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High strength-to-weight ratio materials can be constructed by either maximizing strength or
minimizing weight. Tensegrity structures and aerogels take very different paths to achieving high
strength-to-weight ratios but both rely on internal tensile forces. In the absence of tensile forces,
removing material eventually destabilizes a structure. Attempts to maximize the strength-to-weight
ratio with purely repulsive spheres have proceeded by removing spheres from already stable crys-
talline structures. This results in a modestly low density and a strength-to-weight ratio much worse
than can be achieved with tensile materials. Here, we demonstrate the existence of a packing of hard
spheres that has asymptotically zero density and yet maintains finite strength, thus achieving an
unbounded strength-to-weight ratio. This construction, which we term Dionysian, is the diametric
opposite to the Apollonian sphere packing which completely and stably fills space. We create tools
to evaluate the stability and strength of compressive sphere packings. Using these we find that
our structures have asymptotically finite bulk and shear moduli and are linearly resistant to every
applied deformation, both internal and external. By demonstrating that there is no lower bound
on the density of stable structures, this work allows for the construction of arbitrarily lightweight
high-strength materials.

When sand is densely packed, it is strong enough to
support the weight of an elephant. But how loosely can
one pack sand before this rigidity is lost? The answer is as
loosely as one would like. That is, it is possible to rigidly
pack hard spheres at any density, from filling all of space
to filling none. In this manuscript we show a method
for creating the sparsest possible hard sphere packings
and demonstrate their impressive stability. Hard sphere
packings are of particular interest because unlike other
materials with a high strength-to-weight ratio such as
tensegrity structures [1] and aerogels [2], hard spheres
are purely compressive and do not rely on internal tensile
forces.

There exist mechanically rigid packings with a density
arbitrarily close to unity, such as the Apollonian gas-
ket [3, 4]. We wish to find the foil to such a packing, that
is, one with the smallest possible packing fraction that
remains mechanically stable. As Dionysus is the nadir
to the zenith that is Apollo [5], we refer to the sparsest
possible mechanically stable packings as Dionysian pack-
ings. We present in this manuscript a construction for a
Dionysian packing which has vanishingly low density in
two and three dimensions.

Rigidity [6] describes a state in which no motion is pos-
sible. In the context of sphere packings, this is termed
strictly jammed [7–11]. A strictly jammed packing is re-
sistant to all possible volume preserving deformations of
the particles and boundaries.

Demonstrating that a packing is mechanically sta-
ble is commonly done using a linear programming al-
gorithm [8–10]. In addition to demonstrating that our
packings are stable through this same linear program-
ming approach, we also compute the elastic moduli for
the underlying spring network.

Finding a Dionysian packing is the same as finding the

jamming threshold of sphere packings [10, 11]. The jam-
ming threshold is the lowest density that can be achieved
for strictly jammed configurations. However, while this
threshold has mostly been explored for monodisperse
configurations, we show that lower density packings can
be found by expanding the search space to include poly-
dispersity.

The method we employ is inspired by the construction
of the Böröczky bridge packing [12, 13] for which locally
stable bridges of circles can be constructed with arbi-
trary length. These bridges lead to packings with asymp-
totically zero density, but only satisfy the very weakest
definition of stability; they are only locally stable or lo-
cally jammed [7–13]. Following the spirit of the Böröczky
bridge packing and allowing for the radii of the spheres to
be additional degrees of freedom, we achieve Dionysian
packings subject to periodic boundary conditions at ar-
bitrarily low densities. This demonstrates that the lower
density bound for mechanically stable, repulsive circle
and sphere packings is precisely zero.

To determine if a packing is strictly jammed, we model
it as a spring network in which spheres interact through a
harmonic contact potential in their overlaps. We examine
whether or not the spring network represents a minimum
with respect to position degrees of freedom, x, as well
as symmetric affine, volume-preserving strain degrees of
freedom, ε [9, 14] where the potential is
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and ξij is the normalized overlap between spheres i and
j.

We require force balance on all degrees of freedom. The
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forces on the position degrees of freedom are
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where nαik is the α-component of the normalized contact
vector pointing from particle k to particle i and ri is the
radius of sphere i. Forces on the strain degrees of freedom
are
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for spheres i and j in Cartesian directions α and β where
εαβ is the strain degree of freedom and xαij is the contact
vector which is not normalized.

These forces are subject to the volume-preserving con-
straint, Tr (ε) = 0 [9] so that force balance is achieved
when
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Because this derivative is proportional to overlap, it is
trivially zero for any packing where overlaps do not occur.
To ensure that these packings are at a critical point due
to a balancing of strain degrees of freedom, we evaluate
the derivative with infinitesimal overlap.

The rigidity matrix [15] in conjunction with a linear
programming algorithm [8–10] is used to determine if
packings are strictly jammed. The rigidity matrix, Rx,
relates a perturbation of the particles, ~x, with the stresses

on the bonds, ~b, such that ~b = Rx~x. However, perturbing
the particles is not our only degree of freedom to explore
when considering whether or not a packing is strictly
jammed as we must also consider bulk deformations of
the system as encoded in strain degrees of freedom. We
define the extended rigidity matrix as R =

(
Rx Rε

)
where Rx is the ordinary rigidity matrix and Rε relates
the bond stresses to the strain degrees of freedom. (See
supplementary materials for more information.) How-
ever, applying a strain that increases the volume of the
periodic cell will allow all of the bonds to break, unjam-
ming the packing. As such, we apply a constraint pre-
venting the strain matrix, ε, from having volume chang-
ing deformations [9].

We quantify the degree of stability by calculating the
resistance of the packing to compressive deformations
and shear deformations via the bulk and shear moduli
respectively. These quantities can be calculated simulta-
neously by computing the stiffness matrix, C, [16] for the
packing. This matrix has the property ~σ = C~ε where ~σ is
the stress experienced by the packing when a particular
strain, ~ε, is applied. The stiffness matrix can be com-
puted in terms of the rigidity matrix as well as the states
of self stress for Rx. The matrix of states of self stress,
S, is an orthonormal basis for the zero modes of RTx such

that RTx S = ~0. The states of self stress represent the ba-
sis of stresses that can be placed on the bonds without

causing particle perturbations. Using these terms, the
stiffness matrix can be computed as

C = RTε SS
TRε. (5)

(See supplementary materials for a derivation and an ex-
planation of this equation.)

To explicitly satisfy the constraints for shear stability
and jamming, we focus on creating a packing which is
locally stable and has a high number of contacts per par-
ticle, z, and then test for stability. As illustrated in Fig-
ure 1 and described in more detail in the supplementary
materials, this is achieved by placing n circles labeled a,
where n is an odd integer greater than 2, on a strictly
convex curve C such that they kiss their neighbors. A
new row of circles, b, are then placed below so that each b
circle kisses two a neighbors from below and a b neighbor
on each side. Finally, the centers of circles c are placed
on a line of zero slope and constrained to touch two b
circles from below. Applying the appropriate symme-
tries, a stable bridge is formed. This construction can be
replicated and the bridges can be joined such that a cir-
cle packing is formed without overlapping regions. This
packing, with the addition of thirteen circles filling the
largest void, is a Dionysian packing for particular con-
struction parameters. Our bridge placement for the two
dimensional Dionysian packing is based on the contact
network of the triangular lattice.

In the limit of an infinitely large bridge, we find that
every a circle has four contacts, every b has six, and every
c has four. The asymptotic number ratio of this pack-
ing is a : b : c = 2 : 2 : 1. This means that there are
z = (2× 4 + 2× 6 + 4) /5 = 4 4

5 contacts per particle in
two dimensions, which is larger than is required by the
Maxwell rule for shear stable and jammed systems [17].

For the Böröczky locally jammed packing [12, 13], the
two dimensional version can be used to create a locally
jammed packing in any dimension by elevating the cir-
cles to spheres of the desired dimension and stacking the
result. Such a trivial procedure will not work to extend
the Dionysian construction because it results in struc-
tures which are not convex and so are subject to zero
energy modes. To create a three dimensional Dionysian
packing, we instead construct a set of six bridges in three
dimensions and combine them as shown in Figure 1. A
three dimensional bridge is constructed very similarly to
the two dimensional bridge and exploits the symmetries
of three dimensional space.

In the limit of an infinitely large bridge, we find that
every a sphere has six contacts, every b has eight, and
every c has eight. The asymptotic number ratio for these
spheres is a : b : c = 4 : 4 : 1. This means that there are
z = (4× 6 + 4× 8 + 8) /9 = 7 1

9 contacts per particle in
three dimensions, which is larger than is required by the
Maxwell rule for shear stable and jammed systems [17].

Not all convex curves C result in viable packings; some
choices of C result in overlapping of spheres in the limit
as n approaches infinity. While infinitely many viable
choices of C are possible, for simplicity we choose curves
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Figure 1. The construction of a Dionysian packing in two and three dimensions. Left. I) A row of n = 5 circles a (purple) lie
on a strictly convex curve C such that each circle kisses its neighbors. II) A row of n = 5 circles b (orange/yellow) are placed
such that they kiss two circles a from below and a circle b on either side. The rightmost b circle is constrained such that its
center lies on the vertical line tangent to the rightmost a circle. III) A row of n − 1 = 4 circles c (blue) lie on a horizontal
line and kiss two b circles above. IV) A bridge is formed by reflecting the circles about the dotted lines of symmetry. Three
bridges are combined and their centers are filled as shown (gray). Due to the periodic boundary conditions, each of the bridges
wraps around the unit cell to contact the central gray spheres twice such that each unit cell contains six half-bridges or three
full bridges. The resulting packing, which is jammed and shear stable, has a very low density and is a Dionysian packing in
the limit as n→∞.
Right. A three dimensional mechanically stable packing at arbitrarily low densities. Such a construction contains the same
three types of spheres as in the two dimensional analog but with additional symmetries and an entirely unrelated set of spheres
filling the void region (gray). The three dimensional Dionysian packing has a much narrower set of convex curves C for which
overlaps do not occur (as detailed in the supplementary materials). This requires a much more subtle curvature of C which is
not apparent to the naked eye in this figure.

that fit the form

f(x) =
(f0 − h∞)

2

(f0 − h∞)− xδ + h∞ (6)

where f0 is the height of the curve at x = 0, δ is the
slope of the curve at x = 0, and h∞ = limx→∞ f(x). The
values used in this manuscript are different between the
two and three dimensional versions. (See supplementary
materials.)

For these parameters, we can track the smallest dis-
tance, w, between the b spheres and their reflected coun-
terparts as seen in Figure 2. From this figure, we see a
very clear power law and conclude that in the limit of
infinitely large bridges, no unwanted additional contacts
are created. This means that regardless of the value of n
we choose, there are no overlaps for our Dionysian pack-
ing subject to the chosen curves C. Because the length of
our bridges increase with n but the other spatial dimen-
sions do not, this construction results in packings with a
density that falls like n1−d.

Using the aformentioned linear programming algo-
rithm on our Dionysian packings, we find that they are
both jammed and shear stable for every n studied up to
n = 105 (N = 3145) with packing fraction 0.0558 in two
dimensions and n = 25 (N = 2731) with packing fraction
0.0128 in three dimensions.

In addition to demonstrating jamming and shear sta-
bility, we quantify the level of stability by calculating

the shear, G, and bulk, K, moduli [18, 19] shown in
Figure 3. The two dimensional dionysian packing is
isotropic and has a single shear modulus, G. However,
the three dimensional Dionysian packing, like the FCC
crystal upon which it was based, has two independent
shear moduli, G100 and G110[20]. These moduli in two
dimensions can be calculated from the stiffness matrix as
K = (C11 + C12) /2 and G = C33. In three dimensions,
these are calculated as K = (C11 + 2C12) /2, G100 = C44,
and G110 = (C11 − C12) /2.

To compare the mechanical properties of Dionysian
packings with other purely compressive solids, we also
studied the properties of crystals and shear-stabilized
jammed packings. We generated shear stabilized amor-
phous systems with monodisperse radii in three dimen-
sions and 25% polydispersity in two dimensions drawn
from a log-normal distribution. We then used a mod-
ified FIRE algorithm [22] that performs a constrained
minimization with respect to both volume-preserving
strains and positions as implemented in the pyCudaPack-
ing software [23–25]. We created critically jammed and
shear-stabilized packings by alternating between shear-
stabilizing packings and uniformly decreasing the pack-
ing fraction and by extension the system pressure [26].

Figure 3 demonstrates that crystals, shear-stabilized
jammed systems, and Dionysian packings all have a bulk
modulus per particle that plateaus to a fixed value in the
limit of large N. Similarly, the shear moduli per parti-
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Figure 2. Top right inset: demonstration of the definition of
a gap for a circle. The b circles, indexed by i, oscillate in size
and are separated into two categories labelled by squares and
triangles. Bottom left inset: The gap value for both square
and triangular marked spheres asymptotes in two and three
dimensions. When the asymptotic gap value is subtracted,
the gap sizes follow a power law of N−1 as they reach their
respective asymptotic values.

cle for crystals and Dionysian packings plateau for large
N. In contrast, we confirm the claim by Dagois-Bohy
et al. [21] that the shear modulus in shear-stabilized
jammed systems decreases like 1/N. These results in-
dicate that Dionysian packings maintain their stability
even as the density approaches zero whereas amorphous
systems are only marginally stable in the thermodynamic
limit. Remarkably, Dionysian packings can be created
without sacrificing stiffness.

Extension of our procedure to higher dimensions can
be proven to not be viable due to unavoidable overlap-
ping of spheres (see supplementary materials). We con-
jecture that higher dimensional Dionysian packings also
have arbitrarily low densities, but demonstrating this will
require a novel construction.

Conclusions – We find that the lower bound on den-
sity for mechanical stability of purely repulsive spheres is
0 (Dionysian) and the upper bound is 1 (Apollonian) in
two and three dimensional sphere packings. In addition
to this solution and the extension of our understanding
of the limits associated with the jamming energy land-
scape, this discovery has implications for our fundamen-
tal understanding of mechanical stability. Where Apol-
lonian packings can be used to create structures which
fill space entirely, Dionysian packings can be used to cre-
ate structures that utilize very little material and remain
stiff. We prove that appreciably lighter weight materials
can be constructed with no lower bounds. However, the
experimental construction of such a system would nec-
essarily be a major undertaking. Hard-sphere systems
do not exist in reality and must be replaced with high

modulus soft-sphere particles. Real systems have shape

102 103 104

N

10−3

10−2

10−1

100

G
/N
〈r
〉

Crystalline

Dionysian

Amorphous

102 103 1040.0

0.5

1.0

1.5

2.0

2.5

3.0

K
/N
〈r
〉

Crystalline

Amorphous

Dionysian

Figure 3. The dimensionless bulk, K, and shear, G, moduli
per sphere for Dionysian and amorphous packings in a unit
cell as a function of the number of spheres, N. The green line
represents a two dimensional triangular packing, the magenta
line represents a three dimensional FCC packing, and red and
blue represent two dimensional and three dimensional pack-
ings respectively. The dashed curves with open symbols rep-
resent G110, the shear modulus in direction (1, 1, 0), whereas
the solid curves with closed symbols represent G100. The re-
sults are exact for the Dionysian packings and crystals. For
the amorphous systems, sufficiently many systems were sam-
pled to make the standard error bars smaller than the plot
markers. In the limit of large N, the bulk modulus per sphere
asymptotes to a positive value in two and three dimensions
for all of the systems. The shear modulus for crystals and
Dionysian packings plateaus for large N indicating that these
remain very stiff. On the other hand, the amorphous packings
have a shear modulus that decreases like 1/N [21].

and size imprecisions that make the physical construc-
tion process require additional theoretical investigation.
Additionally, and perhaps most significantly, friction be-
tween physical particles adds a crucial layer of complica-
tion. While the structures offered here may not be the
most well-suited for practical considerations, this work
demonstrates that there must exist structures at every
density which remain strictly jammed and can be tuned
to one’s particular needs.
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