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Topological metamaterials have robust properties engineered from their macroscopic arrange-
ment, rather than their microscopic constituency. They can be designed by starting from Dirac
metamaterials with either symmetry-enforced or accidental degeneracy. The latter case provides
greater flexibility in the design of topological switches, waveguides, and cloaking devices, because a
large number of tuning parameters can be used to break the degeneracy and induce a topological
phase. However, the design of a topological logic element—a switch that can be controlled by the
output of a separate switch—remains elusive. Here we numerically demonstrate a topological logic
gate for ultrasound by exploiting the large phase space of accidental degeneracies in a honeycomb
lattice. We find that a degeneracy can be broken by six physical parameters, and we show how to
tune these parameters to create a phononic switch that transitions between a topological waveguide
and a trivial insulator by ultrasonic heating. Our design scheme is directly applicable to photonic
crystals and may guide the design of future electronic topological transistors.

1 Topological insulators were first conceived as quan-
tum electronic materials with an insulating bulk and con-
ducting surface Dirac states, allowing for dissipationless
charge and spin transport along their boundaries. Their
central principle—the inversion of energy bands—is also
present in many classical lattice systems, inspiring the
design of photonic [1–3], phononic [4], and mechanical
metamaterials [5–7] with topologically protected trans-
port. These classical systems provide a platform to test
ideas in topological band theory, because they are more
tangibly understood than their quantum counterparts,
and their governing wave equations can be solved exactly.
Their robust properties have been used in many promis-
ing applications including zero- and negative-refractive-
index materials [8–12], cloaking [13, 14], and protected
waveguides for sound and light that outperform non-
topological alternatives [15–17]. A key remaining chal-
lenge is to control the topological phase in a way that
allows waveguides to toggle one another, paving the way
towards topological logic circuits with greater efficiency
than current CMOS technology [18–20].

2 A general design approach to achieve the band inver-
sion that defines a topological metamaterial is to start
from a bulk Dirac state, then intentionally break the
Dirac-point degeneracy to open a negative gap. This
approach can be broadly divided into two methods.
The first method starts from a symmetry-enforced Dirac
state, such as the K-point Dirac cone in graphene-like
honeycomb or triangular metamaterials, then opens a
gap by breaking a symmetry of the system. In systems
with broken time-reversal (T ) symmetry [21–25], the re-
sultant topological phase is analogous to the quantum
Hall effect, while those with broken inversion symmetry
[26–31] can realize an analog of the quantum spin Hall
effect. However, there is limited flexibility in the design
of these topological phases, as they can be tuned only

by a symmetry-breaking operation. On the other hand,
the second method searches for the accidental degener-
acy of three [8, 14, 32] or four [9, 33, 34] bands, produc-
ing a Dirac-like cone or double Dirac cones, respectively.
This method gives access to a far larger set of topological
phases because the accidental degeneracy can be broken
by several more-accessible tuning parameters while re-
taining inversion and T symmetry. Despite the utility
and flexibility of this second method, the complete space
of all topological phases has yet to be mapped for any
accidental degeneracy.

3 We start from a particular accidental bulk Dirac-
point degeneracy that gives rise to a topological state
analogous to a quantum spin Hall system. In a quantum
spin Hall system, the protection of the Dirac point is a
consequence of the spin-1/2 nature of electrons. Specifi-
cally, because T 2 = −1 for spin-1/2 states, Kramers the-
orem requires a degeneracy at all T -invariant points of
the Brillouin zone. However, spin-0 phononic and spin-1
photonic systems both have T 2 = +1, so Kramers the-
orem does not apply. Instead, designs typically rely on
mode hybridization to form a pseudospin-1/2 subsystem,
for example with the transverse electric and magnetic po-
larizations of light [2]. But transverse shear modes are
not available in airborne acoustics, so finding an anal-
ogy of Kramers theorem is challenging. In 2012, Sakoda
[33] addressed this issue and constructed a pseudospin-
1/2 system using the discrete symmetries of a triangu-
lar lattice, which was adapted to longitudinal acoustic
modes shortly thereafter [9, 34, 35], and subsequently
demonstrated experimentally [16]. In this scheme, a lat-
tice with C6v symmetry generates an accidental degener-
acy at the Γ point between doubly degenerate E1 and E2

modes that transform as (x, y) and (xy, x2−y2), denoted
(px, py) and (dxy, dx2−y2), respectively. These doubly de-
generate modes allow the formation of a pseudospin-1/2
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basis, with corresponding eigenstates p± = (px±ipy)/
√

2
and d± = (dx2−y2±idxy)/

√
2. The accidental degeneracy

between the p± and d± subsystems can be lifted without
breaking C6v symmetry, resulting in a topological phase
with helical edge modes protected by a pseudo-T sym-
metry, analogous to the quantum spin Hall state [16, 26].

4 Here we numerically investigate the topological phase
space for a Γ-point accidental degeneracy in a phononic
honeycomb lattice using commercial finite-element mod-
eling software comsol multiphysics. We find a mani-
fold of system configurations that host a bulk accidental
double Dirac cone, and we demonstrate that a topolog-
ical phase can be induced by gapping the Dirac node
with six independent physical parameters, which collapse
into a three-dimensional (3D) phase space. This vast
phase space guides the design of three topological cir-
cuit elements: a static-geometry waveguide, an externally
switchable device, and a universal logic gate. While we il-
lustrate each element using phononic metamaterials, the
same design principles apply to electronic and photonic
metamaterials.

5 A static-geometry topological waveguide is formed
at the interface between a lattice with normally or-
dered bands and one with inverted bands. This type of
waveguide was already demonstrated using two hexago-
nal phononic crystals of steel pillars in a fluid medium
with different filling ratios, r̃ = R/a [16, 34], where R
and a are the radius and spacing of the pillars, respec-
tively (see inset to Fig. 1(b)). When the filling ratio
is large, the band structure around the Γ point con-
tains doubly degenerate p± modes separated from d±
modes by a positive energy gap, ∆ > 0, as shown in
Fig. 1(a). At the critical filling ratio for a steel/water
system, r̃∗ = 0.371, the four modes become accidentally
degenerate and the bulk metamaterial hosts double Dirac
cones. Below critical filling, the p± modes have higher
energy than the d± modes, and the band structure con-
tains a negative energy gap, ∆ < 0. Topologically pro-
tected edge modes are confined to the interface between
a positive- and negative-gapped material, allowing the
design of topological waveguides that are pseudospin po-
larized and immune to defects including cavities, bends,
and lattice disorder [16].

6 Our first advance is a new mechanism to create an
externally switchable topological waveguide for sound,
providing a simple alternative to the existing schemes
[36–38]. In general, a topological switch hosts robust
transport when ‘on’, but is a trivial insulator when ‘off’.
It requires a tuning mechanism capable of changing the
sign of the band gap on the topological side, while leav-
ing the trivial side unchanged. We found that an external
vertical compression/extension can induce this behavior,
as it alters the radius of pillars, which can toggle the
topological phase (see inset to Fig. 1(b)). For materials
with a positive Poisson’s ratio, a topological waveguide
naturally switches ‘off’ when compressed, once the filling
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FIG. 1. An externally controlled topological switch
for sound. (a) The phononic band structure for a honey-
comb lattice of steel pillars in water passes through an acci-
dental degeneracy as the radius of the pillars is varied. This
degeneracy is between p± bands (red) and d± bands (blue),
and occurs at the critical filling ratio of r̃∗ ≡ R∗/a = 0.371
(middle panel). As the filling ratio is tuned away from this
value, a positive (right) or negative (left) band gap opens,
leading to a topological phase transition. (b) This transition
can be clearly seen by tracking the Γ-point eigenvalues as r̃
is tuned. (c) A topological waveguide is made by placing two
lattices with r̃L < r̃∗ and r̃R > r̃∗ next to each other (left
panel). When the pillars are compressed vertically, their ra-
dius expands such that both sides of the waveguide become
trivial insulators (right panel). This device is a topological
switch for sound that turns ‘off’ when compressed.

ratio of its topological side increases beyond r̃∗, as shown
in Fig. 1(c). In practice, rubber pillars are ideal for this
application as they are far more stretchable than metal
pillars, and have a higher Poisson’s ratio [39]. Advanc-
ing beyond static-geometry topological waveguides [15–
17, 28–31], this type of switch could be used to control
passive acoustic isolation systems, but the output of one
switch cannot sustain the macroscopic stretch required
to activate a second, similar switch.

7 Our second, more significant advance is to design a
phononically controlled acoustic switch—i.e. a topologi-
cal logic element. Like electronic field-effect transistors,
these switches may be connected together to form cir-
cuits. Here we rely explicitly on the flexibility granted
by the large phase space of accidental degeneracies in a
honeycomb metamaterial. In general, an accidental band
degeneracy can be lifted by tuning any lattice parame-
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ter, as it is not protected by symmetry. The relevant pa-
rameters in a phononic lattice define the acoustic wave
equation,

∇ ·
[

1

ρr(r)
∇p(r)

]
= −ω

2

v2m
· p(r)

v2r(r)ρr(r)
(1)

where p is the pressure, ω is the eigenfrequency, and
ρr(r) = ρ(r)/ρm and vr(r) = v(r)/vm are the relative
density and speed of sound, respectively. In total, there
are six physical parameters that can tune the resulting
eigenspectrum: R, a, ρp, ρm, vp, and vm, where the sub-
script refers to pillars or medium. First note that uni-
formly scaling ρp and ρm produces no change. Second,
uniformly scaling vp and vm scales all eigenfrequencies
of Eq. 1, but does not shift eigenfrequencies relative to
one another, and therefore cannot alter the topological
phase. We take this scaling into account by adopting
dimensionless units for frequency, ω̃ = ω

√
3a/2πvm. In

fact, the frequency-normalized band structure depends
only on three dimensionless ratios: r̃ = R/a, ṽ = vp/vm
and ρ̃ = ρp/ρm. In the example system of steel pillars in
water, we find that varying either ṽ or ρ̃ lifts the acciden-
tal degeneracy and can open a negative gap (Fig. 2(a-b)).
More generally, varying any combination of lattice pa-
rameters along a path in (ṽ, ρ̃, r̃) space that connects the
topological phase to the trivial phase must pass through
an accidental degeneracy. Consequently, there exists a
surface in (ṽ, ρ̃, r̃) space that separates the topological
phase from the trivial phase, on which there is accidental
degeneracy between p± and d± modes and a bulk double
Dirac cone. We numerically calculated the shape of this
surface, shown in Fig. 2(c), by recording the accidental
crossing point in an r̃ sweep for a discrete set of (ṽ, ρ̃)
points, at fixed (vm, ρm).
8 A key challenge in designing a topological switch is to
preserve overlapping bulk spectral gaps before and after
switching. For example, in the sweep shown in Fig. 2(a),
increasing ρ̃ causes both p± and d± modes to decrease
in frequency, leading to a band inversion because the d±
modes decrease faster than the p± modes. Yet, this tun-
ing parameter alone cannot be used to design a topolog-
ical waveguide because at any frequency there are bulk
modes in one of the two sides that mask the edge states,
unlike Fig. 1(b). The same accidental degeneracy can be
broken by varying ṽ, which causes both p± and d± modes
to increase in frequency (Fig. 2(b)), again precluding a
usefully overlapping gap. However, an overlapping bulk
gap may occur when tuning a combination of ṽ and ρ̃,
for instance, in a waveguide between two sets of pillars
with different materials but the same radius. In general,
each accidental degeneracy on the surface in Fig. 2(c)
can be used to construct a practical waveguide for a pa-
rameter sweep through some solid angle in (ṽ, ρ̃, r̃) space.
Schematically, such a waveguide combines two points in
parameter space connected by a path that punctures the
surface in Fig. 2(c). Consequently, a topological switch

Trivial

TopologicalTopological

ONOFF

ρp/ρm
vp/vm

R/a

a c

b

Trivial

Trivial

Topological

Topological

ρ̃∗

ṽ∗
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FIG. 2. Topological phase space for a honeycomb
phononic lattice. An accidental degeneracy between the
p± and d± modes in a steel/water system (green star in (c))
can be broken by tuning the ratio of (a) density while hold-
ing speed of sound and radius fixed; or (b) speed of sound
while holding radius and density fixed. (c) Each accidental
degeneracy is a point in (ṽ, ρ̃, r̃) space, colored according to its
crossing frequency (e.g. the steel/water system has a crossing
frequency of 90 kHz for a = 1 cm). Together, they separate
phase space into a topological and a trivial region. A topolog-
ical waveguide pairs configurations from different sides of this
surface (see solid line labelled ON), provided their bulk spec-
tral gaps overlap. Transmission through it can be switched
‘off’ by tuning to two configurations that occur on the same
side of the surface (see path labelled OFF).

combines four points in phase space, with three above
the surface (trivial) and one below (topological), e.g. the
square points in Fig. 2(c). Furthermore, a useful switch
requires the bulk to remain gapped and overlapping on
all four (ṽ, ρ̃, r̃) trajectories that connect these points,
except where they pass through the surface.

9 To enable the output of one switch to control the
next, our design for a phononically-controlled topologi-
cal switch uses a temperature increase delivered by ul-
trasonic phonons as its tuning mechanism. Each switch
contains a honeycomb lattice of steel pillars connect-
ing the source and drain terminals, attached to a base
plate made from a second material, in an air-tight con-
tainer, as shown in Fig. 3(c). The temperature increase
needed to toggle the switch is provided by a thermoa-
coustic converter connected to a third terminal (labelled
‘gate’ in Fig. 4(g-h), see [39]). The primary effect of
heating the device is to change the speed of sound in the
medium, which typically increases all eigenfrequencies of
the system (see dashed lines in Fig. 3(a)). Second, heat-
ing causes thermal expansion of the materials, increasing
both R and a, though not necessarily equally. If the
base plate and pillar materials are selected such that a
increases faster than R, the net result is to reduce all
eigenfrequencies of the system and induce a band inver-
sion (dotted lines in Fig. 3(a)). Finally, heating alters
the density of the air and the materials, which has been
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FIG. 3. Designing a temperature-controlled topolog-
ical switch. We consider a honeycomb lattice of steel pillars
(R1 = 3.5 mm, R2 = 4.1 mm, a = 8.5 mm) anchored to a
high-thermal-expansion base plate, in an air medium within
a sealed fixed-size box. (a) Heating this system has two main
competing effects: eigenfrequencies are increased by raising
the speed of sound in air (dashed lines), but decreased as the
base plate thermally expands (dotted lines). The latter effect
also tunes r̃ to induce a band inversion. These two effects
can be balanced by correctly choosing the thermal expansion
coefficient of the base plate (here 1.61 × 10−3 K−1), provid-
ing a temperature-tunable topological phase transition with
an overlapping spectral gap (solid lines). (b) A topological
switch combines two sizes of pillars: one side transitions from
trivial to topological as the switch is heated (R1), while the
other remains trivial throughout (R2). (c) Unlike the switch
design in Fig. 1 (c), which is triggered by tuning R at fixed a,
this switch is turned ‘on’ by increasing a at fixed R, and can
be actuated by phonon-delivered heat.

taken into account, but is insignificant. The first two
effects can be balanced to maintain a bulk gap through-
out the switching process, by fixing the ratio vm/a that
appears in the eigenfrequency of Eq. 1. Because the
base plate expands linearly with temperature, we seek
a medium where vm also increases linearly. For an ideal
gas at temperature T , vm increases as

√
T , but the trend

is almost linear near room temperature; as such, air is
a suitable medium. Consequently, to keep vm/a fixed as
the temperature increases from Ti to Tf , we seek a base
material with a coefficient of thermal expansion given by
α = 1/(Ti +

√
TiTf ). For the proof-of-principle switch

shown in Fig. 3(b), the required base-plate thermal ex-
pansion coefficient is 1.61 × 10−3 K−1, which is within
the range achievable by origami metamaterials [40]. Al-
ternatively, we empirically demonstrated an even larger
effective thermal expansion coefficient by thermally ac-
tuating using the shape-memory alloy Nitinol [39].

10 The advantage of a topological phononic switch can
be seen from the finite-sized calculations in Fig. 4. Unlike
a trivial waveguide, which experiences significant losses
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FIG. 4. Topological logic gates with ultrasound. (a)
Transmission through a trivial waveguide, like this channel
in an insulating steel/air phononic crystal, is disrupted by
disorder and bends. (b) The band structure of the corre-
sponding supercell (see inset) contains a bulk gap with trivial
edge states. (c) In contrast, a topological waveguide with the
same parameters as in Fig. 3, allows robust transport regard-
less of channel geometry; it can be used as the ‘on’ state of
a topological switch. (d) Its band structure hosts protected,
Dirac-like edge states (inset) due to a negative bulk gap on
one side. (e) When the system is cooled, it contracts and
both sides become trivial insulators, preventing transmission.
(f) Excitations at frequencies within the gap decay exponen-
tially as they enter the device. (g) A topological and gate,
constructed from two switches in series, requires both con-
trol signals (A and B) to be high to register an output. (h) A
topological not gate uses a base plate with a negative thermal
expansion coefficient; it contracts to turn ‘off’ when heated
(left), and expands to turn ‘on’ when cooled (right).

induced by disorder and bends (Fig. 4(a-b)), the topolog-
ical switch acts as a robust pseudospin-dependent waveg-
uide when ‘on’ due to a Dirac cone between the two sides
(Fig. 4(c-d)). As it is cooled, the pillars contract around
the input terminal; both sides become trivially insulating
and block transmission, turning the switch ‘off’ (Fig. 4(e-
f)). Our topological switch is stable against mild temper-
ature changes provided its operational frequency remains
within the spectral gap (see Fig. 3(a)). Such temperature
variations alter only the localization of the edge states,
not their presence or absence [39].

11 Our proof-of-principle temperature-controlled
phononic switches can be linked to form a universal
nand gate with two main segments. First, we design
a topological and gate by connecting two switches in
series (Fig. 4(g)). This device requires both control
signals (A and B) to be ‘on’ to heat each switch and
allow information to propagate [39]. Second, to design
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a topological not gate, we utilize a base plate material
that has a negative coefficient of thermal expansion;
that is, it shrinks when heated. At room temperature
(control is ‘off’), the not gate is a topological waveguide
that transmits information, but when the control is ‘on’,
the device heats and shrinks, transitioning to a trivial
insulator. To maintain an overlapping bulk gap through-
out this transition, we require a medium where the
speed of sound decreases with increasing temperature,
a behavior commonly observed in oils [41]. Specifically,
a device using steel pillars in sunflower oil requires a
coefficient of thermal expansion of −2.0 × 10−3 K−1 to
keep the ratio vm/a fixed, a value recently demonstrated
[40].

12 The design of topological metamaterials based on
a broken accidental degeneracy is extremely versatile
due to the large number of tuning parameters available.
Specifically, for a phononic honeycomb lattice, the topo-
logical phase can be tuned by six independent parame-
ters, which collapse onto a 3D phase space. This phase
space guided a proof-of-principle design for a phonon-
ically controlled topological switch, the building block
of an acoustic logic gate. The macroscopic size and
moderate speed of our device makes it an ideal tool for
teaching and understanding topological materials. More
importantly, the same design process can be followed
for piezoelectric materials at mesoscopic length scales,
enabling switchable control of topologically protected
surface-acoustic waves for integrated phononics [42]. Fi-
nally, our approach directly applies to optical systems
under a simple mapping of variables [32], or to nano-
structured quantum materials [43], providing a new di-
rection for developing a field-effect topological transistor.
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