written in Cartesian coordinates.

To test the convergence to this final shape, Fig. 3(a)
shows the simulated interfaces from the previous exam-
ple, but shifted to have the same apex. As seen here
and in the close-up, the interfaces indeed collapse to a
single profile at late times. Figure 3(b) shows that the
corresponding distributions of rescaled curvature-radius,
R(θ, t)/R0(t), converge to the equilibrium shape Eq. (8).
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Having observed the convergence to the predicted mor-
phology, several questions remain: What happens for dif-
ferent initial conditions? What determines the final tip
radius R∗0 = limt→∞R(0, t)? And how can the results
be reconciled with previous infinite-curvature predictions
[9, 26]? To address these questions, we consider a local
expansion in small w = cos θ:

s(w, t) = a1(t)w + a3(t)w3 + . . . (9)

where odd-symmetry has been used. Thanks to the
change of variables, Vn can be calculated exactly for any
power wn. Inserting into Eq. (4) produces, at leading

order, Ṙ0 ∝ −R−1/40 , which is consistent with [9] and
predicts finite-time blowup of curvature. However, re-
taining the higher-order terms gives

Ṙ0 ∝ −R−1/40

(
1− 3

5
γ

)
, γ(t) =

a3(t)

a1(t)
, (10)

which is an exact relation (no truncation). Equation (10)
opens the possibility for the curvature divergence to be
controlled by the term

(
1− 3

5γ
)
, and indeed the equilib-

rium solution Eq. (8) has the property γ = 5/3.
To further examine this possibility, Fig. 3(c) shows the

simulated dissolution of three initial conditions surround-
ing the equilibrium: s(w, 0) = a1(0)w + a3(0)w3, with
γ initially set to 5/3, 4/3, and 3. The figure confirms
that γ = 5/3 results in nearly constant curvature [44],
whereas γ > 5/3 (resp. γ < 5/3) leads to decreasing
(resp. increasing) curvature, consistent with the sign of

Ṙ0 in Eq. (10). Thus, both tip sharpening and blunt-
ing are possible [25, 26], with the value of γ determining
which occurs. The case γ = 4/3 leads to tip sharpening,
but, due to the proximity to the equilibrium, not nearly
as much as in our first numerical example. Thus, the
enormous curvature growth observed in Fig. 2 should not
always be expected, as it depends on the initial shape.

We now turn attention to the experimentally-measured
shapes that were shown in Fig. 1, for planar (2D) and ax-
isymmetric (3D) geometries. Figure 4(a) compares the
experimental profiles (shifted to have the same apex) to
the equilibrium morphology of Eq. (8) (thick gray curve).
At late times, the experimental profiles all collapse onto
the predicted shape in both 2D and 3D, thus conclusively
confirming that Eq. (8) accurately describes the equilib-
rium spire-morphology of a body dissolving under its own
solute-induced convective flow. This agreement with lab-
oratory experiments also validates modeling assumptions
made, including the boundary-layer and quasi-steady ap-
proximations and the omission of GT effects.

A second test is made possible by the far-field (|s| →
∞) behavior of the equilibrium solution

y ∼ 3

4
R∗0
−1/3 x4/3 , (11)

which holds in both 2D and 3D [with (x, y) → (r, z) in
3D, see SI]. Figure 4(b) shows a log-scale comparison be-
tween this predicted 4/3-power law and the experimental
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FIG. 4. Comparison with laboratory experiments shown in
Fig. 1. (a) When overlaid, the profiles measured from the
planar (2D) and axisymmetric (3D) experiments are seen to
converge to the shape predicted by Eq. (8). Plotting the ex-
perimentally measured surface coordinates on a log-scale con-
firms the far-field prediction Eq. (11).

measurements. At late times, the experimental profiles
indeed converge to the predicted power law in both cases.
We note that this power-law is consistent with one of the
similarity solutions found in [25, 26], which would need
to be asymptotically matched to an inner (near-tip) so-
lution. Those similarity solutions, however, predict con-
tinued evolution of shape, whereas we have found con-
vergence to a final form. Numerical and experimental
evidence suggests this final morphology to be a stable
attractor.

Closer examination of our exact solutions offers an in-
terpretation of the flow-physics underlying the conver-
gence in shape dynamics. Within the boundary layer, a
few competing effects exist. First, the apex is in con-
tact with nearly pure liquid, whereas a solute mixture
washes over the downstream portions. In isolation, this
effect would cause the apex to retreat fastest. On the
other hand, the buoyancy-driven flow accelerates as it
advances downstream, due to the accumulation of dense
solute as well as the increase in surface steepness. This
effect enhances convection-induced dissolution on down-
stream portions. Which effect is stronger depends on the
detailed geometry of the object, and it is the interplay
between the two that drives shape change. Ultimately,
balance is achieved by the steadily-translating distribu-
tion, Vn = −V0 sin θ, which shows that the dissolution-
rate is highest at the tip (θ = π/2) and decreases locally
in proportion to the surface steepness. At this stage,
the mass loss rate of the pinnacle has a simple scaling

dm/dt ∼ 2
∫ π/2
θ0

Vn(θ)R∗(θ) dθ ∼ −V0R∗0 ∼ −(R∗0)3/4,

implying that the mass loss slows as the tip sharpens.
Discussion.— In this Letter, we have described, in ex-

act form, the final spire morphology of a body being re-
shaped under its own dissolution-induced natural con-
vective flow, thereby concluding the search from [9, 24–
26, 38]. Carefully designed numerics show that, rather
than forming a geometric shock, characteristics avoid



5

crossing to pursue this terminal shape, which exhibits
large, but finite tip curvature. This situation is perhaps
analogous to exact solutions found in the context of free
surface flows, whose finite curvature reversed previous
hypotheses on the formation of cusp singularities [45].

The simple, explicit nature of our solutions suggests
that they may be used to infer properties, e.g. age or past
environmental conditions, of natural structures. To take
one example, suppose that a karst pinnacle at time t0
has height h(t0), width d(t0), and that its apex dissolves

at the rate ḣ(t0) = V (t0). As it nears the final shape,
Eq. (11) suggests h(t)d(t)−4/3 = h(t0)d(t0)−4/3 and the
constant tip velocity gives h(t) − h(t0) = V (t0)(t − t0).
These two relationships comprise a closed system for
(d(t), h(t)) at any given time – including the past (t < t0)
and the future (t > t0)– thus offering the potential to es-
timate the past dimensions or, if the dimensions can be

estimated through other means, the age of the structure.
To take this idea one step further, the typical spacing L
between pinnacles in a stone forest approximates the ini-
tial width d(0) ≈ L, thus offering simple estimates for the
pinnacle’s initial height h(0) = h(t0)[L/d(t0)]4/3 and its
age t0 = [h(t0) − h(0)]/V (t0). Though natural systems
involve a range of other complicating factors (such as
rainfall, turbulent boundary layers, and fracture) our cal-
culations, based principally on dissolution and fluid dy-
namics, may offer a leading-order understanding of these
amazing structures.

Aspects of our analysis can be extended to other phys-
ical systems. For example, Eq. (6) can have a separable
solution R(θ, t) = A(θ)B(t), corresponding to the self-
similar evolution of erodible and soluble bodies immersed
in an externally forced flow [1, 2, 42]. Meanwhile, our ap-
proach can be applied to dynamics with an opposite sign
in Vn, seen in growing systems like crystallization [43]
and the formation of stalactites [17, 18].
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