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Controllable Rydberg atom arrays have provided new insights into fundamental properties of
quantum matter both in and out of equilibrium. In this work, we study the effect of experimentally
relevant positional disorder on Rydberg atoms trapped in a 2D square lattice under anti-blockade
(facilitation) conditions. We show that the facilitation conditions lead the connectivity graph of a
particular subspace of the full Hilbert space to form a 2D Lieb lattice, which features a singular
flat band. Remarkably, we find three distinct regimes as the disorder strength is varied: a critical
regime, a delocalized but nonergodic regime, and a regime with a disorder-induced flat band. The
critical regime’s existence depends crucially upon the singular flat band in our model, and is absent
in any 1D array or ladder system. We propose to use quench dynamics to probe the three different
regimes experimentally.

Recently, programmable Rydberg quantum simulators
have attracted significant interest because they can pro-
vide insights into quantum matter’s fundamental proper-
ties. With the rapid development of quantum technolo-
gies, synthetic arrays of Rydberg atoms with individual
control are already available in one [1], two [2, 3], and
three dimensions [4]. Recent experiments on 1D Ryd-
berg atom arrays have shed light on various phenomena,
including nonequilibrium quantum many-body dynam-
ics [5], the Kibble-Zurek mechanism [6], and quantum
many-body scars [5, 7]. The strong Rydberg-Rydberg in-
teractions can also be used to realize quantum gates [8],
making such systems promising platforms for quantum
information processing [9, 10].

Meanwhile, flat band systems are conceptually impor-
tant in condensed matter physics and can harbor both
nontrivial topological properties [11–14] and strongly
correlated phases arising from the enhanced interac-
tion effects [15–22]. Recent work on twisted graphene
heterostructures and circuit quantum electrodynamics
(QED) opens up new venues for flat bands, enabling,
respectively, the study of correlated insulators and super-
conductivity [23–26] and of quantum systems in hyper-
bolic space [27, 28]. One particular direction of interest
concerns the effect of disorder on flat-band eigenstates.
It has been shown that such flat bands, when coupled to
disorder, can lead to critical and multifractal phenomena
absent in conventional Anderson localization [29–37].

In this work, we demonstrate that the physics of flat
bands coupled to disorder can be naturally realized and
probed using Rydberg atoms trapped in a 2D square
lattice. We consider the so-called facilitation (anti-
blockade) mechanism, where the excitation of a Rydberg
atom is strongly enhanced in the vicinity of an already
excited atom [38–40]. Under such conditions, the full
Hilbert space can effectively split into subspaces sepa-
rated from one another by large energy scales. We fo-
cus on the manifold of states that can be created near-
resonantly starting from a single Rydberg excitation.

Within this subspace, the system can effectively be de-
scribed by a single particle hopping on a 2D Lieb lat-
tice [40], which features a singular flat band in the clean
limit. Although the Lieb lattice has been experimentally
realized for photons [41–45], atoms [46, 47], and elec-
trons [48], the effect of disorder on flat-band states has
not yet been systematically studied. We find that the in-
terplay between positional disorder of Rydberg atom ar-
rays and the synthetic flat-band states gives rise to a rich
phase diagram, including a critical phase, a nonergodic
extended phase, and a phase with a disorder-induced flat
band. We show that these intriguing properties are es-
sentially related to the singular flat band on the Lieb
lattice and are absent in 1D and quasi-1D arrays.

Antiblockaded Rydberg atom array and mapping to
Lieb lattice.—We consider the following Hamiltonian de-
scribing interacting Rydberg atoms trapped in a 2D L×L
square lattice with spacing R0:

HRyd =
Ω

2

N∑
i

σxi −∆

N∑
i

ni +
1

2

N∑
i 6=j

V (dij)ninj , (1)

where i and j run over sites of the square lattice [see
Fig. 1(a)], σxi = |gi〉〈ri| + |ri〉〈gi|, |gi〉 (|ri〉) denotes
the ground (Rydberg) state of the i-th atom, and ni =
|ri〉 〈ri|. The parameters Ω (Rabi frequency) and ∆
(detuning) characterize coherent driving fields, while
V (dij) ∝ 1/d6ij quantifies the van-der-Waals interac-
tions between atoms in Rydberg states at sites i and
j (separated by distance dij). The anti-blockade (fa-
cilitation) condition is obtained by setting ∆ = V (R0),
so that an isolated excitation makes the excitation of
its nearest neighbour resonant [38–40]. We work in
the limit |∆| � Ω where the un-facilitated excitations
are sufficiently off-resonant. We additionally require
V (
√

2R0), V (2R0) � Ω, so that a pair of neighbouring
Rydberg excitations is unable to further facilitate the
excitation of any neighbouring site. Hereafter we take
V (R0) = 300Ω.
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FIG. 1. (a) Under the anti-blockade conditions, the con-
nectivity graph of the subspace containing single isolated Ry-
dberg excitations and single nearest-neighbor pairs thereof
maps to a 2D Lieb lattice shown in (b). The black and white
dots indicate atoms in Rydberg and ground states, respec-
tively. Each unit cell of the Lieb lattice contains three sites:
A, B, and C. (b) The flat-band eigenstates include com-
pact localized states (CLSs), two non-contractible loop states
(NLSs), and one non-compact state (NCS) shown in (c). The
‘±1’ indicate the relative wavefunction amplitudes for these
states. (d) The band structure of the clean Lieb lattice, which
contains two dispersive bands and one singular flat band.

Under these conditions, the Hilbert space effectively
splits into subspaces that are separated by energy scales
much larger than Ω [39]. Here we focus on the simplest
nontrivial subspace, whose degrees of freedom are hard-
core bosons consisting of either a single Rydberg excita-
tion or a pair of neighbouring Rydberg excitations. One
can readily see that the connectivity graph of states in
this subspace forms a 2D Lieb lattice [see Figs. 1(a)-(b)].
The Hamiltonian (1) thus reduces to a single particle
hopping on this lattice. The Lieb lattice contains three
sites per unit cell, where the A site corresponds to a sin-
gle Rydberg excitation in the original model, while the
B and C sites correspond, respectively, to horizontal and
vertical pairs of neighbouring Rydberg excitations [see
Supplemental Material (SM) for more details [49]].

Flat band on the Lieb lattice.— The single-particle hop-
ping Hamiltonian on the Lieb lattice takes the form

HLieb =
∑
〈i,j〉

Ω c†i cj + H.c., (2)

where 〈i, j〉 denotes nearest-neighbor sites on the Lieb
lattice, as shown in Fig. 1(b). The energy spectrum of

Wavefunction Support Feature

Regime I critical, multifractal B, C original flat band

Regime II multifractal A, B, C
hybridization with
dispersive bands

Regime III
localized (|E| & 0),
multifractal (E ≈ 0)

A
disorder-induced

flat band

TABLE I. Main features of three distinct localization regimes.

Hamiltonian (2) contains two dispersive bands E±(k) =
±Ω

√
cos2 (kx) + cos2 (ky) and one flat band E = 0 [see

Fig. 1(d)]. The zero-energy flat band touches the two
dispersive bands at kx = ky = π/2, leading to a three-
fold degeneracy at this point. As shown in Refs. [50, 51],
the band-touching in this model is in fact irremovable,
which signals a singularity in the Bloch wavefunction.
The E = 0 band of Hamiltonian (2) in this case is known
as a singular flat band. The singularity of the flat band
has important consequences on the eigenstates within the
band. Generically, the eigenstates of a flat band are lo-
calized in real space, hence the name compact localized
states (CLSs) [see Fig. 1(b) for the Lieb lattice]. When
the flat band is non-singular, such CLSs form a complete
basis of the flat band. By contrast, when the flat band
is singular, the set of all CLSs is not linearly indepen-
dent. For the Lieb lattice, there exist three additional ex-
tended eigenstates of the flat band: two non-contractible
loop states (NLSs) [Fig. 1(b)] and one non-compact state
(NCS) [Fig. 1(c)].

Positional disorder.—Small deviations of atomic po-
sitions from the centers of the corresponding traps can
significantly affect the atom-atom interaction. The ther-
mal distribution of atomic positions can be described as a
Gaussian with width σ (measured in units of R0) [10, 39].
Ignoring atomic motion during the experiment (frozen-
gas approximation) [39], such randomness enters Eq. (1)
via the interaction term: V (R) = V (R0+δR) ≈ V (R0)+
δV , where δV is a random time-independent shift poten-
tial caused by the displacement. This position-disordered
interaction manifests itself on the effective Lieb lattice as
random, but correlated, on-site potentials for the B and
C sublattices. Since the position disorder only affects
Rydberg-Rydberg interactions, the A sublattice sites,
which represent single Rydberg excitations, do not cou-
ple to disorder. Therefore, while the CLSs and NLSs
are supported on B and C sublattices and hence are no
longer exact eigenstates of the disordered Hamiltonian,
the non-compact state in Fig. 1(c) remains unaffected by
disorder.

To study the effect of disorder on the singular flat
band, we numerically diagonalize the Lieb lattice Hamil-
tonian (2) in real space with positional disorder on an
L × L square lattice. We focus on the middle one third
of eigenstates in the spectrum, which corresponds to the
flat-band states in the clean limit. We rank-order the
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FIG. 2. (a) Level-spacing ratio r versus the rescaled eigen-
state label β and disorder strength σ. (b) r as a function of
disorder strength for two cuts, shown by dashed lines in (a),
along E = 0 and β = 0.3 for different system sizes. The error
bars (not shown) are smaller than the plot markers. (c) Frac-
tal dimension Dq versus q, for states at representative points
in (a): M (β = 0, log10 σ = −6), N (β = 0.3, log10 σ = −4),
P (β = 0, log10 σ = −2), Q (β = 0.3, log10 σ = −2), as well as
the non-compact zero-energy eigenstate (NCS) for arbitrary
disorder strength. Inset: scaling of IPR as a function of the
Hilbert space dimension. (d) Probability distribution of the
unfolded level spacings P (s) for states in regime I for different
system sizes [52].

eigenstates according to their energies Ei > Ei−1 and in-

troduce a rescaled label β = i−N/2
N/3 ∈ (−0.5, 0.5), where

N is the Hilbert-space dimension and i ∈ (N/3, 2N/3).
We probe ergodicity versus localization using the level-
spacing ratio ri = min(δi, δi+1)/max(δi, δi+1), where δi =
Ei+1 − Ei. Ergodic and localized phases are character-
ized by a Wigner-Dyson (WD) distributed spectrum with
mean r ≈ 0.53 and a Poisson distributed spectrum with
r ≈ 0.39, respectively. Fig. 2(a) shows the eigenstate-
resolved r as the disorder strength σ varies. We find
a rich phase diagram featuring three distinct regimes:
a critical Regime I; a nonergodic extended Regime II;
and a Regime III, in which a disorder-induced flat band
emerges [see Table. I for the main features]. Below we
shall discuss each regime in detail.

Regime I: Criticality.—Let us first focus on the weak-
disorder regime, where the level-spacing statistics are in-
termediate between WD and Poisson, with the band-
edge states [near the top and bottom of Fig. 2(a)] be-
ing more localized. As one can see from Fig. 3(a), while
the wavefunction is extended in real-space, it appears

less ergodic than a perfectly delocalized state. Moreover,
the wavefunction is mainly supported on the B and C
sublattices [inset of Fig. 3(a)] [49], indicating that the
flat-band states do not couple strongly to the original
dispersing bands at weak disorder. To characterize the
wavefunctions more quantitatively, we study the inverse
participation ratio (IPR) Iq(β) = 〈

∑
i |ψαi |2q〉, where ψαi

is the amplitude of the α-th wavefunction on site i and
the average is taken over disorder realizations and over a
fixed number of states α around β [53]. It is in general
expected to scale as Iq ∼ N−Dq(q−1), where Dq is known
as the fractal dimension, with Dq = 1 for ergodic states
and Dq = 0 for localized states. If Dq depends on q, as
occurs for example at the critical point of the Anderson
transition [53–57], the eigenstates are called multifractal.
Fig. 2(c) shows the exponent Dq extracted from the IPR
for point M in Fig. 2(a), which indeed exhibits a q de-
pendence, signaling multifractality and nonergodicity of
the wavefunctions in this regime [58, 59].

Besides delocalization and nonergodicity of the wave-
functions, another interesting feature in Regime I is that
the level-spacing statistics is intermediate between WD
and Poisson and shows almost no dependence on system
size [Fig. 2(b)]. This is also clear from Fig. 2(d), where
we plot the distribution P (s) of the level-spacing s, af-
ter spectral unfolding [29, 60], for the states shown in
Fig. 2(a), i.e. the middle one third of the states. This
suggests that the level statistics remain intermediate be-
tween WD and Poisson in the thermodynamic limit; such
statistics are called critical [29, 36, 59, 61–63]. The statis-
tics also show little dependence on disorder strength,
suggesting that entire Regime I is critical even for ex-
tremely weak disorder [29, 36]. This is in contrast to the
standard Anderson [53] and many-body [55] localization
transitions, which involve a single critical point. The
origin of the criticality in Regime I lies in the singular
nature of the flat band in Hamiltonian (2). As shown in
Ref. [29], for a flat band with a singular band-touching,
the real-space matrix elements of the projection opera-
tor onto the flat band 〈R|P|R + r〉 decay as |r|−d in d
dimensions. States originating from such flat bands are
generically critical in the presence of weak disorder. On
the other hand, for nonsingular flat bands (e.g. in 1D
ladder systems), 〈R|P|R + r〉 decays exponentially with
r and one can use the detangling method [39, 40, 47] to
observe conventional Anderson localization.

Regime II: Hybridization with dispersive bands.—
Similarly to Regime I, the level-spacing statistics in
Regime II are also intermediate between WD and Pois-
son, as shown in Fig. 2(a). However, the physics in
these two Regimes is drastically different. To see this, let
us first look at a representative real-space eigenstate in
Regime II, shown in Fig. 3(b) [49]. Although the wave-
function is again extended but nonergodic, it now has
support on all three sublattices [inset of Fig. 3(b)], in-
dicating that the original flat band strongly hybridizes
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FIG. 3. (a)-(d) Amplitudes of the real-space wavefunctions for
representative pointsM(a), N(b), Q(c), and P (d) in Fig. 2(a).
(e) The amplitudes of the wavefunction for the non-compact
eigenstate (NCS). Each inset shows a zoomed-in view locally.
(f) The integrated density of states as a function of energy,
for different disorder strengths.

with the dispersive bands as the disorder strength in-
creases. Moreover, the fractal dimension Dq again ex-
hibits a q dependence, indicating multifractality in this
regime. Nonetheless, Regime II no longer appears criti-
cal, as can be seen from the noticeable but subtle system
size dependence of the level statistics in Fig. 2(b) [49].

Regime III: Disorder-induced flat band.—In the
strongly disordered regime, one expects that most of
the eigenstates become localized, as is indeed confirmed
by the level spacing statistics in Fig. 2(a). The real-
space wavefunction shown in Fig. 3(d) and the frac-
tal dimension Dq ≈ 0 in Fig. 2(c) are also consistent
with the states being localized. However, we find that
in the middle of the spectrum where the energies are
very close to E = 0, the eigenstates are delocalized [see
Fig. 3(c)]. The fractal dimension of these delocalized
states exhibits a q-dependence [see Fig. 2(c)], indicat-
ing multifractality. Moreover, the integrated density of
states in Fig. 3(f) shows a sharper jump near E = 0
compared to the more weakly disordered Regime II, and,

counterintuitively, becomes sharper with increasing dis-
order. This indicates the presence of a flat band in the
strong-disorder regime. This disorder-induced flat band
is physically distinct from the original flat band of Hamil-
tonian (2) in the clean limit [solid curve in Fig. 3(f)].
As can be seen from Figs. 3(c)-(d), the flat-band states
in the strong-disorder regime have dominant support on
sublattice A [49], whereas the original flat-band states are
supported on sublattices B and C instead [see Fig. 3(a)].

To understand this disorder-induced flat band, we can
write down the eigenvalue equation for the single-particle
hopping Hamiltonian in real space [see SM [49] for the
details of the analysis in this paragraph]. By eliminating
sublattice A [64], one arrives at a single-particle hop-
ping model on the B and C sublattices only, which form
a planar pyrochlore lattice. As shown in Refs. [29, 51], the
planar pyrochlore lattice also hosts a singular flat band
at E = 0 in the clean limit, and the flat band eigenstates
become multifractal states with E ≈ 0 in the presence
of weak disorder [see also Fig. 2(a)]. That the wavefunc-
tions have dominant support on sublattice A in Regime
III (and dominate support on B and C sublattices in
Regime I) can also be understood using the elimination
procedure.

We stress that the disorder-induced flat band in
Regime III only arises in the Rydberg atom setup, where
disorder naturally couples to sublattices B and C only.
In contrast, when disorder is present on all sublattices,
as is usually the case, the density of states will instead
have a broad distribution and no flat band is formed [49].

Quench dynamics.— The three regimes discussed
above have distinct dynamical features in quantum
quench experiments (see SM [49] for numerical results).
We choose three different types of initial states, includ-
ing a CLS, a state with nearest-neighbor Rydberg exci-
tations, and a state with a single excitation, all of which
can be prepared in experiments [40]. The Rydberg exci-
tation probabilities have initial-state dependent distinct
features under time evolution by the 2D disordered Lieb-
lattice Hamiltonian in the three respective regimes.

Conclusions and outlook.—We have studied the effect
of disorder on 2D Rydberg atom arrays in the anti-
blockade regime and uncovered rich localization phenom-
ena depending on the disorder strength. In contrast to
previous works [29–37], our study originates from an in-
teracting Rydberg system, and our predictions hold even
in the full quantum many-body system (see SM [49]).
Besides the Rydberg system, our results are also rele-
vant to general disorder types [49] in other Lieb-lattice
implementations, e.g., optical [41–45] and microwave [27]
photons, cold atoms [46, 47], and electrons [48, 65]. By
changing the anti-blockade conditions, our study can be
extended to a wide variety of synthetic graphs. More-
over, our construction generically leads to single-particle
hopping models on effective graphs that are subdivisions
of the graph corresponding to the physical lattice. We
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expect the nonergodic extended states uncovered in this
work and disorder-induced flat bands to be generic for
graphs with singular flat bands under this construction.
Another interesting direction is to consider 3D general-
izations of our study involving the interplay of conven-
tional Anderson localization with a mobility edge and
the degenerate singular bands. Finally, it would be in-
teresting to consider subspaces with multiple excitations,
where there can be nontrivial interplay of anti-blockade
conditions and many-body interactions [66–68] (or block-
ade constraints) in the synthetic lattice.
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dro Garćıa-Pintos, Alicia Kollár, Rex Lundgren, and Oles
Shtanko for helpful discussions. FL, Z.-C.Y, PB, and
AVG acknowledge funding by AFOSR, U.S. Department
of Energy Award No. DE-SC0019449, AFOSR MURI,
the DoE ASCR Quantum Testbed Pathfinder program
(award No. DE-SC0019040), DoE ASCR Accelerated Re-
search in Quantum Computing program (award No. DE-
SC0020312), NSF PFCQC program, ARO MURI, ARL
CDQI, and NSF PFC at JQI. Z.-C.Y. is also supported by
MURI ONR N00014-20-1-2325, MURI AFOSR, FA9550-
19-1-0399, and Simons Foundation. TI acknowledges
Iowa State University startup funds.

[1] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R
Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic,
M. Greiner, and M. D Lukin, “Atom-by-atom assembly
of defect-free one-dimensional cold atom arrays,” Science
354, 1024 (2016).
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