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Self-organization phenomena in ensembles of self-propelled particles open pathways to the syn-
thesis of new dynamic states not accessible by traditional equilibrium processes. The challenge is
to develop a set of principles that facilitate the control and manipulation of emergent active states.
Here, we report that dielectric rolling colloids energized by a pulsating electric field self-organize
into alternating square lattices with a lattice constant controlled by the parameters of the field.
We combine experiments and simulations to examine spatiotemporal properties of the emergent
collective patterns, and investigate the underlying dynamics of the self-organization.We reveal the
resistance of the dynamic lattices to compression/expansion stresses leading to a hysteretic behavior
of the lattice constant. The general mechanism of pattern synthesis and control in active ensembles
via temporal modulation of activity can be applied to other active colloidal systems.

The subject of vast interest in the field of active
matter physics is the emergence of self-organized col-
lective behavior out of chaotic motions of individual
particles as a result of inter-particle interactions [1–7].
Self-organization phenomena in biological active systems,
such as flocks of birds and schools of fish, rely on commu-
nications, visual monitoring, sensing of individual posi-
tions and requires constant brain processing of collected
information [8–11]. A collective motion in ensembles of
simple organisms, such as swimming bacteria, may arise
only out of inter-particle steric and hydrodynamic inter-
actions [12–18] that makes them a popular model sys-
tem for the investigation of collective behaviors and self-
organization phenomena.

Systems of synthetic self-propelled particles, energized
by chemical reactions or electromagnetic fields, provide
even better control over individual and collective dy-
namics of active units and, as a result, complex out-of-
equilibrium dynamics of such systems is the subject of
extensive research [5, 6, 19–26]. Currently, the majority
of collective phenomena are observed in the systems with
a constant (or nearly constant) energy injection rate. For
instance, a system of electrostatically driven rolling col-
loids, Quincke rollers, exhibits a large variety of dynamic
phases ranging from an isotropic gas to polar bands, vor-
tices, swarms, and rotating clusters [5, 19, 27, 28]. The
temporal modulation of activity in that system was re-
cently suggested to model behavior of living systems and
control clustering of particles [6, 29, 30].

In this Letter, we report self-assembly of active
Quincke rollers into dynamic square lattices when ener-
gized by a spatially uniform but modulated in time elec-
tric field. The formation of dynamic structures is trig-
gered by a momentarily decoupling between dominant
inter-particle interactions - hydrodynamic velocity align-
ment and near-field electrostatic repulsion as a result of
a temporal cessation of the energy injection. Temporal
cessation of the activity resets particles’ interactions and
redirects velocities according to the locally formed parti-

cle arrangements. In contrast to vertically vibrated gran-
ular matter [31–34], only square lattices are observed,
and these lattices preserve their structure after termina-
tion of the activity.

In our experiments, spherical polystyrene particles of
the diameter d = 4.8 µm are dispersed in 0.15 mol L−1

AOT/hexadecane solution and sandwiched between two
parallel ITO-coated glass slides spaced 45 µm apart, see
Fig. 1(a). When a static (DC) electric field is applied,
particles polarize, and above the critical amplitude of the
field [19] they start to steadily rotate and roll on the bot-
tom surface with a constant speed driven by electrohy-
drodynamic Quincke rotation phenomenon [36, 37]. The
typical velocity of rollers in our experiments is 0.8 mm/s.
At a particle area fraction above φc ≈ 0.002, rollers form
a steady vortex or a traveling band in confined systems
[19, 27, 38]. The temporal profile of the mean square
displacement (MSD) for individual rollers (red curve in
Fig. 1(d)) reveals long ballistic regime of motion.

The behavior of rollers becomes drastically different if
activity of particles is modulated by the pulsating electric
field shown in Fig. 1(b). For simplicity, we fix the magni-
tude of the electric field, but probe the rollers’ dynamics
by varying only the duration of pulses τon and the interval
between the pulses τoff. This technique was recently sug-
gested to model run-and-tumble behavior and Lévy walks
via incomplete depolarization of rollers at relatively short
resting time τoff [6]. The formation of lattices observed
in our work requires full depolarization of particles after
each cycle of the electric field which occurs if τoff is several
times larger than the Maxwell-Wagner polarization relax-
ation time τMW (τMW = (ǫp + 2ǫf)/(σp + 2σf) ≈ 1 ms),
where ǫp, f and σp, f are the permittivities and conductiv-
ities of particles (p) and fluids (f), respectively. Relax-
ation of large-scale flows and hydrodynamic interactions
occur within viscous timescale that in the experimental
cell of the thickness d = 45 µm is of the order of 1 ms.
As a result, each roller in our experiments comes to a
complete rest for τoff > 10 ms. The Brownian motion
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FIG. 1. Self-assembly of Quincke rollers into square lattices under a pulsating electric field. (a) A sketch of the experimental
setup. (b) Temporal dependence of the electric field and the averaged particles’ velocity. T = τon + τoff is the period of the
signal. (c) A trajectory of an isolated roller energized by the pulsating electric field. (d) Mean square displacement curves of
the rollers under periodic activity modulations. The bottom (purple) and the top (red) curves correspond to the motion of the
rollers in Gas and Vortex phases respectively. E = 2.7 V µm−1 and T = 100 ms for all curves except the case of a constant field.
Slopes marked as 1 and 2 indicate diffusive (∼ τ ) and ballistic (∼ τ 2) regimes respectively. (e) An experimental snapshot of a
dynamic square lattice captured between electric field pulses. The blue squares marks four unit cells with a lattices constant a.
The same area is also shown in (f-h). The particle area fraction φ = 0.114; E = 3.0 V µm−1; T = 125 ms; τon = 112.5 ms. The
scale bar is 0.5 mm. See also Video S1 [35]. (f) Overlayed square lattices formed after two consecutive cycles represented by
blue and red circles. (g) Visualization of the particle trajectories over five periods of the field. For clarity only 10 % of particle
trajectories are shown. (h) Color-coded visualization of the time evolution of particles positions during one cycle. The color in
each point of a particle trajectory corresponds to the time between 0 (purple) and τon (red) as shown by the colorbar.

has a negligible effect on particles’ motion due to their
large size and does not alter their positions when activ-
ity is terminated. At low concentrations (φ < φc), each
particle randomizes the velocity direction in each period
(Fig. 1(c) and Fig. S9 [35]).

At a high particle concentration, the initial direction of
motion upon field application is affected by an arrange-
ment of neighbors. Rollers tend to move against the local
gradient of particle density due to the electrostatic repul-
sion between polarized particles [30]. The spontaneous
formation of a cluster is followed by its quick explosive de-
cay and concentration of particles in previously depleted
areas during the next cycle. While initially the positions
of nuclei clusters are random, they slowly evolves into
a well-defined stable structure, and in several hundred
activity cycles particles’ positions start to alternate be-
tween two sets of nearly perfect square lattices (A and
B) with the same lattice constant a, see Fig. 1(e,f), Fig.
S1, and Video S1 [35]. The structure of lattices A and
B are geometrically identical but translated by the half
of a diagonal of the unit cell (a/2, a/2). A closer inspec-
tion of particles’ motion shows that the average distance
particles travel each cycle is noticeably smaller than the
shift between the lattices (

√
2a/2), see Fig. 1(g,h). The

particles preserve their positions in one of two lattices as
long as the field is off, but quickly form the alternative
lattice upon the next pulse of the electric field. There-
fore, the observed self-organization of particles is intrin-

sically different from activity-induced cluster formation
in which active particles slow down in crowded areas,
further increasing the local density and the size of the
cluster. [3, 39, 40]. The reciprocating motion of rollers
between the two lattices (period is 2T ) effectively traps
individual particles within unit cells for several cycles, as
reflected by the oscillation of MSD curves, and particle
trajectories (Fig. 1d,g). The motion of particles eventu-
ally becomes diffusive as particles migrate from cell to
cell over the system. The diffusion constant D increases
with particle run time τon, see Fig. S3(a) in [35].

Our minimalistic phenomenological model (see [35] for
details) that involves only isotropic inter-particle repul-
sion and velocity alignment mechanisms accurately re-
produces the formation of patterns observed in experi-
ments (see Fig. S2, S3 in [35]) as well as main dynamic
properties of the lattices discussed below. The results
of our simulations highlight the role of repulsive forces
immediately upon the system activation. In the model,
while the system is active all particles move with nearly
the same constant speed (small fluctuations due to noise
or interactions do not alter the results). The initial direc-
tion of motion for each particle at the beginning of each
cycle is defined by the net repulsive force from the neigh-
bors. If the initial direction were chosen randomly, parti-
cles would not form any stable structure. These findings
provide a hint on the mechanism of lattice formation.
Upon the system activation, particles start to experience
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FIG. 2. (a) Dynamic phases formed by rollers for different τon
and τoff. φ = 0.120; E = 2.7 V µm−1. The system is confined
by a cylindrical well with a diameter D = 1 cm. The phases
marked as ”∗” have been previously reported in Ref. [6]. See
Video S3 in [35] for more details. (b) Lattices and Gas formed
at different τon and φ (τoff ≥ 40 ms). The dashed line is a
fit of the boundary between phases by a function φ = A/τon,
see text for details. Inset: dynamic phase diagram obtained
from simulations. N is the number of particles in the system.
(c-d) Dependence of the lattice constant on τon for different
area fractions in experiments (c) and simulations (d). D =
1.5 mm. The dashed lines are linear fits for the lowest and
highest area fractions. Insets in (c) and (d) experimental and
simulation data with the lattice constant re-scaled by a

√
φ.

repulsion from the neighbors (due to a field-induced po-
larization) and roll away from dense clusters. A temporal
cessation of the activity and subsequent re-energizing of
the system lead to rapid reorientation of particles’ veloc-
ities against the local density gradients, and results in a
reciprocating motion of particles between the two sets of
lattices.

In order to gain additional insights into the observed
self-organization, we explore the response of the system
to changes in the pulse duration, τon, and distance be-
tween the pulses, τoff, see Fig. 2a and Video S3 in [35].
The lower limit of τon ≈ 20 ms for the lattices phase
comes from a minimum time and distance rollers must
travel to interact with each other as well as to overcome
the intrinsic positional noise in the system. This limit
naturally depends on the particles density and may be
significantly longer for low densities as discussed below.
For τon > 1 s the particles’ velocities at the end of each
cycle become uncorrelated with initial orientations and,
therefore, rollers are not able to alternate between fixed
stable patterns. The vortex phase in Fig. 2(a) corre-
sponds to the formation of a continuous single vortex at
τoff < 10 ms. At this phase, the termination of energy
injection is so brief that particles do not fully stop. In
the pulsed flocks phase the formation of the global vor-
tex is interrupted every period of the signal. At small τon

rollers’ dynamics resembles a gas motion with a tendency
to form clusters as τon further decreases, see Fig. 2(a).
The Lattices can be distinguished from the Gas by pe-
riodic oscillations of the density profile, see Fig. S4 and
S6 in [35]. The crossover between those two dynamic
states is continuous and smooth (see Fig. S4). Com-
plex behavior of the system at small τoff and τon (marked
gray in Fig. 2(a)), corresponds to rollers with incomplete
depolarization studied in [6].

Similar to other active systems, the formation of glob-
ally correlated states (like lattices) can only be observed
at particle densities above a certain threshold. We inves-
tigate in experiment and simulations the behavior of the
critical particle number density, necessary to facilitate
the formation of lattices, as a function of the run time,
τon. This transition is accessible only at τoff and τon time
larger than the polarization relaxation time τMW. At low
densities particles need longer time to reach and interact
with the neighbors, and as a result, a longer run time
is required to support the dynamic lattice. Correspond-
ingly, as the density of the rollers increases, the minimum
run time to form the lattice decreases, see Fig. 2(b). The
boundary between the Gas and Lattices follows a sim-
ple relation connecting the particle number density, φ,
and the run time τon: φ = A/τon. The above scaling is
valid for the whole range of scanned parameters (10 ms
< τon < 400 ms and 0.015 < φ < 0.17), and A here is
a constant that depends on the properties of the system
(particle size, activity, and liquid media). A = 5.5 ms for
our experimental systems.

The lattice constant a growths with τon, see Fig. 2c.
Nevertheless, all the lines obtained at different densities
collapse into a single line when re-scaled by a

√
φ, see

Fig. 2c inset. Such scaling possibly comes from the sim-
ilarity of the lattice density profiles at different φ that
scale with the size of the unit cell, see Fig. S12 in [35].
Correspondingly, the evolution of the lattice constant a
with the run time τon can be written as a = kdτon

√
φ,

where k is the system dependent constant, the slope of
the re-scaled line (k = 1.63 ms−1 for our system). The
simulation results capture the similar trend, see Fig. 2(d).
The above scalings can be used to estimate a number of
particles per unit cell of the lattice at the transition point
between the gas and lattice phases. As the particles’ dis-
tribution over the system is homogeneous and, therefore,
the number of particles per unit cell of the square lat-
tice can be estimated as n = 4a2φ/(πd2). Substituting a
and φ by its dependence on τon at the transition bound-
ary between the gas and lattice phases, one obtains that
the number of rollers per unit cell at the transition is
nc = 4k2A2/π (see more details in Note S2) [35]. Since
nc is φ and τon independent, the number of particles per
unit cell is the same at any transition point between the
gas and lattice phases (the dashed line in Fig. 2b) re-
gardless of the size of the unit cell.

The dynamic square lattices do not have an ideal or-
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FIG. 3. Probability distribution functions (PDFs) of the local
order parameters Ψ4 in a stable lattice formed at different
τon in experiments (a) and simulations (b). Insets: Temporal
evolution of 〈Ψ4〉. E = 3.0 V µm−1; τon = 112.5 ms; τoff =
12.5 ms; φ = 0.114; D = 1 cm. Also see Video S4-S5 in [35].

der at macroscopic distances and often develop a num-
ber of defects, see Fig. S2 [35]. To characterize the or-
der of self-organized lattices we calculate the local de-
gree of 4-fold symmetry for each vertex j in a lattice:
Ψ4 = 1/4|∑4

k=1 exp(4iθk)|, where θk are polar angles of
four closest neighbors with the origin at j vertex. The
probability distribution functions (PDFs) of Ψ4 for stable
lattices at different τon show peaks at Ψ4 = 1, indicating
a presence of a well defined 4-fold symmetry in the order,
see Fig. 3. The peaks get suppressed with the increase
of the run time τon, reflecting the emergence of imperfec-
tions due to fluctuations of particles’ velocities and the
development of a global collective motion (vortex). The
formation of the local order may be further quantified
by a time evolution of the order parameter 〈Ψ4〉 defined
as Ψ4 averaged over the whole system, see Fig. 3(a-b)
insets. The temporal evolution of 〈Ψ4〉 suggests that dy-
namic lattices emerge within a hundred cycles, however,
they never become geometrically perfect as 〈Ψ4〉 reaches
the plateau (≈ 0.8). The system does not fully anneal all
the defects even after many thousands of activity cycles.

In Quincke rollers system, the mechanism of self-
organization with two alternating complementary lat-
tices regulated by a density gradient limits the types
of stable lattices to square lattices for any combination
of excitation field parameters, while granular vibrated
systems often demonstrate transitions between stripes,
square, and hexagonal lattices with a change of the driv-
ing parameters[31–34, 41, 42]. The fixed geometry of the
lattices at a wide range of the driving field parameters
enables the study of the collective memory effects [43] in
the system. Ramping the control parameter τon up and
down at a fixed rate reveals a dynamic hysteresis on a
vs τon, see Fig. 4(a-b). The size of the hysteresis loop
increases with the ramping rate. Interestingly, the lat-
tices demonstrate asymmetry in the resistances against
the expansion and compression stresses at a certain range
of stresses, see Fig. 4(c-d). The lattices smoothly tran-
sition to a smaller size unit cells if τon is decreased by
10 %, but break down and reassemble into a larger lat-
tices when τon is increased by the same amount. This is
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FIG. 4. Hysteresis loops for different ramping rates of τon
in experiments (a) and simulations (b). Arrows indicate the
direction of the hysteresis loop. The starting point is τon =
80 ms (experiments) and 30 (simulations). See also video S6
and S7 [35]. (c-d) The evolution of the lattice constant (c)
and the local order parameter 〈Ψ4〉 of the square lattices (d)
in response to the increase (solid symbols) or decrease (open
symbols) of the τon relative to the initial value of τon = 120
ms. The data are averaged over 5 experimental realizations
for each curve. Inset in (c) shows the absolute change of a
compared to the initial value a0.

manifested by a temporal drop of the order parameter,
see Fig 4(d). If the relative change of τon is larger than
15 % then lattices prefer to completely disintegrate for
both compression and expansion stresses. In addition,
the response of the lattices to the compression occurs
faster than to expansion if τon ≤ 10 %, see Fig 4(c).

In conclusion, the temporal modulation of activity
in the system of Quincke rollers provides a robust
technique for accessing and controlling dynamic self-
organized states that are not available upon continuous
energy injection. A combination of experiments and nu-
merical simulations has been used to investigate the phys-
ical mechanism that guides the formation of the reported
patterns. A dominant role of electrostatic repulsion over
hydrodynamic velocity alignment interactions immedi-
ately upon system reactivation results in a reciprocating
motion of rollers between two stable square lattices. The
lattices are re-configurable with the control of the char-
acteristic lattice constant by the particles’ run time. The
minimal number of particles per unit cell of the lattice
required to facilitate the lattice formation is independent
on the lattice constant and the average particle num-
ber density. Our results provide new insights into the
collective behavior and control of active colloidal ensem-
bles by means of a temporal modulation of activity. The
reported mechanism should, in principle, be applicable
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to other active systems where the collective behavior is
governed by the interplay of isotropic repulsion and hy-
drodynamic velocity alignment interactions.
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